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Abstract: Additive manufacturing is the technique of combining materials layer by layer and process
parameter optimization is a method used popularly for achieving the desired quality of a part. In
this paper, four input parameters (layer height, infill density, infill pattern, and number of perimeter
walls) along with their settings were chosen to maximize the tensile strength for a given part. Taguchi
DOE was used to generate an L27 orthogonal array which helped to fabricate 27 parts on the Ender 3
V2 fused deposition modeling (FDM) printer. The ultimate testing machine was used to test all
27 samples to generate the respective tensile strength values. Next, the Microsoft Azure ML database
was used to predict the values of the tensile strength for various input parameters by using the data
obtained from Taguchi DOE as the input. Linear regression was applied to the dataset and a web
service was deployed through which an API key was generated to find the optimal values for both
the input and output parameters. The optimum value of tensile strength was 22.69 MPa at a layer
height of 0.28 mm, infill density of 100%, infill pattern of honeycomb, and the number of perimeter
walls as 4. The paper ends with the conclusions drawn and future research directions.

Keywords: additive manufacturing; fused deposition modelling; machine learning; parameter
optimization; stereolithography

1. Introduction

Additive manufacturing (AM) is a fast-evolving technology that has primarily been
used in the past to build prototype models in various industries. Today, however, AM
is used for more than just prototypes. It offers enormous promise for instruments for
direct or indirect production, manufacturing, and medicinal applications [1]. AM uses 3D
printing to create substantial, intricate, and integrated parts. The ISO/ASTM 52900:2015
standard defines AM as “the technique of combining materials to build things from 3D
model data, generally layer upon layer, as opposed to subtractive manufacturing and
formative manufacturing approaches” [2]. AM is a part of various applications, with fused
deposition modeling (FDM) and stereolithography (SLA) technologies being the trendy
subjects. Composites manufactured using FDM and modified FDM often have higher
tensile strength and modulus than those made with selective laser sintering (SLS), direct
ink writing (DIW), and SLA [3,4]. Since finding the optimal set of process parameters to
build a part with AM is important, Manav et al. [5] gave a thorough breakdown of the
printer settings that directly impacted the tensile strength, stress, and Young’s modulus of
FDM-produced items. The paper looked at the most crucial printing specifications: layer
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thickness, build orientation, infill density, infill pattern, printing speed, and screen angle.
Ghabezi et al. [6] used a Noztek Touch Dual proportional-integral-derivative (PID) filament
maker to make reinforced polypropylene (PP) with salt fiber weight fractions of 0%, 2%, 5%,
and 8%, respectively. The researchers optimized extrusion parameters such as motor speed,
heater temperature, fan condition, and extrusion voltage to produce filaments with desired
surface quality. Srinivasan et al. [7] studied printed components utilizing acrylonitrile
butadiene styrene (ABS). The mechanical characteristics of printed items, such as tensile
strength and hardness, were measured and layer thickness and infill density were found to
be the critical elements. Furthermore, Sumaltha et al. [8] explained how the Taguchi method
described the relationship between different parameters and factors. Using signal-to-noise
(S/N) ratios, the authors recommended significant limits for results and settings. The actual
meaning of process limits was analyzed using analysis of variance (ANOVA).

Moreover, since the level of intelligence has risen in critical areas such as research and
development (R&D) design, production equipment, process control, logistics, distribution,
and energy management, the use of real-time data analytics, artificial intelligence (AI), and
machine learning (ML) has augmented the production processes to become smarter and
contribute towards smart factories. A thorough survey of related subjects, including cloud
manufacturing, smart manufacturing, and Internet of Things (IoT) enabled manufacturing,
was presented by Ray et al. [9]. Ugur et al. [10] focused on three essential facets of AM:
process development, materials research development, and advancements in design con-
siderations. Similarly, Wong et al. [11] researched plastic packaging manufacturing through
IoT-based production performance monitoring. The wireless fidelity (Wi-Fi) module and
Arduino board were used to transmit data to the ThingSpeakTM cloud.

In addition to finding the optimal process parameters and inclusion of AI and ML,
big data is invited wherever large amounts of data are experienced. Big data refers to
data collections that are too massive or complicated for typical data-processing application
software to handle. Although data with many fields have more statistical power, the data
with more may have a higher false discovery rate as well. Majeed et al. [12] described a
framework using different sensors to observe other parameters and optimize for better
results. The researchers used RFID tags to identify objects and monitor the temperature
of processing beds with temperature sensors. Voltage and current sensors also monitored
the electrical energy consumption of additive makers. Moreover, Soren et al. [13] explored
how ML might improve dependability by forecasting system reactions and adjusting input
parameters. ML can form new predictions for a system’s response without re-training by
using new data from the projected plan. Lingbin et al. [14] examined the most recent ML
applications in AM by comparing the effectiveness of several ML algorithms and then
assessing them. Regression optimization was also used as a method for improving the
process control set points for specific processes at the system or plant level by fusing AI
and optimization approaches in a single framework. Further, different types of regression,
including Cox or proportional hazards regression, logistic, multiple linear regression,
and polynomial and simple linear regression, were also studied by Gogtay et al. [15].
Jo et al. [16] also discussed a framework that includes a sensor module, communication
rules, and a base station. Last but not least, Milad et al. [17] proposed an Azure framework
for customizable asphalt support questions and agreements. Using four variables; severity,
thickness, road tolerance, and average daily traffic, as data sources, the authors were able
to predict the expected value of a cure.

Consequently, considering the over-arching aim of the research, it is evident that the
IoT is essential to research various approaches, especially ML and AI. This also requires
careful examination of the Azure ML database to discover how different prediction al-
gorithms can yield varied outcomes. Since linear regression is a powerful technique for
determining how one output parameter is affected by various input values, the setting up
of a web service that can return an application programming interface (API) key, which can
be further utilized in Python to power the IoT, is essential. Similarly, in this paper, process
parameter optimization is undertaken for FDM using the Microsoft Azure ML database.
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Various strategies were used to transfer data from the FDM printer to the cloud wherein
the data was handled to resolve the complex problem fast and efficiently. The remainder of
the paper is divided as follows. Section 2 presents the methodology adopted and the ex-
perimental procedure. Section 3 presents the Microsoft Azure database along with process
parameter optimization strategies. Finally, Section 4 presents the conclusions drawn.

2. Methodology and Experimental Procedure

The work presented in this paper aims to optimize the process parameters of the FDM
printer to enhance the tensile strength of the workpiece. The methodology adopted is
presented in Figure 1. It starts with the part design from which functional specifications
are extracted and the control (input) parameters are identified for the FDM process. The
background behind the process parameter selection and the adoption of Taguchi design
of experiments (DOE) is explained in the sections to follow. The experiments were then
conducted to make the parts, and a universal testing machine was used to measure the
output parameter, i.e., tensile strength. After the data was collected, it was sent to the
Azure ML database, where a linear regression model was applied since the output was
single only, i.e., to measure tensile strength. Then the hyperparameters were tuned to
produce satisfactory results. A web service was also deployed that can give a prediction
tool and guess the strength of various input values. Anyone can use the API key in other
programming languages to predict the values. In this paper, Python was used to predict
the value of tensile strength. Overall, the methodology is ‘generic’ in nature and can be
applied to predict process parameters for various AM technologies.
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2.1. FDM Process Parameters’ Selection

The FDM printer used in this study was ENDER 3 V2 (Version 2, Creality, Shenzhen,
China). Since different settings of process parameters affected the tensile strength in various
ways, the literature [3,7,18] and the operator’s experience were consulted to select the four
control (process) parameters for this paper, i.e., layer height, infill pattern, infill density,
and number of perimeter walls. The process parameters are listed in Table 1.
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Table 1. FDM ENDER 3 V2 process parameters.

Ser No. Control Parameter Unit

1 Layer height mm
2 Infill density %
3 Infill pattern Grid/honeycomb/triangle
4 Number of perimeter walls -

2.2. Materials and Geometry of the Part

In this paper, a geometric T-shaped drilling grid was used whose dimensions were
(50 × 20 × 5) mm. The design of the part was obtained from Zaman et al. [18] as shown in
Figure 2. Two gripper sections of dimensions (15 × 15 × 6.5) mm were introduced to the
original design to grip the part in the universal testing machine.
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Figure 2. Drilling Grid (modified from Zaman et al. 2018).

The experiments were carried out on ENDER 3 V2 FDM printer which has an accuracy
of up to 100 microns and a resolution of up to 0.1 mm. The material utilized was polylactic
acid (PLA) and the settings were altered using the Creality Prussa program (Version 2,
Prusa Research, Prague, Czech Republic).

2.3. Selection of Orthogonal Array (OA) and Experiments

A significant stage in the foundation of the exploratory arrangement is choosing the
settings for the controllable parameters. The settings chosen are listed in Table 2.

Table 2. Levels of process parameters for DOE.

FDM Process
Parameters Unit Level 1 Level 2 Level 3

Layer height mm 0.16 0.20 0.28
Infill density % 10 30 70
Infill pattern - Grid Honeycomb Triangle

No. of perimeter
walls - 01 02 04

Based on the control factors and the settings (levels) chosen, a suitable Taguchi’s OA
was created (see Table 3). The design of an OA depends upon the number of elements, the
magnitude of each factor, and the interconnections between them. The control variables are
believed to be independent, and it is assumed that there is no interaction between them.
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Moreover, experiments were conducted using the L27 OA, and 27 parts were manufactured.
One of the manufactured parts is shown in Figure 3a.

Table 3. L27 Orthogonal Array and Output.

Ser Layer Height (mm) Infill Density (%) Infill Pattern Number of Perimeter Walls Tensile Strength (MPa)

1 0.16 10 Grid 1 5.65
2 0.16 10 Grid 1 5.92
3 0.16 10 Grid 1 7.3
4 0.16 30 Honeycomb 2 14.09
5 0.16 30 Honeycomb 2 13.61
6 0.16 30 Honeycomb 2 14.85
7 0.16 70 Triangle 4 16.98
8 0.16 70 Triangle 4 18.15
9 0.16 70 Triangle 4 18.45
10 0.2 10 Honeycomb 4 13.06
11 0.2 10 Honeycomb 4 13.23
12 0.2 10 Honeycomb 4 13.91
13 0.2 30 Triangle 1 10.97
14 0.2 30 Triangle 1 10.52
15 0.2 30 Triangle 1 8.78
16 0.2 70 Grid 2 17.48
17 0.2 70 Grid 2 15.31
18 0.2 70 Grid 2 15.48
19 0.28 10 Triangle 2 11.61
20 0.28 10 Triangle 2 11.73
21 0.28 10 Triangle 2 12.19
22 0.28 30 Grid 4 18.29
23 0.28 30 Grid 4 17.69
24 0.28 30 Grid 4 16.69
25 0.28 70 Honeycomb 1 13.09
26 0.28 70 Honeycomb 1 12.41
27 0.28 70 Honeycomb 1 12.13
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A universal testing machine (UTM) (AGX-Plus, Shimadzu, Kyoto, Japan) was used to
measure the ultimate tensile strength of all the 27 manufactured parts (see Figure 4) and
the values of tensile strength were documented in Table 3 (see last column). The UTM
gripped each part between two grippers, and a load cell was used to calibrate the weight.
Figure 3b shows a manufactured sample after the measurement of tensile strength by the
UTM machine.
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3. Database on Microsoft Azure

The dataset was created and uploaded to the Microsoft Azure database which utilizes
a ML portal (see Figure 5). Those columns were selected that were of greater importance.

3.1. Edit Metadata and Filter Based Feature Selection

The ‘Edit Metadata’ component was used to modify the metadata associated with
the columns in a dataset. The value and data type of the dataset change after using the
‘Edit Metadata’ component. Examples of typical metadata modifications include using text,
Boolean, or numeric columns as category values. Since the infill pattern in this instance
was a string value, categorical values were created using this capability as shown in Table 4.
Moreover, ‘Filter Based Feature Selection’ helped to find irrelevant qualities using the
chosen metric. Then unnecessary columns were removed from the model using a filter.
Here, the component determines a score for each feature column based on the single
statistical measure that the user selects to best fit the data.

Table 4. Filter Based Features.

Layer Height (mm) Infill Density (%) Infill Pattern Number of
Perimeter Walls

Tensile Strength
(MPa)

0.140533 0.539466 0.012817 0.661683 1
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3.2. Data Segmentation and Algorithm for Regression

In this stage of the Azure ML database, the data was split according to the requirements.
The model was trained using 80% of the data and then tested using the remaining 20%.
The regression algorithm was used since it predicted the output values from the input
values. An online gradient descent algorithm, i.e., linear regression was used because of
having a single output (see Table 5). Bias was kept accurate so that the regression was not
forced to pass over the graph’s origin. Both the model coefficient and prediction were not
to be biased. The ‘L2′ regularization weight modified the loss function by adding a penalty
term that prohibited the coefficients from changing excessively to reduce the possibility of
overfitting. Since regularization tries to minimize the estimator’s variance by simplifying
it and increasing the bias such that the projected error decreases, it was kept at 0 to 0.23
by the hit and trial method. Finding the local minimum of a differentiable function was
performed using a first-order iterative optimization technique.

Different learning rate values were also employed. The ‘learning rate’ is used to adjust
the amplitude of parameter updates during gradient descent. The value selected for this
parameter can impact the algorithm’s learning rate and whether or not the cost function is
minimized. Since 0.275 to 0.5 is where the learning rate should be at its best, the quantity of
iterations demonstrates how frequently the algorithm’s parameters were modified. Every
epoch for each sample in the training dataset has allowed the internal model parameters to
change. In this instance, a range of 1 to 100 was chosen. An era is made up of one or more
batches. Normalization aimed to scale down features to a similar scale. This enhanced the
Model’s functionality and training stability. Averaging is generally employed to lessen the
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impact of noise and the Model was trained according to the conditions given in Table 5.
Feature weights were also given to this Model so that it was modeled according to the
linear regression.

Table 5. Online Gradient Linear Regressor.

Setting Value

Normalize Features True
Averaged True
Learning Rate 0.27507
Num Iterations 1
Decrease Learning Rate True
L2 Regularizer Weight 0
Allow Unknown Levels False
Random Number Seed 0

3.3. Tune Model Hyperparameters

Hyperparameter tuning is about determining a set of optimum hyperparameter values
for a learning algorithm and then applying the tuned algorithm to any data collection.
Utilizing such hyperparameters improves the Model’s performance by lowering a specified
loss function and producing better results with fewer errors. The tune model hyperparam-
eters in this phase used the regression model and split data, which further determined
the ideal learning rate, number of iterations, and error values saved in the sweep results
(see Table 6).

Table 6. Sweep Results for Tune Model Hyperparameters (Optimal Values).

Learning
Rate

Number of
Iterations

L2 Regularizer
Weight

Mean Absolute
Error

Root Mean
Absolute Error

Relative
Absolute Error

Relative
Squared Error

Coefficient of
Determination

0.425057 34 0 1.451801 1.716379 0.48902 0.191385 0.808615

3.4. Score and Evaluate Model

The Model gave predicted values according to the linear regression after a comparison
was performed between the values of the models involving tune model hyperparameters
and those that did not include hyperparameters. The feature weights with and without
tune model hyperparameters are listed in Table 7.

Table 7. Feature weights with and without Tune Model Hyperparameters.

Feature Weight before Tune Model
Hyperparameters

Weight after Tune Model
Hyperparameters

Layer Height (mm) −0.621489 1.45757
Bias 6.43571 4.79949
Perimeter Walls 5.50991 7.3376
Infill Pattern_Honeycomb_1 0.545529 1.85053
Infill Pattern_Grid_0 2.62925 1.39499
Infill Pattern_Triangle_2 3.26093 1.55398
Infill Density (%) 4.5205 4.83268

The different error results and coefficient of determination were also found and
compared by hyperparameter tuning and a normal trained model, as shown in Table 8.
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Table 8. Evaluate Data Statistics with and without Tune Model Hyperparameters.

Metrics Value before Tune Model
Hyperparameters

Value after Tune Model
Hyperparameters

Mean Absolute Error 2.233084 1.451801
Root Mean Absolute Error 2.595885 1.716379
Relative Absolute Error 0.752184 0.48902
Relative Squared Error 0.437776 0.191385
Coefficient of Determination 0.562224 0.808615

The coefficient of determination is increased from 0.56224 to 0.808615, thereby showing
positive progress.

3.5. Web Service

After performing regression in the Microsoft Azure ML database, the setting up of the
web service option was selected as shown in Figure 6.
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Figure 6. Microsoft Azure Web Service.

In the option of ‘select columns in dataset’, output columns were deselected as the
objective was to predict the tensile strength. Then ‘scored labels’ were selected which assist
in predicting the tensile strength at any value.

3.6. Relationship of Input Parameters with Tensile Strength

Figures 7–10 show the relationship between infill density, infill pattern, layer height,
and the number of perimeter walls with tensile strength, respectively. It was ensured that a
confidence interval of 5% and 95% was to be maintained for each performance measure.
Infill density and layer height have a direct relationship with tensile strength as shown
in Figures 7 and 9. Tensile strength also increases rapidly with an increase in perimeter
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wall count (see Figure 10). Moreover, layer height has comparatively less effect on tensile
strength and a honeycomb pattern will give the maximum tensile strength, followed by the
triangle pattern, and finally a grid pattern.
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In addition, as observed from Figure 11, the hyper-values graph was closer to the
experimental values as compared to the predicted values, indicating that hyperparameter
tuning was an efficient method to optimize the process parameters.
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Moreover, Figure 12 shows that there were more errors in predicted values as com-
pared to the hyper-values. The average error in hyper values was 9.22%, while it rose to
18.22% in predicted values. This further concluded that process parameter optimization
was best when tuning the hyperparameter model was used.
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3.7. Optimal Conditions

To assess the final optimal conditions, a web service was first deployed for the optimal
values and then an API key for Python code was generated. This required a network con-
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nection to create an online interface and then different values were tested. The maximum
tensile strength value of 18.65 MPa was generated using the following parameters: layer
height of 0.28 mm, infill density of 100%, infill pattern of honeycomb, and the number of
perimeter walls as four (4). However, these settings did not include tune model hyperpa-
rameters. So, the method was less effective for the reasons mentioned above. With the aid
of tuned model hyperparameters, the highest value of 22.69 MPa was produced for the
tensile strength using the same settings as above, i.e., layer height of 0.28 mm, infill density
of 100%, infill pattern of honeycomb, and the number of perimeter walls as four (4). This
approach was more effective due to a superior coefficient of determination as well.

4. Conclusions

In this paper, process parameters were studied for the FDM ENDER 3 V2 printer that
can maximize the tensile strength of a drilling grid [18,19]. The input parameters (layer
height, infill density, infill pattern, and number of perimeter walls) along with their settings
were chosen with the help of the literature and the expertise of the machine operator. Three
levels were chosen for the four controllable factors and Taguchi DOE was used to generate
L27 OA. Based on the OA, 27 parts were printed on the Ender 3 V2 FDM printer. The UTM
was then used to measure the tensile strength of all the 27 parts produced by the FDM
printer. Next, the Microsoft Azure ML database was used to predict the values of the tensile
strength for various input parameters. Linear regression was applied to the dataset, and
the Model was trained using online gradient descent. Model Hyper parameter was tuned
and compared to both settings as well. Moreover, a web service was deployed, and an API
key was generated, which helped with the Python code to find the optimal values for both
the input and output parameters. The optimum value of tensile strength was 22.69 MPa
at a layer height of 0.28 mm, infill density of 100%, infill pattern of honeycomb, and the
number of perimeter walls as 4. This result was better than the tensile strength value of
18.65 MPa which was obtained without tuning the hyperparameters. Conclusively, the
main achievement of this research included using the Microsoft Azure ML database to
help in generalizing and predicting output parameter values for any set of input values,
while Taguchi DOE was only utilized for the experimental part. Moreover, hyper tuning of
parameters further optimized the output by reducing the coefficient of determination and
reducing the error.

As part of future work, Microsoft Azure ML can be used on other 3D printers such as
using SLA to predict single or multiple output parameters. Different combinations of ML
techniques can be employed within the Azure ML database to improve the results as well.
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