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Abstract: FPR reinforcing bars have emerged as a promising alternative to steel bars in construction,
especially in corrosive environments. Literature includes several shear strength models proposed for
FRP-RC members. This study presents a detailed evaluation of design shear models proposed by
researchers and design codes. The evaluation was conducted through an extensive surveyed database
of 388 FRP-RC beams without shear reinforcement tested in shear. Gene expression programming
(GEP) has been utilized in this study to develop accurate design models for the shear capacity of
slender and deep FRP-RC beams. Parameters used in the models are concrete compressive strength
(f’c), section depth (d), section width (b), modular ratio (n), reinforcement ratio (ρf), shear span-to-
depth ratio (a/d). The proposed model for slender beams resulted in an average tested-to-predicted
ratio of 0.98 and a standard deviation of 0.21, while the deep beams model resulted in an average
tested-to-predicted ratio of 1.03 and a standard deviation of 0.29. For deep beams, the model provided
superior accuracy over all models. However, this can be attributed to the fact that the investigated
models were not intended for deep beams. The deep beams model provides a simple method
compared to the strut-and-tie method.

Keywords: FRP bars; shear strength; machine learning; gene expression; deep beams; slender beams

1. Introduction

Steel corrosion is one of the main challenges in steel-reinforced concrete structures,
especially when exposed to harsh weather conditions. In addition, the rehabilitation cost
of deteriorated reinforced concrete elements is considered significantly high [1]. As an
alternative cost-effective solution, fiber-reinforced polymers (FRP) bars have emerged as a
promising alternative to steel bars due to their high corrosion resistance, durability, and the
strength-to-weight ratio [2]. FRP bars encompass aligned fibers made of carbon (CFRP),
glass (GFRP), basalt (BFRP), or aramid (AFRP) and are recognized for their linear elastic
behavior until failure with no yielding behavior. Generally, FRP bars have higher tensile
strength than steel bars; however, they have a lower elastic modulus depending on the
type of fibers.

In the last two decades, extensive research has been conducted to investigate the
flexural and shear behavior of FRP-reinforced concrete (FRP-RC) elements. This research
formed the basis of design provisions for FRP-RC structures such as ACI-440 and CSA-
S806 [1]. However, FRP-RC members are not widely used in design and construction. This
could be attributed to the lack of unified understanding and theories that describe the
complex shear behavior of FRP-RC and the relatively high conservatism in the available
models [3]. Several sophisticated approaches to model the shear behavior have been
proposed [3]; however, due to their complexity, it is difficult to be adopted by design
provisions. This led to the development of a simplified empirical design equation for design
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(ACI 318-19, EC). Unfortunately, these simplified approaches do not allow for an extension
or development of the model to incorporate changes and advances in material technology
(such as FRP bars). As a result, a new model is often required [3]. The distinctive properties
of FRP bars compared to steel bars in terms of tensile strength and elastic modulus implies
that the shear behavior of FRP-RC beams differs from steel-RC beams. In addition, the
design and the behavior of deep beams significantly differ from slender beams. Therefore,
the impact of the shear span ratio, FRP modulus of elasticity, and FRP strength on the
predicted shear capacity of FRP-reinforced concrete beams without shear reinforcement
should be addressed.

In recent years, development in data-driven machine learning approaches for investi-
gating behavior, failure mode, and capacity of different RC elements has been witnessed.
Alam et al., 2021 [4] used an experimental database to construct and test a hybrid model
of Bayesian optimization algorithm-based support vector regression (BOA–SVR) for esti-
mating the shear strength of FRP-RC beams without stirrups. The model revealed high
prediction accuracy compared to artificial intelligence (AI) and code-based models. Solh-
mirzaei et al. (2020) [5] proposed a machine-learning framework to predict the failure
mode and shear capacity of ultra-high performance concrete (UHPC) with steel fibers. The
framework first utilizes classification algorithms such as a support vector machine (SVM),
artificial neural networks (ANN), and k-nearest neighbor (k-NN), along with an extensive
experimental database to predict the failure mode. Then, genetic expression programming
(GEP) was utilized to provide a capacity model for each failure mode. The proposed frame-
work yielded superior accuracy compared to several proposed models by other researchers
and design provisions. Tarawneh et al. (2022) [1] utilized a comprehensive experimental
database of 241 tested FRP-RC columns to construct a robust Bayesian-regularization-based
ANN model. The model is then used to develop strength-interaction diagrams for eccen-
trically loaded FRP-RC columns and to locate the slenderness limit for GFRP and CFRP
columns. Similarly, Eman et al. (2022) [6] utilized the SVM algorithm and comprehensive
experimental database of FRP-RC beams in flexure to identify the failure mode and pro-
posed a new failure mode rule. The trained model was used to evaluate the deformability
of FRP-RC beams. The application of machine learning has been extended to a wide range
of applications recently and provides great potential. Ghassan et al. [7] assessed the ability
of several machine learning methods to develop a comprehensive shear capacity model for
short steel links. The study utilized Extreme Gradient Boosting (XGBOOST), a Light Gradi-
ent Boosting Machine (LightGBM), and Artificial Neural Network (ANN) algorithms. The
overall outcomes showed that the LightGBM outperformed the XGBOOST model. More-
over, the overstrength ratio predicted by the LightGBM showed an excellent performance
compared to the Gene Expression and Finite Element-based models. The utilization of
machine learning has been engineering management applications, where Alshboul et al. [8]
developed a mathematical model to explore the balance of supply and demand under
deflationary conditions for external green construction support and the accompanying
spending adjustment processes. Tarawneh et al. [9] indicated that the reliability of the
machine learning prediction model is higher than conventional regression models.

Although the ANN technique was efficiently utilized to predict the shear strength of
FRP-RC beams without stirrups [10–13], GEP is recognized for its ability to develop reliable
prediction models in the form of a mathematical model. GEP mimics Darwin’s evolution
process in developing the mathematical model, as explained later. Murad et al. successfully
applied GEP to developing predictive models for the shear strength of reinforced concrete
columns subjected to biaxial cyclic loading [14] and flexural strength for FRP-reinforced
beams [15].

This paper surveyed a large worldwide database of 388 slender and deep FRP-RC
beams tested in shear. Beams were classified into slender and deep based on the shear
span-to-depth ratio (a/d) of 2.5 as recommended by James K. Wight and Macgregor [16].
First, the surveyed database was used to evaluate several literature models and design
provisions comprehensively. Secondly, the study utilizes the surveyed database and Gene



Sustainability 2022, 14, 15609 3 of 18

Expression Programming (GEP) to develop a reliable and robust model for the shear
strength of FRP-RC slender and deep beams. The importance of the study arises from:
(1) The study utilizes an extensive database with a wide range of properties alongside GEP
to generate shear models for FRP-RC beams. (2) There is no shear model or an adopted
strut-and-tie method for deep FRP-RC beam. (3) Comparing the performance of several
models to the developed models.

2. Existing Shear Strength Models

This section presents some of the existing design models proposed for the shear
capacity of FRP-RC beams. A later section presents a statistical analysis of the accuracy
of these design models. It should be noted that the discussed models were intended for
slender beams; however, they will be tested for slender and deep beams in this study.

2.1. Shear Model by ACI 440-15

According to the ACI 440-15 [17], the design philosophy of FRP-RC for shear is similar
to steel-RC beams taking into account the lower elastic modulus and the low transverse
shear resistance. The lower elastic modulus will result in wider cracks and a smaller
compression region compared to steel-RC. The ACI 440 requires multiplying the ACI
318-14 shear equation by the parameter 2.5 k as suggested by Tureyen and Frosh [18]. The
suggested shear strength design (Vc) is as follows:

Vc =
2
5

√
f ′c bw c (1)

c = kd (2)

k =

√
2 ρ f l n +

(
ρ f l n

)2
− ρ f l n (3)

n =
E f l

EC
(4)

2.2. Shear Model by ACI 440-22

In 2022 a public draft for discussion has been released showing the expected changes
in the ACI 440-22. The public draft shows the inclusion of the size effect factor and a
lower limit for the shear capacity, as recommended by Nanni et al. [19]. The shear nonmail
capacity is as follows:

Vc =
2
5

√
f ′c λs bw c (5)

Vcmin = 0.067
√

f ′c bw d (6)

λs =

√
2

0.004 + d
≥ 1.0 (7)

2.3. Shear Model by Canadian Standard Code CAN/CSA S806 (2012)

In The Canadian code CSA S806 (2012) [20], shear design provisions are based on the
equation proposed by Razaqpur and Isgor (2006) [21], where shear strength is calculated
according to the following:

Vc = 0.05 λ km krka ks
(

f ′c
)1/3 bw dv (8)

0.11
√

f ′c bw d ≤ Vc ≤ 0.2
√

f ′c bw d (9)

dv = max{0.9d, 0.72h} (10)
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km =

(
Vf d
M f

)1/2

,
d
a
=

Vf d
M f

(11)

kr = 1 +
(

E f l ρ f l

)1/3
(12)

ka =
2.5 Vf d

M f
, 1.0 ≤ ka ≤ 2.5 (13)

ks =
750

450 + d
≤ 1.0 (14)

2.4. Shear Model by JSCE-97

According to JSCE-97 [22], the value of Vc is calculated following the expression
presented in Equation (15). It is worth noting that Equation (21) accounts for the size effect
and the axial stiffness of FRP reinforcement using the βd and βp factors.

Vca = βd βp βn fvc bw d/γb (15)

βd = (1/d)1/4 ≤ 1.5 (16)

βp =

(100 E f l ρ f l

Es

) 1
3

≤ 1.5 (17)

βn = 1 +
M f

Md
≤ 2.0 , Nd ≥ 0 (18)

βn = 1 + 2
M f

Md
≥ 0 , Nd < 0 (19)

βn = 1 , No axil load. (20)

fvc = 0.2
(

f ′c
)1/3 (21)

γb = 1.3 (22)

2.5. Shear Model by Nehdi et al. (2007)

Nehdi et al. (2007) [23] collected a database of 168 specimens of FRP-RC beams with
and without transverse reinforcement tested under shear load from published literature
to develop an equation capable of predicting the shear strength of FRP-RC beams with or
without transverse reinforcement using a machine-learning technique (genetic expression),
The proposed model by Nehdi is presented in the following Equation

Vc = 2.1

(
f ′c ρ f l d

a
E f l

Es

)0.3

bwd (23)

If
a
d
> 2.5, Vc is multiplied by 2.5 d/a (24)

2.6. Shear Model by Hoult et al. (2008)

The shear model proposed by Hoult et al. [24] is a modification of the CSA shear
provisions for steel-reinforced members, which are based on modified compression field
theory by adjusting the term Es As to Efl Afl (Equation (25)). The proposed model was
verified by a database of 398 specimens of FRP-RC beams tested under shear force.

Vc =
0.30

0.5 + (1000εx + 0.15)0.17 ×
1300

1000 + Sze

√
f c′bw dv (25)
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εx =

M f
/

dv
+ Vf

2 E f l A f l
, Sze =

31.5 d
16 + ag

≥ 0.77d (26)

2.7. Shear Model by Kara (2011)

Kara [25] compiled a database of 104 FRP-RC specimens with 91 beam specimens and
13 one-way slab specimens. All specimens had no transverse reinforcement and exhibited
shear failure. To develop a shear model, Kara utilized a machine learning algorithm along
with compiled database, as shown in Equation (27).

Vc = bwd

(
3

√
d
a

f ′c ρ f
E f

Es

(
c1

2/c2

))1/3

(c0/c2) (27)

The constants in the Equation are: c0 = 7.696, c1 = 7.254 and c2 = 7.718

2.8. Shear Model by Mari et al. (2013)

Based on the principles of structural mechanics and the experimentally observed behavior
of RC beams at shear-flexural failure, Mari et al. [26] develop an equation with a compression
chord model capable of predicting the shear strength of FRP-RC beams without transverse
reinforcement. The accuracy of the Equation has been verified by comparison with a database
of 144 specimens of FRP-RC beams under a shear test, such that:

Vc = ξ
[
(1.072− 0.01n)

c
d
+ 0.036

]
fct b d (28)

fct = 0.3 3
√

fc ′
2 if fc

′ ≤ 50MPa (29)

fct = 2.12 Ln
(

1 +
fc
′

10

)
if fc

′ > 50MPa (30)

ξ = 1.2− 0.2
a
d
× d (31)

c
d
= nρ f

(
−1 +

√
1 +

2
n ρ f

)
(32)

2.9. Shear Model by Bažant and Yu (2005)

Bažant and Yu (2005) [27] developed a shear model for steel-reinforced beams using a
database of 398 specimens. This Equation was proposed by ACI Committee 446 to update
the current ACI 318 code and is given below.

Vc = 1.1 ρs
3/8
(

1 +
d
a

)√√√√√ f ′c

1 +
(

d
687.5√ag f c′−2/3

) bw d (33)

2.10. Shear Model by ACI 318-19

According to the ACI 318-19 [28], for nonprestressed members and Av < Av,min , Vc
can be taken as (Equation (34)). The size effect factor, λs, is given by (Equation (35)), which
identifies that the reduction in shear strength with depth begins at 250 mm.

Vc = 0.66λsλ(ρ)1/3
√

f c′bwd (34)

γs =

√
2

1 + 0.004d
≤ 1 (35)
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2.11. Shear Model by Kaszubska et al. (2018)

Kaszubska et al. [29] developed an equation (Equation (11)) based on the modified
compression field theory to assess FRP-RC beams with or without transverse reinforcement;
this Equation was assessed with a database of 215 specimens under a shear test and
compared with recent recommendations:

Vc = βN
√

f ′c bw d (36)

βN = 0.07× x0.22, 0.05 < βN < 0.30 (37)

x =
El ρl bw

f c′ d
(38)

2.12. Shear Model by Ebid and Deifalla (2021)

In 2021, Ebid and Deifalla [30] collected a database of 533 FRP-RC beams with or
without transverse reinforcement tested under a shear load to develop a new equation to
predict the shear strength using a genetic programming technique; this Equation is given
as follows

Vt =

1.25 Ln
[
1.3+0.7

(
ρ f v f f v

)
+0.2 ρ f

]
Ln
(

45 a
d

Ec
E f

)
 b d

√
f ′c (39)

3. Surveyed Database

A worldwide experimental database of 388 FRP-RC beam specimens without shear
reinforcement tested under shear force was surveyed. Two hundred eighty-eight speci-
mens were classified as slender beams based on a shear-span-to-depth ratio of a/d > 2.5,
and 100 specimens as deep beams with a/d < 2.5. All specimens were tested in a simple
supporting configuration under a three-point or four-point load test, reinforced with dif-
ferent types of FRP bars; CFRP, GFRP, and BFRP. Parameters collected for each specimen
are cross-sectional dimensions, effective depth, shear-span-to-depth ratio (a/d), concrete
compressive strength (f′c), FRP type, reinforcement ratio (ρ), and modulus of elasticity of
FRP bars (Ef). The range of the variables in the database is presented in Figure 1, and a
summary of the collected database is listed in Tables 1 and 2.
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Table 1. Summary of surveyed slender beams database.

Reference N b a/d f′c ρf % Efu

Razaqpur, A. G. et al. (2004) [31] 6 200 (2.67–4.5) (40.5–49.5) (0.25–0.88) 145

El-sayed et al. (2005) [32] 8 1000 ((6–6.4)) 40 (0.39–2.44) (40–114)

Issa et al. (2016) [33] 7 300 (5.65–7) 35.9 (0.68–3.4) (48–53)

Tureyen and Frosch (2002) [18] 6 457 3.4 34.5 (0.96–1.92) (37.5–47.1)

El Refai and Abed (2016) [34] 5 152 3.3 49 (0.31–1.52) 50

Tomlinson and Fam (2015) [35] 3 150 4 (56.5–60) (0.39–0.81) 70

Khaja and Sherwood (2013) [36] 11 400 (3–8) (47.8–51.4) (0.57–4.1) (47.5–51.9)

Abdul-Salam (2014) [37] 18 100 (5.92–6.18) (47.9–86.2) (0.45–1.42) (69.5–144)

Razaqpur et al. (2011) [38] 6 300 (3.5–6.5) 52.3 (0.28–0.35) 114

Chang and Seo (2012) [39] 6 1200 5.8 30 (0.73–1.22) (44–50)

Kaszubska et al. (2018) [29] 7 150 (2.9–3) (28.8–31.7) (0.99–1.85) (50.2–50.9)

Ashour and Kara (2014) [40] 6 200 (2.7–5.9) (21.6–28) (0.12–0.51) (32–38)

Ashour (2006) [41] 6 150 (2.7–3.7) (34–59) (0.45–1.15) 32

Tariq and Newhook (2003) [42] 12 (130–160) (2.7–3.3) (34.7–43.2) (0.72–1.54) (42–120)

Kim and Jang (2014) [43] 24 150 (3–4.5) 30 (0.31–0.71) (48.2–146.2)

El-sayed A et al. (2009) [44] 2 600 6.68 68 (0.53–0.77) 48

Zhao et al. (1995) [45] 3 150 3 34 (1.51–3.02) 105

Alkhrdaji et al. (2001) [46] 3 178 (2.61–2.69) 24 (0.77–2.3) 40

Deitz et al. (1999) [47] 3 305 (4.5–5.8) (27–30) 0.73 40

Duranovic et al. (1997) [48] 2 150 3.65 (33–38) (1.31–1.36) 45

Matta et al. (2013) [49] 9 (114–229) 3.1 (32.1–59.7) (0.13–0.28) (43.2–48.2)

Joseph R et al. (2001) [50] 18 (178–279) 4.06 36.3 (0.86–1.75) 40.336

Alam (2010) [51] 2 250 3.5 (34.5–39.8) (0.42–0.84) (48–120)

Olivito and Zuccarello (2010) [52] 20 150 5.56 (30–40) (0.786–1.3) 115

Bentz et al. (2010) [53] 4 450 (3.48–3.05) 35 (0.48–1.91) 37

Gross et al. (2003) [54] 12 (152–203) 4.06 79.6 (1.25–2.1) 40.3

Ali et al. (2014) [55] 4 130 3 (31–33.5) (0.6–0.91) 51.5

Guadagnini et al. (2006) [3] 1 150 3.3 40 1.1 45

Nakamura and Higai (1995) [56] 2 300 4 (23–28) (1.34–1.79) 29

Swamy (1997) [57] 1 155 3.15 39 1.55 34

Liu (2011) [58] 20 (635–1854) 6.04 (65–87) (0.54–0.94) 43.3

Farahmand (1996) [59] 6 200 (3,4) (31–35) (0.51 1.08) 41.3

Gross et al. (2004) [60] 4 (89–159) (6.35–6.45) (60–81) (0.33–0.76) 139

Maruyama and Zhao (1994) [61] 4 150 3 (28–35) (0.55–2.2) 94

Caporale and Luciano (2009) [62] 4 150 4.12 (24–31) (0.92–1.54) 45.8

Kilpatrick and Easden (2005) [63] 12 420 (3.61–6.41) (61–93) (0.61–2.61) (40–42)

Kilpatrick and Dawborn (2006) [64] 9 420 (6–6.16) (48–92) (0.68–1.16) 42

Zeidan et al. (2011) [65] 1 150 5 49 0.105 148

Table 2. Summary of surveyed deep beams database.

Reference N B a/d f′c ρf % Efu

Matthias F and Lubell. (2013) [66] 8 (300–310) (1.1–2.06) (39.9–68.5) (1.47–2.13) (64.1–72)

Abed et al. (2012) [67] 9 200 (1–1.52) (43–65) (0.92–1.84) 51

Thomas and S. Ramadass (2016) [68] 8 (100–170) (0.5–1.75) (40.6–59.5) (1.16–1.75) 40

Zeidan et al. (2011) [65] 3 150 2.5 (24–46) (0.105–0.21) 148

Omeman et al. (2008) [69] 8 (150–350) (1.36–1.86) (35–60) (1.13–2.26) 134

Kim and Jang (2014) [43] 29 (150–200) (1.5–2.5) 30 (0.31–0.71) (48.2–146.2)

Alam (2010) [51] 24 (250–300) (1.5–2.5) (34.3–88.3) (0.18–1.51) (48–120)
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Table 2. Cont.

Reference N B a/d f′c ρf % Efu

Ali et al. (2014) [55] 4 130 2.3 (13–33.5) (0.6–0.91) 51.5

Razaqpur, A. G. et al. (2004) [31] 1 200 1.82 40.5 0.5 145

El Refai and Abed (2016) [34] 3 152 2.5 49 (0.31–0.69) 50

Khaja and Sherwood (2013) [36] 3 400 2 (50.8–51.6) (0.57–2.28) 47.5

4. Performance of Shear Strength Models

The accuracy of the shear models discussed in the previous sections to predict the
shear capacity of the FRP-RC beams was evaluated, as shown in Figures 2–4. The graphical
demonstration presents the experimental-to-predicted shear capacity (Vc test/Vc predicted) for
each of the models discussed earlier with respect to the shear-span ratio and the concrete
compressive strength. The conservatism and scatteredness for each method are presented
using the average model error (Vc test/Vc predicted) and the standard deviation of each method.
Results for slender beams (a/d < 2.5) are presented in Figures 2 and 3, while Figure 4 shows
the results of deep beams (a/d > 2.5).
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Compared with the other models, the ACI 318-19, the Bažant and Yu, Kara, and
Mari et al. models demonstrate less scatteredness, as shown in Figures 2 and 3. Interestingly,
the ACI 318-19 model for steel-RC beams proposed by Danieal et al. performed better than
the ACI 440 models proposed for FRP-RC beams, although it does not account for the axial
stiffness of FRP bars. In contrast, JSCE, Ebid and Deifalla, Hoult et al., and ACI 440 (2015)
models provided the highest scatteredness and standard deviation. In addition, Ebid and
Deifalla, JSCE, and ACI 440 (2015) models underestimate shear capacity with an average
shear capacity ratio (Vc test/Vc predicted) of 1.77, 1.69, and 1.83, respectively. Including the size
effect in the ACI 440-22 and a minimum shear capacity has notably improved the prediction
by reducing model error (Vc test/Vc predicted) and the standard deviation from 1.83 to 1.68 and
from 0.37 to 0.34, respectively, highlighting the importance of including this effect. The ACI
440-22 changes improve the predictions for members with low reinforcement ratios.
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The trend line in Figures 2 and 3 demonstrate the prediction accuracy with respect
to shear span ratio and concrete compressive strength. For instance, the flat trendline for
the Kara and Mari models in Figures 2 and 3 implies a consistent prediction accuracy for
the range of concrete compressive strength and shear span-to-depth ratio. In contrast, the
negative slope in the Kaszubska et al. model in Figures 2 and 3 indicates an overestimation
(unconservative) in the beam shear capacity as the concrete compressive strength and shear-
span-to-depth increase. In addition, it can be noted that the models by Kara and Mari et al.
produce flat trendlines and similar prediction performance. Generally, all models produce
acceptable trendlines with respect to compressive strength except for the Kaszubska and
ACI 318-19 models.

The normalized shear capacity (Vc test/Vc predicted) in Figure 4 shows that all selected
models fail to present the behavior of deep beams. The steep negative slope trendlines
in Figure 4 demonstrate a high underestimation of the shear capacity in the short shear-
span-to-depth ratio. Ebid’s (2021) model resulted in an average normalized shear capacity
(Vc test/Vc predicted) and standard deviation of 5.44 and 3.17, respectively, which are the
highest among all models. In contrast, Nehdi’s (2007) model resulted in the lowest average
Vc test/Vc predicted and standard deviation of 1.66 and 0.90, respectively.
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5. Gene Expression Programming (GEP)

Holland proposed genetic algorithms (GAs) in the 1960s due to the development
of computer systems and their applications in evolution theory [70]. The solution to a
problem using GAs can be extended to other applications that include multiple parameters.
Cramer (1985) [71] and Koza (1992) [72] developed genetic programming to tackle the
problem of fixed-length solutions by constructing nonlinear entities of various sizes and
forms. In 2001, the gene expression programming (GEP) technique that combines genetic
programming (GP) with GAs was presented by Ferreira [73]. GEP introduced the evolution
of the genome using expression trees that allow the implementation of multiple genes
providing an efficient solution that can be easily read and expressed. The generated math-
ematical expression in GEP gives it an advantage over other machine learning methods,
such as artificial neural networks (ANNs), that make it difficult to track the solution and
are commonly referred to as Blackbox tools. In general, the high capabilities of machine
learning stimulate researchers to utilize it to handle complex problems such as estimating
seismic demands models for building [74], the axial capacity of FRP-RC columns [75], and
developing surrogate models for holistic performance-based assessment [76].

The GEP process consists of five elements: (1) the function shape that includes the
mathematical triggers required to use them. (2) The peripheral group consists of the
symbolic characterization of variables. (3) Fitness function that evaluates chromosome
performance compared to the rest of the population (chromosomes), such as squared
medium root error (RMSE). (4) Control of variables. (5) Stopping criteria. Figure 5 shows
the GEP algorithm used to generate the expression tree [14,15].
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The first step in the algorithm is to choose the five items mentioned earlier. The first
functions are produced randomly using the specified function form and the terminals. The
process is repeated for a certain number of generations or until a good classification rate has
been found. The created functions are then performed and converted into a tree structure.
After that, the results of the functions produced are evaluated by use of the fitness function;
if the results are satisfactory, the process is terminated.

The final result is illustrated in the form of tree structures. These trees, known as GEP
expression trees, allow the description of mathematical functions created in an easy-to-read
format [14,15] (Figure 6).
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6. Proposed Model

GEP machine learning is used as a powerful computational tool to develop a model
shear capacity of FRP-RC beams without shear reinforcement by utilizing the compiled
database. Different parameters are employed for developing the GEP prediction model;
these parameters control the prediction model and the generalization capability. The
utilized parameters for developing the GEP model are shown in Table 3. The selection of
the parameters was based on multiple trials. In each trial, one variable varies while the
others remain constant. Trials were compared based on the coefficient of variation (CoV) of
the calculated-to-measured ratio. In addition, basic mathematical operations were selected
in the function set to produce a simple model.

Table 3. GEP selected parameters.

Parameter Selected Value

Dependent variable (shear stress) 1

Independent variables 5,6

Genes 3

Function set −,+, ×, ÷, √, 3
√, power,

Head size 6,8

Linking function between ETs Multiplication

Following the procedure discussed in the previous section, the developed models
for the shear capacity of slender and deep beams are shown in Equations (40) and (41).
The prediction accuracy for the training and testing datasets for each model is shown
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in Figure 7. The selected variables in the GEP algorithms for the case of slender beams
include concrete compressive strength (f’c), section depth (d), section width (b), modular
ratio (n), and reinforcement ratio (ρf). In addition to the previous parameters, the deep
beam model includes a shear span-to-depth ratio (a/d). The proposed model for slender
beams resulted in an average tested-to-predicted ratio of 0.98 and a standard deviation of
0.21, while the deep beams model resulted in an average tested-to-predicted ratio of 1.03
and a higher standard deviation of 0.29 due to its complex behavior and the limited number
of experimental data. To assess the accuracy of the proposed models and the consistency of
the prediction with respect to other variables, the ratios of the test-to-predicted values were
plotted for different variables, as shown in Figures 8 and 9. The horizontal trendlines in
Figures 8 and 9 indicate consistent predictions over the entire range of the variables.

Vc, slender = 1.657× b× 4
√

n f ′cρ× d2/3 (40)

Vc, deep =

((
d× n

−5.89× a/d

)
− f ′c

)
×
(

1000 ρ
3
4( a

d
)1/8

)
×
(

a/d−
√

b + 5.90√
n + f ′c

)
(41)
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The accuracy of the proposed GPE model compared to other models in the literature
can be summarized in the bar charts in Figures 10 and 11 in terms of the average tested-
to-predicted ratios and standard deviation. Overall the proposed model demonstrates
reasonable accuracy in predicting shear capacity compared to the model proposed by Mari
2013, Kara, 2011, Bažant and Yu 2005, and the ACI 318-19 models. However, the superiority
of predicting shear strength is more prominent in the case of deep beams. This can be
attributed to the fact that the design models were not intended for deep beams.
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There are many factors behind this discrepancy, such as the complex interaction
between FRP rebars and beams, the large extensibility of FRP rebars, which may affect
the transferred shear forces throughout the beam section, and the inefficiency of various
models for estimating the contribution of most significant parameters in the shear strength
of FRP-RC beams. Therefore, this analysis indicates that GEP modeling is very effective in
estimating the shear strength of FRP-RC beams, the efficiency of this model is obvious in
Figures 8 and 9, when the GEP model successfully mimics the complex interaction between
the beam depth, width, reinforcement ratio, and concrete compressive strength, while the
other models failed to accurately mimic this interaction as was shown in Figures 2–4.

7. Conclusions

The study presents a machine learning procedure to develop a robust prediction model
for the shear capacity of FRP-RC beams. A database of experimentally measured shear ca-
pacity of 388 FRP-RC beams was surveyed and utilized to evaluate the prediction accuracy
of several existing models and to develop the proposed model. A statistical comparison
between the prediction models was conducted based on the average (Vc test/Vc predicted) and
the Standard deviation. The following conclusions can be drawn:

1. For slender beams (a/d < 2.5), the ACI 318-19, Bažant and Yu, Kara, and Mari et al.
models demonstrate less scatteredness compared to other models. Interestingly, the
ACI 318 model resulted in high accuracy with an average Vc test/Vc predicted = 0.92 and a
standard deviation of 0.24, although it was developed for steel-RC beams. In contrast,
the Ebid and Deifalla, and ACI 440 (2015) models provided the highest scatteredness
and standard deviation.

2. Including the size effect in the ACI 440-22 (public draft) has notably improved the
prediction by reducing model error (Vc test/Vc predicted) and the standard deviation
from 1.82 to 1.66 and from 0.37 to 0.34, respectively, highlighting the importance of
including this effect.

3. Gene expression programming (GEP) has been utilized along with the compiled
database to develop shear models for slender and deep beams. The proposed model
yielded a superior accuracy over other models with an average Vc test/Vc predicted = 0.98
and a standard deviation of 0.21 for slender beams. For deep beams, the proposed
model resulted in an average Vc test/Vc predicted = 1.03 and a standard deviation of 0.29.
The proposed models are a function of concrete compressive strength, reinforcement
ratio, effective depth, modular ratio, and shear span-to-depth ratio. In addition to the
accuracy of the GEP models, the proposed models are much simpler than some of the
design models, such as the JSCE and CSA S806 models.
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