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Abstract: To open the black box of how open innovation works at the network level, we particularly
focused on the effects of TFs’ collective openness of external knowledge search on RIN innovation
performance in different innovation environments of disruptiveness. To conduct the research, we
adopted a bottom-up research approach and designed an agent-based simulation model. The
simulation results show that either collective breadth or depth exerts significant effects on the RIN
innovation performance, and their effectiveness is significantly moderated by disruptiveness. Our
results reveal the followings: (1) RIN innovation performance can be considerably enhanced by high
collective openness, but it is not necessarily true that more collective openness is better, which reflects
that the “inverted U-shaped” relationships broadly argued in firm-level open innovation studies also
exists at the network level. (2) The effect of collective openness depends on the disruptiveness of
innovation environment. The likelihood of a positive effect of collective openness on RIN innovation
performance increases as the disruptiveness is enhanced. The trends of the polarization of individual
TFs’ innovation performance in an RIN is alleviated as the disruptiveness is enhanced. Based on these
findings, we give some guidance of innovation policymaking. When the industry is in its emerging
stage, aggressive collective openness—high collective breadth and depth—aiming at achieving high
RIN innovation performance is recommended. When the industry steps into its developing stage,
directed collective openness—high collective depth and moderate collective breadth—aiming at
fostering future industry leaders in the RIN is recommended. When the industry reaches its maturity,
conservative collective openness—low collective depth and moderate collective breadth—aiming at
maximum utilization of current RIN’s competitive advantages is recommended.

Keywords: open innovation; collective openness; RIN innovation performance

1. Introduction

In the context of knowledge explosion and globalization, open innovation (OI), which
stresses “the use of purposive inflows and outflows of knowledge to accelerate internal inno-
vation, and expand the markets for external use of innovation, respectively” [1], has become
a worldwide economic phenomenon in many industries. Millions of technology-based
firms (TFs) innovate through a complex set of interactions or collaborations with external
actors, e.g., suppliers, customers, research institutes, and even competitors [2–4]. Accord-
ingly, the widespread implementation of OI subverts individual TFs’ traditional innovation
pattern from being self-dependent to being interdependent [5–7] and simultaneously ac-
celerates the emergence and evolution of regional innovation networks (RINs) [8–10]. It
has been widely accepted that OI not only plays an important role in an individual TF’s
survival and growth but also exerts a significant effect on an RIN’s evolution, which reflects
the sustainability of regional economic development [11–13]. Therefore, OI has become a
core component in both firm innovation strategy and government innovation policy.

However, compared with to firm OI strategy setting, research on OI offers fewer
theoretical implications to government OI policymaking [14,15] because the majority of
OI studies are firm-level or company-centric, e.g., focusing on how individual TFs’ OI
strategies and practices influence their own innovation performance [16,17]. Consequently,
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prescriptions drawn from these works are suitable for individual TFs, but the availability
and applicability to RINs are not guaranteed. Actually, the ultimate goal of OI implementa-
tion in an RIN often conflicts with that in a TF, i.e., collective optimization versus individual
optimization [18,19]. This conflict indicates that the logic of government innovation policy-
making is quite different from that of firm innovation strategy setting.

Network-level analysis of OI is the prerequisite and foundation to provide useful
insights on innovation policymaking for OI, and the issue of network-level innovation
performance ought to be considered first. Similar to those of firm innovation strategy, the
primary motivation and the ultimate goal of government innovation policy are innovation
performance improvement—higher regional innovation capacity and higher innovative
outcomes [20,21]. In turn, network-level innovation performance is the most important
barometer for innovation policymakers. Nevertheless, the research on this issue is still in
its infancy [18,22–24]. In contrast to the relatively mature research on firm-level innovation
performance, the studies of network-level innovation performance are fragmented in
several scatter fields, such as supply chain networks, policy-driven networks, collaborative
networks, and business networks. They are not built on each other and have not come to
an agreement on network performance conceptualization and measurement.

In this paper, we aim to open the black box of OI effects at the network level. Concretely,
we focus on the relationship between collective OI practice and RIN innovation performance
and determine how it is moderated by the disruptiveness of industrial innovation, which is
an important narrow sense of RIN environment. First, we confined OI practice to the typical
OI behavior—external search for knowledge—and use the notion of “collective openness”
to describe collective OI practice as well as the research of individual firm OI. We identify
collective openness in terms of the breadth and depth dimensions. Then, we develop
an assessment pattern for RIN innovation performance, in which we use the mean and
variance to measure an RIN’s innovation performance from the perspective of knowledge
learning and creation. Next, we adopt the agent-based modeling and simulation method
(ABMS) to conduct our bottom-up research. In the end, we analyze and discuss the results
of simulation experiments that show the effects of collective openness on RIN innovation
performance under different kinds of disruptiveness.

We organize the rest of our paper as follows: in Section 2, we briefly review the relevant
key concepts of external search for knowledge and network performance and develop the
research model based on the behavioral process of individual TFs’ external knowledge
search. In Section 3, we provide the basic descriptions and mathematical abstractions of the
agent-based simulation model and set the details of the numerical simulation experiments.
In Section 4, we present the simulation results that show the effects of collective openness
on RIN innovation performance in different innovation environments within different
disruptiveness degree. In Section 5, we discuss the managerial implications of the results,
which may offer useful insights on innovation policymaking.

2. Theoretical Background
2.1. External Knowledge Search
2.1.1. The Openness of External Knowledge Search

OI practice contains many kinds of sub-activities, such as external knowledge search,
outsourcing, crowdsourcing, licensing, etc. [1,6,7]. External knowledge search, through
which individual TFs acquire complementary knowledge and novel ideas from external
sources to stimulate innovation, is one of the most typical OI behaviors and has attracted
a great deal of attention and has been frequently discussed in the existing OI literature.
Among relevant studies, the vast majority focus on the topic of the openness of individual
TFs’ external knowledge search (individual openness for short) and its effects on TFs’
innovation performance [6,7,25–27].

A bidimensional framework established by Laursen and Salter (2006) [25] is widely
accepted in the individual openness analysis. In their framework, individual openness
is discerned from the dimensions of breadth and depth. Breadth reflects how widely a
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TF searches for knowledge from outside, while depth reflects to what extent a TF utilizes
outside knowledge. They also provide a feasible measure method for individual openness:
a TF’s breadth is evaluated as its total number of external sources or channels, and depth is
evaluated as the number of deep interactions with external sources or channels.

Contrary to the consensus of the dimensions and measurement of individual open-
ness, scholars hold different opinions on the effectiveness of individual openness. For
instance, through a large-scale survey of 2707 U.K. manufacturing firms, Laursen and Salter
(2006) found that breadth and depth have a curvilinear (an inverted U-shape) relationship
with firm innovation performance [25]. Arruda, Rossi, Mendes, et al.’s (2013) survey on
72 Brazilian firms [28] and Kobarg, Stumpf-Wollersheim, and Welpe’s (2019) investigation
on 218 innovation project in German [29] also reached the same conclusion. In contrast,
based on a questionnaire investigation of TFs in Zhejiang province, China, Chen, Chen,
and Vanhaverbeke (2011) proved that both breadth and depth are positively related to
TF’s innovation performance and argued that the decreasing returns of external search
strategies (inverted-U shaped relationships) are not always present [30]. These findings
are supported by Ahn, Minshall, and Mortara’s (2015) empirical research on 306 Korean
innovative SMEs [31]. In addition, by investigating 500 Italian TFs, Martini et al. (2012)
contradicted the “inverted U-shaped” relationship between individual openness and firm’s
innovation performance. Their research shows that depth has a U-shaped relationship
with a firm’s radical innovation performance [32]. Fu, Liu, and Zhou (2019) indicated
that open innovation strategies have different effects at different times. Their analysis
of 172 biopharmaceutical companies’ 516 annual reports reveal that openness, either as
breadth or depth, has a negative impact on short-term (1–2 years) firm performance, but an
inverted U-shaped curvilinear relationship will develop after about 3 years [33].

One accepted explanation for this non-consensus on the effectiveness of individual
openness is “environment dependency” or “context dependency” [34,35]. For instance, in
an investigation of 281 Upper Austria companies, Schweitzer, Gassmann, and Gaubinger
(2011) proved that openness exerts a stronger effect on firms’ innovation success in a
market with higher turbulence [36]. Hung and Chou (2013) revealed that technological
and market turbulence positively moderates the effect of external technology acquisition
on firms’ innovation performance [37]. Additionally, because of the conceptual richness
of the “environment” and “context”, open innovation researchers usually focus on the
environmental features in one particular aspect or dimension. Together with the mentioned
“turbulence”, other narrow-sense environments such as “disruptiveness” [38], “network
structure” [39], and “geographical proximity” [40] are also frequently discussed.

In analogy with the existing research on external knowledge search, which mainly
concentrates on the effects of individual openness on individual firm performance, in
this paper, we study the effects of collective openness on RIN innovation performance.
Expanding Laursen and Salter’s (2006) framework to the network level or collective level,
we identified collective openness through the dimensions of breadth and depth as well.
Collective breadth represents how widely TFs search for knowledge from external sources
in general, while collective depth represents how deeply TFs draw knowledge from external
sources in general. Meanwhile, we particularly focus on the influence of one type of narrow-
sense environment, the disruptiveness of industrial innovation.

The disruptiveness indicates the potential of an innovation to turn an industry upside
down and fundamentally change the way business operates in general. It is defined as
innovation that uses developing technologies to change current performance metrics and
eventually displace established competitors [41,42]. Notably, the disruptiveness integrat-
ing the technological characteristics of industrial innovation(s), i.e., radical innovation
vs. incremental innovation, with productive characteristics, i.e., product innovation vs.
process innovation, mirrors well the stage in which the industry has proceeded: When the
disruptiveness is relatively high, industrial innovations are generally radical and product-
oriented innovations; when the disruptiveness is relatively low, industrial innovations are
generally incremental and process-oriented innovations; and the shift from high to low
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disruptiveness marks the maturity of an industry [42–44]. In other words, relatively high
disruptiveness mirrors the initial “emerging” stage; relatively moderate disruptiveness
mirrors the following “developing” stage; and relatively low disruptiveness mirrors the
later “mature” stage.

2.1.2. The Behavioral Process of External Knowledge Search

To clarify the effect of collective openness on RIN innovation performance, we should
first understand the specific behavioral process of external knowledge search and how
openness acts in the process. Although the behavioral process of external knowledge search
is not fully explained by the existing studies [45,46], we can still trace valuable supplements
of this topic in other relevant research fields, e.g., social network, inter-organizational
network, bilateral games, etc. We perceive the behavioral process of external knowledge
search as the process of alliance formation of the individual TF. This process includes three
main steps: search boundary demarcation, partner selection and alliance decision, and
alliance engagement.

(1) Search boundary demarcation

When executing external knowledge search, a TF’s first step is to discern its search
scope. The external knowledge sources situated in the search scope are the candidates
or potential partners. Generally, the search scope of an individual TF is determined by
two factors. One is the TF’s breadth, which is approximate to the “search radius” and
decides the largest possible search scope. The other is knowledge complementarity, which
further confines the feasible search scope of an individual TF [47,48]. When the knowledge
basis of two TFs overlap too much, there is little point in knowledge sharing; when the
knowledge bases of two TFs are too far apart, there is still little likelihood of knowledge
sharing [49,50]. Thus, the demarcation of external search boundary is determined by TF’s
breadth of openness and knowledge complementarity.

(2) Partner selection and alliance decision

After the demarcation of external knowledge search boundaries, TFs begin to select
the “optimal” external knowledge sources with which to ally or collaborate. The main
motivation of partner selection and alliance decision is mutual benefits and risk mitigation.
On one hand, a group of scholars considers that partner selection and alliance decision
are negotiated bilaterally rather than dominated unilaterally [51,52]. Mutual benefits are
the preliminary for partner selection and alliance decision; i.e., an alliance or collaboration
should be beneficial to all participators [53,54]. On the other hand, several scholars assert
that risk mitigation should be considered in the process of partner selection and alliance
decision. For instance, Kim et al. (2006) argued that firms prefer to maintain previous
and current partnership because such repetition mitigates alliance risk [55]. Moreover,
Rowley (1997) noted that for the sake of risk mitigation, firms are also likely to build new
relationships recommended by their partners [56]. Furthermore, Rosenkopf and Padula
(2008) revealed that besides collaborating with “acquaintances”, firms also tend to build
cluster-spanning ties to reach non-local or local peripheral knowledge sources that provide
distinct valuable ideas [57].

(3) Alliance engagement

Two critical factors should be taken into consideration in this step. One is a TF’s depth,
which is approximate to “digging deepness”. As a TF’s depth increases, the complexity the
and tacit nature of the knowledge it can acquire from outside increase [58,59]. Usually, a TF
with high depth tends to form strong alliance, while that with low depth tends to build
weak alliance. Another factor is a TF’s absorptive capacity. Absorptive capacity decides
the effectiveness of a certain alliance [60,61]. A lower absorptive capacity can shrink the
effect of a strong alliance, while a higher absorptive capacity can amplify the effect of a
weak alliance.
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(4) Analysis framework of external knowledge search

We summarize the behavioral process of external knowledge search and construct the
analysis framework as shown in Figure 1.
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Figure 1. The behavioral process of an individual TF’s external knowledge search.

I. There are three main steps in the behavioral process of external knowledge
search: search boundary demarcation, partner selection and alliance decision, and
alliance engagement.

II. Openness exerts effects in the first and third steps. Specifically, breadth together
with knowledge complementarity acts in the first step, and depth together with absorp-
tive capacity acts in the third step. We treat openness as the independent variables and
knowledge complementarity and absorptive capacity as control variables.

III. Additionally, in the second step, mutual benefits and risk mitigation are the main
motivations and rules of partner selection and alliance decision. To focus on the analysis of
openness, we simplify that all TFs follow the “win-win” rule and have the same degree of
risk tolerance.

2.2. RIN Innovation Performance
2.2.1. Network-Level Performance

The issue of network-level performance as an area of research is still in its infancy [22–24].
Relatively few studies on network-level performance have been carried out, and those that
have been conducted apply different definitions, concepts, and measures [18,24].

For instance, Straub et al. (2004) conceptualized supply network performance through
the mutual information-sharing practices of clients and vendors and measure network per-
formance by aggregations of individual firm performance, such as operating margins, net
trade cycles, and working capital efficiency [62]. Similarly, Moeller (2010) assessed business
network performance by surveying accounting managers’ perceptions of achieving their
objectives regarding sales growth and reduction of production costs, value creation, and
increase in profit [63]. Sandström and Carlsson (2008) defined the performance of policy-
driven innovation network from the dimensions of efficiency and innovativeness [64]. They
evaluated network efficiency by networking consequence and duration while evaluating
network innovativeness through the indicators of existing educational program numbers,
prevailing collaboration projects, and launched new ideas. Van der Valk, Chappin, and
Gijsbers (2011) investigated innovation network performance from the perspective of net-
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work structure and network resource [23]. They considered that structural features reflect a
network’s inner knowledge diffusion, while resources are decisive in explaining perfor-
mance difference between participant firms. In accordance with knowledge-based theory,
Baum et al. (2010), Tomasello (2015), and Cheng et al. (2020) introduced the notion of
knowledge space (KS) to analyze the overall innovation performance of a collaborative
network [44,49,65]. They considered that a collaborative network corresponds to a certain
two-dimensional, abstract KS, and each participant firm can be traced by its own KS loca-
tion. When innovation occurs, TFs relocate or dislocate in the KS. These relocations and
dislocations, in turn, change the innovation network performance.

The relevant literature examples above show that current research on network-level
performance scatters in the fields of business network, supply network, collaborative
innovation network, etc. The relevant studies mainly adopt the principle that network-level
performance is composed of all its participants’ performance. This shows us that we can
measure and analyze RIN innovation performance through the (firm) population-level
performance distribution.

2.2.2. The Measurement

(1) Measuring indicators

Because of the similarity in research object (RINs and collaborative innovation net-
works) and in the research approach and method (bottom-up approach and agent-based
simulation method), we refer in our research to Baum et al.’s (2010), Tomasello’s (2015), and
Cheng et al.’s (2020) studies [44,49,65] to conceptualize and measure innovation network
performance. In the three simulation studies, the authors simplify innovation networks as
“knowledge networks”, where firms cooperate with each other for both knowledge learning
and knowledge creation. They conceptualize that TFs are located in a multi-dimensional
KS, and the location coordinates represent each firm’s knowledge basis. When a TF absorbs
external knowledge, it relocates within the KS. When it generates new knowledge via
cooperation, it not only changes its own locations but also dislocates all other participants.
These relocations and dislocations, in turn, contribute to the whole innovation network
performance. Specifically, Baum et al. (2010) mainly focused on the “creation” performance
calculated by the dislocations; Tomasello (2015) paid more attention to “learning” per-
formance as the result of relocations, while Cheng et al. (2020) took both “creation” and
“learning” performance into account.

In our paper, like Cheng et al., we classify innovation network performance into two
components: knowledge learning performance (PKL) calculated as the relocation in the KS,
and knowledge creation performance (PKC) calculated as the dislocation in the KS.

(2) Measuring pattern

The existing research on organization innovation performance is generally firm-level
and immersed mainly in the average-centered view [66–68]. The average-centered view
focuses on the average effects. This view assumes that the mean of innovation performance
represents the central tendency of a firm’s innovation outcomes and deems that the variance
of innovation performance is an outlier that can be overlooked. This assumption is not
appropriate to explain TF’s practice in the real world. In most circumstances, TFs behave in
different manners and eventually achieve different innovation performance in a certain
range. The distribution of TFs’ innovation performance appears non-symmetrical (usually
right-skewed), which implies the likelihood of superior innovation performance achieve-
ment [66,69,70]. The variance of the distribution should be given attention in the innovation
performance analysis, especially in the prediction of superior innovation outputs.

Recently, strategic management scholars have emphasized the importance of per-
formance variance. They propose a variance-centered view to complement the average-
centered view [44,67,68]. The variance-centered view focuses on the variance effects.
This view concentrates on the variance of performance distribution and explains an-
other important portion of innovation output—the occurrence of abnormal outputs. By
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combining the average-centered and the variance-centered view, we can portray and
examine the overall perspective of performance and make prescriptions for stimulating
superior performance.

We combine the average-centered and the variance-centered view to study RIN inno-
vation performance in our paper. We treat RIN innovation performance as the population-
level innovation performance distribution, and analyze it in terms of the mean and variance
of the distribution. The mean reflects an RIN’s innovation capacity and innovation out-
come in general. The variance indicates the proportions and possibilities of an RIN’s inner
ultra-conventional innovative outcomes.

2.3. Theoretical Model

We aim to untangle the effect of OI practice on RIN innovation performance in our
paper. We adopt a bottom-up approach to analyze an RIN’s innovation performance
through the collective behavior of individual TFs’ external search [53,71,72]. Moreover, the
effectiveness of collective behavior relies on the environmental context. Hence, we develop
our theoretical model, as in Figure 2.
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Figure 2. The theoretical model.

In our theoretical model, collective openness is the independent variable, the mean and
the variance of RIN innovation performance are the dependent variables, and disruptive-
ness is the moderator variable. In analogy with the use of individual openness, we utilize
collective openness to describe the behavioral characteristics of TF’s collective external
knowledge search. Expanding Laursen and Salter’s (2006) framework to the network level
or collective level, we also identify collective openness through the dimensions of breadth
and depth. Collective breadth represents how widely TFs search external knowledge,
in general, while collective depth represents the extent to which TFs utilize knowledge
from outside in general. Meanwhile, we particularly focus on the influence of one type of
narrow-sense environment, namely disruptiveness, which describes the extent of science
and technology change in a certain RIN.

In particular, unlike Laursen and Salter’s (2006) conceptualization and measurement of
individual openness from behavioral results, we measure collective openness in accordance
with behavioral process characteristics, as shown in Section 2.1.2 in our paper.
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3. Methodology

We adopt the agent-based modeling and simulation (ABMS) approach to carry out
our bottom-up study. In the bottom-up study, we think that the macro change, i.e., the
emerging and evolution of an RIN, is contributed to by all the micro attributions, i.e.,
collective OI practice or the joint force of every individual firm’s OI practice, and the RIN’s
environment context.

Through ABMS, we can replicate both behavioral (e.g., repeated ties) and structural
(e.g., sparsely connected and locally clustered) properties of innovation networks as well
as innovation outcomes [49,50,53]. When given a certain initial value of each relevant
static parameter (inputs), e.g., collective breadth, collective depth, disruptiveness, etc.,
we can thereby collect the corresponding large-scale data generated regarding innovation
performance of all individual firms (outputs) through repeated simulation experiments. The
collection of the large-scale data can be used to describe the firm population performance
distribution, which represents the whole RIN innovation performance. Relying on the
relevant inputs and outputs, we can examine relationships between collective openness
and RIN innovation performance under different disruptiveness.

3.1. Model Description

According to our theoretical model and the behavioral process of individual TF’s
external knowledge search, we designed an agent-based model to conduct our research.

(1) In our model, an RIN is defined as a complex system embedded in a certain
environment within certain disruptive degree and is composed of a fixed number of
TFs. All TFs are endowed the similar features with a certain extent of common collective
openness to execute the external search for knowledge learning and knowledge creation.
The RIN corresponds to an abstract KS, and each TF can be traced by its KS location;

(2) The external knowledge search behavior of TFs not only forms the RIN but also
changes TFs’ KS locations simultaneously. With the proceeding and accomplishment of
TFs’ external search, knowledge learning performance (PKL) and knowledge creation
performance (PKC) are generated. Additionally, we assess RIN innovation performance
from the aspects of the mean and the variance;

(3) TFs execute their external knowledge search under the following guidance:

• Breadth together with knowledge complementarity determines TF’s external knowl-
edge search scope. Specifically, breadth confines the possible radius of external
search, while knowledge complementarity further confirms the feasible scope of
external search;

• Mutual benefits and the preference of risk mitigation guide the behavior of partner
selection and alliance decision in TF’s external knowledge search;

• Depth together with absorptive capacity determines the engagement of alliance be-
tween TFs.

3.2. Simulation Model Description in Mathematics
3.2.1. RIN and Knowledge Space

We abstracted our model in mathematical terms for the simulation convenience. In
our simulation model, an RIN is composed by a fixed group of TFs and corresponds to an
abstract, i.e., [0, 1]2, two-dimensional KS metric.

Each TF embedded in the RIN can be traced by its KS location, which represents the
knowledge endowment in the form of a pair of positive real numbers, 0≤ xi, yi≤ 1. Notice that
a larger x or y does not necessarily mean more knowledge in the corresponding dimension.

The KS distance between two TFs, namely TF i and j, is

dij =
√
(xj − xi)

2 + (yj − yi)
2, (1)
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3.2.2. Calculation of RIN Innovation Performance

(1) Calculation of PKL

A successful knowledge learning event alters a TF’s KS location. The event is
expressed by a simple partial linear adjustment: when TF i learns from TF j, i will
increase its similarity with j in terms of its knowledge basis, thus relocating its KS
location according to  ∆xt

i = α · µt
i(xt

j − xt
i ) ∼ U(0, α

∣∣∣xt
j − xt

i

∣∣∣)
∆yt

i = α · µt
i(y

t
j − yt

i) ∼ U(0, α
∣∣∣yt

j − yt
i

∣∣∣) , (2)

where parameter α∈(0, 0.5) is a constant and represents TF i’s absorptive capacity; µt
i

represents TF i’s individual depth of openness in a certain time interval, following a
uniform random distribution of U(0, µ); and µ ∈ (0, 1] represents the collective depth.

Consequently, TF i’s learning performance in time interval t, i.e., PKLt
i, is calculated as

PKLt
i =

√(
∆xt

i
)2

+ (∆yt
i)

2
= α · µt

i

√
(xt

j − xt
i )

2
+ (yt

j − yt
i)

2, (3)

and the expected relocation of TF i in time interval t is

E[PKLt
i ] =

α

2

√
(xt

j − xt
i )

2
+ (yt

j − yt
i)

2. (4)

(2) Calculation of PKC

A successful knowledge creation event rearranges the whole layout of KS. The extent
to which a non-creator is affected by a creation event is determined by both its proximity to
the creator and the RIN’s disruptiveness. We assume that, following a knowledge creation
event, non-creators are dislocated in KS as a function of their distance to the creator TF i.
Any non-creator TF k is displaced, and the maximum possible absolute variations of its x-
and y-coordinates are

∣∣∆xk−max
∣∣ = ∣∣∆yk−max

∣∣ = ψk = ε · exp(−1/θ) · (1− 1√
2

dik) , (5)

where dik is the KS distance between TF i and k; ε ∈ (0, 1) is a scaling parameter that we
use to control the maximum absolute variations of coordinates; θ ∈ (0, 1) represents the
RIN’s disruptiveness.

The realized variations, ∆xk and ∆yk, respectively, follow a uniform distribution of U

(−ψk, ψk); thereby, TF k’s dislocation,
√

∆x2
k + ∆y2

k , is uniformly distributed in [0,
√

2ψk).
Consequently, the total realized dislocation caused by a knowledge creation event, also
understood as the creator TF i’s creation performance in each time interval, is thus

PKCt
i =

N

∑
k 6=i

√
∆x2

k + ∆y2
k , (6)

and the total expected dislocation caused by TF i in time interval t is

E[PKCt
i ] =

N

∑
k 6=i

E[
√

∆x2
k + ∆y2

k ] =

√
2

2
·

N

∑
k 6=i

ψk. (7)
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3.2.3. TF’s External Search Process

(1) Potential partner set identification

A TF’s potential partner set is determined by the knowledge complementarity and
breadth of openness. The former factor determines the shortest KS distance between a pair
of potential partners, while the latter determines the longest KS distance.

If TF j is a potential partner of TF i, their distance follows as

dc ≤ dij ≤ ρ · λt
i , (8)

where dc is the minimum external search scope; λt
i is the TF i’s individual breadth of

openness in time interval t, following the uniform random distribution U (0, λ); λ ∈ (0, 1],
represents collective breadth; ρ ∈ (0, 1) is a scaling parameter that we use to control the
maximum scope of external search.

(2) Partner selection and alliance decision

Partner selection and alliance decision are oriented as mutual benefits and risk
mitigation. We treat the orientation of risk mitigation as the possibility of successful
matching and further interaction between coupled TFs. We model the possibility as a
single-peaked function of the KS distance between coupled TFs. Formally, we employ a
bell-shaped (Gaussian) function to map one-period possibilities of an (potential) alliance,
I← j, according to

ηt
i←j ≡ f (dt

ij) =

{
0

η′ exp
(
−(dt

ij − d′)2/σ2
) dij /∈ (dc, ρ · λt

i)
dij ∈ (dc, ρ · λt

i)
, (9)

where d’ is the optimal KS distance between TF i and j; and the positive η’ <<1 is a scaling
parameter controlling the maximum likelihood.

We set mutual benefits of the alliance between TF i and j as

π
i←j
i = ηi←j · (E[PKLt

i ] + E[PKCt
i ])− Cµt

i , (10)

where ηi←j, E[PKLi] and E[PKCi] were defined in Equation (4), Equation (7), and Equation (9),
respectively; the positive parameter C represents the coefficient cost of building or main-
taining the alliance.

(3) Alliance engagement

The engagement of alliance is determined by TF i’s depth of openness and absorptive
capacity. The strength of alliance i←j in time interval t is

St
i←j = α · µt

i , (11)

where parameter α and µt
i are the same as those in Equation (2).

3.3. Simulation Settings

The simulation settings are shown in Table 1. The magnitude of the simulation outputs
depends on the parameters of λ, µ, and θ, each of which varies from 0 to 1. Parameters λ
and µ gradually increase by 0.05 from the initial value of 0.1. Therefore, given a certain
value for θ, there are 19 × 19 = 361 kinds of simulation experiments. For every kind of
numerical experiments, we ran the simulation 25 times. At each time, the model is run
for 1100 time-steps, but the first 100 are discarded to eliminate systematic errors. When
the simulation experiments are run, the analytical data regarding every TF’s innovation
performance at every timestep is generated.
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Table 1. Parameter settings and output indicators.

Items Definition Attribute(s) Role in Theoretical
Model Numerical Value

λ Collective breadth Parameter,
Static continuous Independent variable Ranging from 0 to 1 and

regulated by simulation input

µ Collective depth Parameter,
Static continuous Independent variable Ranging from 0 to 1 and

regulated by simulation input

θ The disruptiveness of the RIN Parameter,
Static continuous Moderator variable Ranging from 0 to 1 and

regulated by simulation input

N The number of TFs in RIN Parameter,
Constant Control variable 100

α Absorptive capacity Parameter,
Constant Control variable 0.05

d′ The optimal distance between
two TFs

Parameter,
Constant Control variable 0.03

σ
The SD of Gaussian function to
map one-period cooperation rates

Parameter,
Constant Control variable 0.025

ε
A positive scaling parameter to
control the maximum absolute
variation in firms’ coordinates

Parameter,
Constant Control variable 0.5

η′
A positive scaling parameter to
control for the maximum
success probability

Parameter,
Constant Control variable 0.025

ρ
A positive scaling parameter to
control for the maximum
search radius

Parameter,
Constant Control variable 0.3

C The cost coefficient of building
or maintaining a relationship

Parameter,
Constant Control variable 0.0005

Ave-PKL

The mean value across all TFs’
entire PKL. TF’s PKL in each
time interval is calculated
according to Equation (3).

Outputs,
Dynamic Dependent variable —

CV-PKL

The coefficient of variation, CV,
across all TFs’ entire PKL.
It is calculated as
“CV% = 100×SD/mean”

Outputs,
Dynamic Dependent variable —

Ave-PKC

The mean value across all TFs’
entire PKC. TF’s PKC at each
time interval is calculated
according to Equation (6)

Outputs,
Dynamic Dependent variable —

CV-PKC

The coefficient of variation, CV,
across all TFs’ entire
PKC calculated as
“CV% = 100×SD/mean”

Outputs,
Dynamic Dependent variable —

Our simulation experiments aim to examine how RIN innovation performance varies
responding to the changes of collective breadth (λ) and collective depth (µ) in certain
innovation environments that are described by disruptiveness (θ). Hence, we record four
types of simulation outputs: Ave-PKL, CV-PKL, Ave-PKC, and CV-PKC. Specifically, λ and µ
are ranged from 0.1 to 1, with 19 constant increments on a log-scale. θ is set at the numer-
ical value of 0.05, 0.25, and 0.55, which, respectively, means the three typical innovation
environments of poorly disruptive, moderately disruptive, and highly disruptive.

4. Analysis of Result
4.1. Effect of Collective Openness in a Poorly Disruptive Environment

Figure 3 displays the features of RIN innovation performance under different open
conditions in a poorly disruptive environment. Specifically, the upper panels of Figure 3
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show the features of RIN innovation performance on average, i.e., Ave-PKL and Ave-PKC,
while the bottom panels of Figure 3 show those on variance, i.e., CV-PKL and CV-PKC.
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As the upper panels of Figure 3 show, Ave-PKL and Ave-PKC are quite low in general,
and the latter are far less. This means that in a poorly disruptive environment, the benefit
brought by OI for an RIN is small, and the small performance improvement is mainly
represented in knowledge sharing among TFs rather than new knowledge production. In
most cases, the Ave(s) are more sensitive to the changes in collective depth than in collective
breadth, as the isoclines slopes against the µ-axis are generally much larger than those
against the λ-axis. This implies that TFs prefer to strengthen current alliances for deep
knowledge learning than build new alliances in a poorly disruptive environment.

The upper panels of Figure 3 also tell how RIN average innovation performance varies
with collective openness. It can be found that the variation tendencies of the two Ave(s) are
similar to some extent. As shown in the upper-left panel, Ave-PKL shows in an inverted
U-shaped relationship with λ and µ, respectively. For the relationship of Ave-PKL and λ,
the inflexion point of λ is between 0.5 and 0.6. When µ is relatively low, that is, µ ∈ (0.1, 0.5),
Ave-PKL first increases with λ and then keeps relatively steady. When µ is relatively high,
that is, greater than 0.6, Ave-PKL remains at a relatively low level and does not rely on λ.
For the relationship of Ave-PKL and µ, the inflexion point of µ is near 0.2. With increasing
µ, Ave-PKL rapidly increases and then gradually decreases. Additionally, as λ increases,
the inverted U-shaped relationship between Ave-PKL and µ becomes more prominent.
As shown in the upper-right panel, Ave-PKC has an inverted U-shaped relationship with
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λ. The inflexion point of λ is near 0.5. As µ decreases, the relationship becomes more
prominent. Ave-PKC is negatively influenced by µ.

The bottom panels of Figure 3 indicate the variation tendencies of the two CV(s)
responding to the changes of collective openness are similar as well. As shown in the
bottom-left panel, CV-PKL has a U-shaped relationship with λ and µ, respectively. The
inflexion points of λ and µ are approximate to those of Ave-PKL, λ is in the interval of
(0.5, 0.6), and µ is approximately 0.2. For the relationship of CV-PKL and λ, CV-PKL first
decreases with λ and then keeps relative steady. For the relationship of CV-PKL and µ, with
increasing µ, CV-PKL slightly decreases and then significantly increases. As shown in the
bottom-right panel, CV-PKC has a U-shaped relationship with λ and a positive relationship
with µ. For the relationship of CV-PKC and λ, CV-PKC first decreases and then keeps
relative steady; the inflexion point of λ is approximate to that of Ave-PKC, while λ is near
0.5. For the relationship of CV-PKC and µ, CV-PKC increases with µ.

In summary, in a poorly disruptive environment, a limited open innovation behavior
should be encouraged in the RIN. When the TFs in the RIN are in a relatively low degree of
open innovation, a slight increase of collective openness will improve the RIN’s innovation
performance. When the TFs in the RIN are in a relatively high degree of open innovation,
the increase of collective openness exerts little effects on the RIN’s innovation performance
but aggravates the polarization of individual TF innovation performance in the RIN.

4.2. Effect of Collective Openness in a Moderately Disruptive Environment

Figure 4 displays the features of RIN innovation performance under different open
conditions in a moderately disruptive environment. Specifically, the upper panels of Figure 4
show the features of RIN innovation performance on average, i.e., Ave-PKL and Ave-PKC,
while the bottom panels of Figure 4 show those on variance, i.e., CV-PKL and CV-PKC.
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As the upper panels of Figure 4 show, Ave-PKL and Ave-PKC are far greater than
those in Figure 3, and Ave-PKC surpasses Ave-PKL. This indicates that the magnitude of
collective openness’ effectiveness in a moderately disruptive environment is much greater
than that in a poorly disruptive environment and that knowledge creation tends to be
the main way to improve RIN innovation performance. In the different regions of the
(λ, µ) space, the Ave(s) appear to have different sensitivity to the changes of collective
openness, reflected as the isoclines’ non-monotonously changing slopes against the µ-axis
and the λ-axis. In the left half of (λ, µ), where λ < 0.55, the λ-slopes and µ-slopes both
fluctuate between 0 and 1; while in the right half, where λ > 0.55, the isoclines are nearly
parallel with λ-axis. Thus, whether the effectiveness of collective openness is dominated
by breadth or depth is dependent on an RIN’s current openness level. When an RIN’s
breadth is relatively low, both collective breadth and collective depth play important roles
in shaping the RIN’s innovation performance. In contrast, when an RIN’s collective breadth
is relatively high, the RIN’s innovation performance is influenced by more collective depth
than collective breadth.

The upper panels of Figure 4 also tell how RIN average innovation performance varies
with collective openness. It can be found that the variation tendencies of the two Ave(s)
are similar to some extent. As shown in the upper-left panel, Ave-PKL has an inverted
U-shaped relationship with λ and with µ, respectively. For the relationship of Ave-PKL
and λ, Ave-PKL first increases with λ and then remains relatively steady, and the inflexion
point of λ is near 0.7. For the relationship of Ave-PKL and µ, with increasing µ, Ave-PKL
increases at first and then decreases, and the inflexion point of µ is near 0.6. As shown in
the upper-right panel, Ave-PKC has an inverted U-shaped relationship with λ and with µ,
respectively, as does Ave-PKL. The inflexion point of λ is near 0.65, and the inflexion point
of µ is near 0.6.

The bottom panels of Figure 4 show that the variation tendencies of the two CV(s)
are similar and in a different direction compared to the Ave(s). As shown in the bottom-
left panel, CV-PKL has a U-shaped relationship with λ and with µ, respectively. For the
relationship of CV-PKL and λ, with increasing λ, CV-PKL first rashly decreases and then
remains relatively steady. For the relationship of CV-PKL and µ, when λ > 0.2, with
increasing µ, CV-PKL remains relatively steady at first and then significantly increases;
otherwise, CV-PKL increases with µ. The inflexion point of λ is near 0.2, and the inflexion
point of µ is between 0.45 and 0.7. As shown in the bottom-right panel, similar to CV-PKL,
CV-PKC is also in a U-shaped relationship with λ and with µ. The inflexion point of λ is
near 0.2, and the inflexion point of µ is between 0.45 and 0.65.

In summary, the variation tendencies of CV(s) synchronize with those of Ave(s). These
results imply that it is not necessarily true that more collective openness is better for an
RIN in a moderately disruptive environment.

When an RIN’s collective openness is relatively low, any increase in collective open-
ness will significantly improve its innovation performance in general, which echoes the
increasing Ave(s) in the bottom-left quarter of the (λ, µ) space. Meanwhile, the performance
gaps among individual TFs in the RIN are narrowed to a certain stable level, which echoes
the decreasing CV(s) in the bottom-left quarter of the (λ, µ) space.

When an RIN’s collective openness is low in breadth but high in depth, the increase in
collective breadth will improve its innovation performance in general, and that of collective
depth will do the opposite. This finding echoes the variation tendency of Ave(s) in the
upper-left quarter of the (λ, µ) space. Meanwhile, the performance gap among individual
TFs in the RIN are narrowed with collective breadth increasing but are expanded with
collective depth increasing, which echoes the variation tendency of CV(s) in the upper-left
quarter of the (λ, µ) space.

When an RIN’s collective openness is high in breadth but low in depth, the increase
in collective breadth does not affect its innovation performance, while the increase of
collective depth will significantly improve its innovation performance in general. This
finding echoes the variation tendency of Ave(s) in the bottom-right quarter of the (λ, µ)
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space. Meanwhile, the performance gaps among individual TFs in the RIN are narrowed
to a certain stable level as collective depth increases, which echoes the changing trend of
CV(s) in the bottom-right quarter of the (λ, µ) space.

When an RIN’s collective openness is relatively high, any increase in collective open-
ness will degrade the RIN’s innovation performance in general, which echoes the decreas-
ing Ave(s) in the upper-right quarter of the (λ, µ) space. Meanwhile, the upgrade in local
performance generated by a few well-performing TFs will aggravate the polarization of
individual TF innovation performance in the RIN, which echoes the increasing CV(s) in the
upper-right quarter of the (λ, µ) space.

4.3. Effect of Collective Openness in a Highly Disruptive Environment

Figure 5 displays the features of RIN innovation performance under different open
conditions in a highly disruptive environment. Specifically, the upper panels of Figure 5
show the features of RIN innovation performance on average, i.e., Ave-PKL and Ave-PKC,
while the bottom panels of Figure 5 show those on variance, i.e., CV-PKL and CV-PKC.
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As the upper panels of Figure 5 show, Ave-PKL and Ave-PKC are far greater than those
in Figures 3 and 4, and Ave-PKL is significantly lower than Ave-PKC, which indicates that
the magnitude of collective openness’s effectiveness in a highly disruptive environment
is much greater than those in the other types of environments. Knowledge creation is the
main way to improve RIN innovation performance. In different regions of the (λ, µ) space,
the Ave(s) presents different sensitivities to the changes of collective openness, as reflected
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in the isoclines’ non-monotonously changing slopes against the µ-axis and the λ-axis. In the
left marginal area of the (λ, µ) space, where λ < 0.25, the isoclines of the Ave(s) are nearly
parallel with the µ-axis, and λ is the valid and chief parameter. While in the other area of
the (λ, µ) space, for Ave-PKL, the λ-slopes and µ-slopes are both approximate to 1, with
both λ and µ being chief parameters; for Ave-PKC, the λ-slopes are lower than the µ-slopes,
with µ being the chief parameter. Thus, in a highly disruptive environment, whether the
effectiveness of collective openness is dominated by breadth or depth is dependent on an
RIN’s current openness level.

The upper panels of Figure 5 also show the variation increases and keeps steady as
collective breadth increases. This finding echoes the concave-curvilinear growth tendencies
of an RIN’s average innovation performance responding to the changes in collective open-
ness. It can be found that the variation tendencies of two Ave(s) are dissimilar. As shown
in the upper-left panel, Ave-PKL has a positive relationship with λ and with µ. Ave-PKL
generally increases with λ and with µ. As shown in the upper-right panel, Ave-PKC has an
inverted U-shaped relationship with λ and with µ. The inflexion point of λ is near 0.65,
and the inflexion point of µ is near 0.8.

However, the variation tendencies of the two CV(s) shown in the bottom panels of
Figure 5 are similar, and they are in a different direction from both Ave(s). The CV(s)
are influenced mainly by λ, as the isoclines are generally parallel with the µ-axis. With
increasing λ, the CV(s) first rashly decrease and then remain relatively steady, and the
inflexion point of λ is near 0.25.

The variation tendencies of CV(s) synchronize with those of Ave(s). These results imply
that in a highly disruptive environment, more collective openness is generally better for an
RIN. Any increase of collective openness will significantly enhance an RIN’s innovation
performance. Specifically, the learning performance increases with collective openness in
general, which echoes the increasing Ave-PKL. Meanwhile, the performance gaps among
individual TFs in the RIN are narrowed to a certain stable level, which echoes the variation
tendency of CV-PKL. The creation performance increases with collective depth in most case
of Ave-PKL. Meanwhile, the polarization of individual TF innovation performance in the
RIN is alleviated to some extent, which echoes the variation tendency of CV-PKC.

4.4. The Moderating Effects of Disruptiveness

We further discuss the moderating effect of disruptiveness on collective openness’
effectiveness. We particularly focus on how disruptiveness moderates the relationships
between collective openness and the RIN innovation performance. We thus characterize
how Ave-PKL and Ave-PKC vary with collective openness and the value properties in the
three typical environments analyzed in Sections 4.1–4.3. The characteristics are detailed in
Table 2.

The upper part of Table 2 shows the features of Ave-PKL’s variation tendency in differ-
ent environments. On one hand, collective breadth non-negatively influences the learning
performance of an RIN, and the effectiveness varies as disruptiveness rises. In a poorly
disruptive environment, where θ = 0.05, Ave-PKL concave curvilinearly increases with λ,
and the inflexion point of λ is approximately 0.55. In a moderately disruptive environment,
where θ = 0.25, Ave-PKL concave curvilinearly increases with λ, and the inflexion point
of λ moves to the right, approximately 0.70. In a highly disruptive environment, where
θ = 0.55, Ave-PKL monotonously increases with λ, and the inflexion point of λ vanishes in
the value interval of (0, 1) or moves to the far right. Therefore, the moderating effect of this
facet is rather intuitive: disruptiveness prolongs the positive effect of collective breadth on
the learning performance of an RIN.

On the other hand, from the upper part of Table 2, collective depth curvilinearly influ-
ences the learning performance of an RIN, and the effectiveness varies as disruptiveness
rises. In a poorly disruptive environment, where θ = 0.05, Ave-PKL evolves in an inverted
U-shaped trajectory as µ increases, and the inflexion point of µ is approximately 0.2. In a
moderately disruptive environment, where θ = 0.25, Ave-PKL also evolves in an inverted
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U-shaped trajectory as µ increases, and the inflexion point of µ moves right, approximately
0.60. In a highly disruptive environment, where θ = 0.55, Ave-PKL monotonously increases
with µ, and the inflexion point of µ vanishes in the value interval of (0, 1) or moves to the
far right. Therefore, the moderating effect in this aspect is rather intuitive: disruptiveness
prolongs the positive effect of collective depth on the learning performance of an RIN.

Table 2. The variation tendencies of the network performance of an RIN responding to the changes
in openness.

Low Disruptive Environment
(θ = 0.05)

Moderate Disruptive Environment
(θ = 0.25)

High Disruptive Environment
(θ = 0.55)

Ave-PKL Ave-PKL Ave-PKL

Breadth (λ) ↑ ↗ → ↗→ ↗
The inflexion point of λ is

approximately 0.55
The inflexion point of λ is

approximately 0.7 ——

Depth (µ) ↑ ↗ ↘ ↗↘ ↗
The inflexion point of µ is

approximately 0.20
The inflexion point of µ is

approximately 0.60 ——

Values (0, 0.0812) (0.0324, 2.071) (0.149, 5.283)

Ave-PKC Ave-PKC Ave-PKC

Breadth (λ) ↑ ↗ → ↗→ ↗→
The inflexion point of λ is

approximately 0.5
The inflexion point of λ is

approximately 0.65
The inflexion point of λ is

approximately 0.65

Depth (µ) ↑ ↘ ↗↘ ↗↘

—— The inflexion point of µ is
approximately 0.60

The inflexion point of µ is
approximately 0.80

Values (0, 4.344 × 10−7) (0.0476, 13.532) (16.86, 43.88)

Moreover, the values of Ave-PKL are significantly enlarged as disruptiveness increases.
Hence, besides delaying non-positive effectiveness, high disruptiveness simultaneously
augments the positive effect of collective openness. We thus portray such moderating
effects of disruptiveness in Figure 6.
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The bottom part of Table 2 tells a similar story as that told by the upper part. On one
hand, as disruptiveness increases, the positive effects of collective openness are signifi-
cantly prolonged. In a poorly disruptive environment, the inflexion point of λ and µ are
approximately 0.5 and 0. In a moderately disruptive environment, the inflexion point of λ
and µ are approximately 0.65 and 0.60. In a highly disruptive environment, the inflexion
point of λ and µ are approximately 0.65 and 0.80. On the other hand, as disruptiveness
increases, the values of Ave-PKC at each (λ, µ) point grow dramatically. In other words,
the positive effect of collective openness on the creation performance of an RIN will be
significantly prolonged and augmented as disruptiveness rises.

Hence, we portray such moderating effects of disruptiveness in Figure 7.
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5. Discussion

Our findings reveal that the extent to which an RIN benefits from collective openness
depends on the features of the innovation environment, namely disruptiveness. Disruptive-
ness, depicting the extent of science and technology change, usually mirrors different stages
of the industry lifecycle: high disruptiveness corresponds to the emerging stage; moderate
disruptiveness corresponds to the developing stage, and low disruptiveness corresponds
to the mature stage. As disruptiveness decreases, an industry advances in its lifecycle, and
the positive effectiveness of collective openness is markedly shrunken and shortened to a
certain extent. Such results indicate that RINs should adjust their OI strategies according to
the period of industrial development. Hence, there is no innovation policy panacea for OI
implementation in all RINs but rather pointed guidelines to different RINs under different
environmental conditions, as shown in Figure 8.

In the emerging industrial stage, where there is much room for innovative outcomes
growth, and the growth is subjected by vast potential product innovation, a proper innova-
tion policy should pay more attention to how to fully improve RIN innovation performance.
Therefore, higher level of average innovation performance across the participant TFs is
the ultimate target to RINs in this period. As our simulation results show that, in this
period, RIN average innovation performance is positively related with collective depth
and with collective breadth in general. We thus recommend the aggressive collective
openness, i.e., high collective breadth and high collective depth, which emphasizes the
overall improvement of individual TFs’ innovation performance in an RIN.
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In the developing industrial stage, where the dominant product design is formed,
and the improvement of innovative outcomes is driven by the mix of product and process
innovation, a proper innovation policy should focus on how to achieve superior innovation
performance of RINs by supporting the few leading firms or the start-ups who have
advancing knowledge and technology. Therefore, a higher level of innovation performance
variance, together with the not-too-low average innovation performance, is the ultimate
target for RINs in this period. As our simulation results show, in this period, for a fixed
depth, RIN innovation performance variance first decreases with collective breadth and
then keeps relatively stable, and for a fixed breadth, it first decreases with collective depth
and then increases. In addition, RIN average innovation performance is in inverted U-
shaped relationships with collective openness. We thus recommend the directed collective
openness, i.e., moderate collective breadth and high collective depth, which emphasizes
the fosterage of future industry leaders in an RIN.

In the mature industrial stage, the industry is routinized with relatively high outputs,
but there is only a little room for innovative outcomes’ increasing, and the limited increase
is largely composed of process innovation. In this period, a proper innovation policy should
be concerned with how to maintain the current order and status of RINs by encouraging
the communication on process optimization among TFs rather than the introduction of
new technologies or novel ideas. Therefore, relatively low-level performance variance,
together with relatively stable-level average innovation performance, is the ultimate target
for RINs. As our simulation results show, in the mature industrial stage, for a fixed-breadth
RIN, innovation performance variance significantly increases with depth, and for a fixed,
it gradually decreases at first and then keeps steady. Moreover, RIN average innovation
performance is generally low and fluctuates around zero. We therefore recommend the
conservative collective openness, i.e., moderate breadth and low depth, which emphasizes
the maximum utilization of current RINs’ competitive advantages.

Our suggestions are the first exploration of some OI guidelines for policymakers rather
than a blueprint for OI policymaking. We hope this contributes to the growing awareness
among policymakers that they have a substantial role to play in optimizing the OI benefits
for RINs, and they, in this way, can contribute to the fosterage of regional innovation
capacity and regional economic development.

6. Conclusions

In the era of knowledge explosion and globalization, regional innovation fosterage
and regional economic development are increasingly relying on TFs’ collective OI practice.
Innovation policies should be aimed to guide individual TFs’ OI practices in an RIN so as to
improve the RIN’s innovation performance. To deepen the understanding of how an RIN
benefits from TFs’ collective OI practice, we studied the relationship between collective
openness and RIN innovation performance under different innovation environments in
this paper. To do so, we identified collective openness from the dimensions of breadth and
depth and analyzed how it acts in the behavioral process of external knowledge search.
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Then, we studied whether the RINs that have higher openness are more likely to harvest
a higher level of innovation performance in different environments. At last, we found
that collective openness exerts significant effects on RIN innovation performance, and these
effects are significantly moderated by the innovation environment, which is portrayed by
disruptiveness. Our findings are shown as follows:

First, RIN innovation performance can be considerably enhanced by high collective
openness, but it is not necessarily true that more collective openness is better, which reflects
that the “inverted U-shaped” relationships broadly argued in firm-level open innovation
studies also exist at the network level.

Second, the effect of collective openness depends on the disruptiveness of innovation
environment. The likelihood of a positive effect of collective openness on RIN innovation
performance increases as the disruptiveness is enhanced. The trends of the polarization
of individual TFs’ innovation performance in an RIN are alleviated as the disruptiveness
is enhanced.

Based on these findings, we further give some guidance of innovation policymak-
ing. When the industry is in its emerging stage, aggressive collective openness—high
collective breadth and depth—aiming at achieving high RIN innovation performance is
recommended. When the industry steps into its developing stage, directed collective
openness—high collective depth and moderate collective breadth—aiming at fostering
future industry leaders in the RIN is recommended. When the industry reaches its maturity,
conservative collective openness—low collective depth and moderate collective breadth—
aiming at maximum utilization of current RIN’s competitive advantages is recommended.

In summary, there are four main contributions in our paper: (1) Tapping into the
underexplored topic of the effects of OI at the network-level, we specifically examined
the relationships between collective openness and RIN innovation performance, which
enriches the current OI research that is largely composed of firm-level or company-centric
studies. (2) Based on the process of external search, we established an analysis framework
of individual TFs’ OI behavior in a network perspective. (3) We developed an assessment
pattern for network-level innovation performance, which complements both the literature
of organization performance that mainly focuses on individual firm performance and
the literature on inter-organization networks that mainly focus on the issues of network
structure and governance hierarchy. (4) We provide some managerial implications on the
practical issue of innovation policymaking for the sake of RIN innovation fosterage.

7. Limitations and Future Directions

The current study only explores the implications of the openness of TFs’ collective
external search practice for RINs. We acknowledge that the suggested guidelines need
more detailed analysis in future research.

First, as we analyzed in the framework of external search behavior (shown in Figure 1),
openness mainly acts in the steps of the search scope demarcation and alliance engagement,
and its effectiveness is probably not only moderated by knowledge complementarity and
absorptive capacity acting in the same steps but also moderated by the other important
rules acting in the step of partner selection and alliance decision. However, we simplified
these critical factors or rules as control variables rather than systematically examining these
possible moderating effects. Hence, future research should shed light on these issues.

Second, we only focused on one narrow “environment-dependence”, namely the
“disruptiveness-dependence”, of the effectiveness of collective openness. Actually, other
important environmental constructs, e.g., turbulence, network structures, geography prox-
imity, etc., also significantly influence the relationships between collective openness and
RIN innovation performance at a high possibility. Therefore, it is necessary to examine
these effects on collective openness’ effectiveness and clarify the relatedness between these
effects in future.

Another suggestion is to explore the implications of the openness of other typical OI
practice for RINs. In reality, in an open RIN, besides the external knowledge search, there
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simultaneously exist several typical OI behaviors, such as outsourcing, crowdsourcing, and
licensing. The openness of these typical OI behaviors also has significant effects on RIN
innovation performance, which will absolutely add useful insights of OI implementation
for RINs. Thus, for future work, it is essential to uncover the effectiveness of these types of
openness at the network level.
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