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Abstract: Considering the growing importance of sustainable investments worldwide, we explore
the volatility transmission effects between the EURO STOXX Sustainability Index and the stock
market indexes of its stocks. Using daily index return data, during 2000–2022, covering the COVID-19
pandemic, Multivariate Generalized Auto-Regressive Conditional Heteroskedasticity (MGARCH)
models are used to explore if volatility effects of the stock indices felt during the pandemic implied
any evolution in the effects already felt between the volatilities existing in these stock indices and
the effects of stock market indices’ volatility over the sustainability index. Results point to the great
dependence that the sustainability index has on stock index movements. The volatility felt in stock
indices during the pandemic period did not become decisive in reversing a previous correlation
trajectory between the stock market and sustainability indexes. Provided that sustainability is not
observed exclusively in financial and economic terms, but in a triple bottom line context (including
the social and environmental sides), we should not verify a high influence of stock market indexes
over the sustainability index, as the results point out. Policymakers and investors should be aware of
the high influence and take measures to turn the sustainability index more independent.

Keywords: EURO STOXX sustainability index; European stock indexes; COVID-19 pandemic;
MGARCH models; volatility spreads

1. Introduction

Sustainable living in present times is a necessity for mankind. Investors face dilemmas
at the time of choosing the best portfolio composition, able to ensure high returns and
low risks [1,2]. Talan and Sharma [3] present a review of 213 articles, concluding that the
investment strategy focusing on Environmental, Social, and Governance (ESG) is crucial
to ensure sustainable investments. Recently, Umar et al. [4] examined the impacts of
the COVID-19 pandemic on the volatility of the ESG leaders’ indices through wavelets.
The authors call attention to the diversification potential of ESG investments during the
pandemic and highlight the potential role of designing cross-geography hedge strategies
using data from the USA, Europe, China, and the Emerging Markets’ sustainability indexes.
Sharma et al. [1] results suggest short-term uni-directional causality from sustainable
indexes to conventional indexes and bi-directional causality in the medium and long term.
As such, portfolio and fund managers are advised to invest in sustainable indexes to avail
of higher returns over a longer period.

There is also growing importance of socially responsible investments in the wake
of climate change mitigation goals reinforced by COP26 [5]. Moreover, with the spread
of the COVID-19 pandemic, traditional energy stock prices such as oil hit huge values,
reinforced by the recent Ukraine–Russia conflict, despite the raised awareness of people
about environmental protection and climate change focus [6]. Most of the empirical
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research performed in this regard uses wavelets to analyze the impact and spreads among
sustainability indexes [1,4,5]. Iqbal et al. [5] conclude for the 14 sustainability indices
analyzed between January 2005 and March 2021, through daily returns and volatility, that
Germany, France, the Netherlands, and the UK are the primary transmitters, and that
negative returns transmit more strongly than positive, being significantly enhanced during
the COVID-19. By also resorting to wavelets, Andersson et al. [7] document a significant
bidirectional causal relationship between ESG, conventional, and ethical equity portfolio
returns.

Using multivariate GARCH models, Zhang et al. [6] study the dynamic connectedness
between the ESG, renewable energy, green bond, sustainability, and carbon emission futures
stock indexes. The authors conclude that the highest hedging effect is achieved by assuming
a long position in carbon futures and a short one in the renewable energy index. Also,
Piserà and Chiappini [8] use multivariate GARCH models supporting the superior risk
hedging properties of ESG indices over cryptocurrency, but no safe haven properties were
attributed to ESG, bitcoin, gold, and WTI (West Texas Intermediate). Thus, sustainable
investment performance is still heterogeneous worldwide, although superior risk-adjusted
opportunities are identified for investors by including sustainable investment practices in
their portfolios, comparing the conditional correlation and volatility behavior of sustainable
indices and typical indexes by applying the Dynamic Conditional Correlation–GARCH
model offering critical insights to potential investors across developed and developing
countries [9,10]. Despite the similarities of this study with ours, the authors use only
5 years (January 2013 to December 2017), not focusing attention on the European market,
nor even on the effects of COVID-19. The results of Jain et al. [11] indicate that there is no
significant difference in the performance between sustainability indices and the traditional
conventional indices, being a good substitute for the latter for the same period and using
the same data and methodology as in Sharma et al. [10].

Financial markets have been severely affected worldwide by the global COVID-19
pandemic [4–12]. The pandemic has adversely affected the diversification attributes of
various asset classes [2]. This happened mostly due to the much-synchronized exhibition
behavior of financial assets through the COVID-19 bear market and during its initial
recovery period [4]. As for the effects of COVID-19, Latif et al. [13] use daily data from
Canada and the USA to advise investors that rather than investing in stocks they should
invest in gold during the period of analysis, due to the increased uncertain negative
effects on stock markets. The findings of Li et al. [14] suggest that COVID-19 fear is
the ultimate cause driving public attention and stock market volatility, also suggesting
investments in the gold market rather than in the stock market. Umar and Gubareva [12]
apply wavelet analysis and point to the diversification potential of ESG investments during
a pandemic, such as that of COVID-19, and report the potential role of cross-geography
hedging strategies. The authors study how the social media coverage of the COVID-19
pandemic influenced the ESG volatility of world indices (World, USA, Europe, China, and
Emerging markets’ ESG indexes).

Clean energy investments became an attractive investment for investors, fueled by
the rising importance of climate-related risks to the global economy and contribution
benefits to financial stability and performance [2,15]. Understanding the importance of
alternative investments can provide attractive returns and useful hedging strategies [2,4,16].
Even before the pandemic, the academic financial literature started focusing on factors
such as sustainability, ethics, environmentally friendly products, and stocks, corporate
social responsibility, and financial decisions [17–22]. As a consequence, ESG securities
emerged [4].

In the present article, we intend to verify the possibility of the stock indices of European
countries that have companies that are part of the EURO STOXX Sustainability Index,
contaminating the volatility of this index. For this purpose, we used the daily valuations of
these stock indices (those from Portugal, The Netherlands, Italy, Germany, Spain, France,
Belgium, Austria, Ireland, Finland, and Luxembourg) and the daily value of the EURO
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STOXX Sustainability Index, for the period between 3 July 2000, and 28 February 2020 (i.e.,
a period greater than 20 years before the COVID-19 pandemic). Additionally, to understand
if there was any change in the contribution to the model after the COVID-19 pandemic
declaration issued by the World Health Organization, we estimated a second model with all
data between 3 July 2000 and 30 September 2022. For this volatility transmission exploration,
we resorted to multivariate generalized auto-regressive conditional heteroscedastic models
(MGARCH).

Many articles analyze the return and volatility attributes of these assets [23–27]. First,
we contribute to this strand of literature by investigating volatility spillovers from tradi-
tional stock market indexes of the companies’ stocks belonging to the sustainability index,
the EURO STOXX Sustainability Index. Secondly, the recent COVID-19 pandemic presented
unique challenges and inspired the emergence of literature exploring the impact of this
pandemic on financial markets. Our research contributes to the incipient and sparse litera-
ture concentrating on volatility spillovers, accounting for the pre- and during-COVID-19
effects using a larger period of analysis, and until more recently (last day of September
2022). Therefore, since our sample covers the recent global crisis caused by the pandemic,
our findings can provide valuable insights for socially responsible investors. Third, our
article contributes significantly to the emergent literature by having a larger data span and
analyzing the volatility interactions of eleven European common stock market indexes to
the EURO STOXX Sustainability Index, from which and to which their companies con-
tribute. Finally, we use a multivariate GARCH model, which is one of the most useful tools
for analyzing and forecasting the volatility of time series when volatility fluctuates over
time. It is this feature that demonstrates its availability in modeling the co-movement of
multivariate time series with varying conditional covariance matrices.

The rest of the article develops as follows. Section 2 presents the methodology em-
ployed, whereas data, variables, statistics, and correlations are presented in Section 3. In
Section 4 model testing and previous analysis are highlighted and discussed, whereas
results are to be exposed in Section 5. Finally, Section 6 discusses the results and Section 7
is where conclusions are evidenced.

2. Methodology: Multivariate Generalized Auto-Regressive Conditional
Heteroskedasticity (GARCH) Models

In this paper, we will use multivariate GARCH models, which in addition to allowing
links between stock market indices, also model returns for the EURO STOXX Sustainability
Index. These are useful tools to analyze fluctuating volatility over time of time series,
allowing one to model their co-movement by implying a varying conditional covariance
matrix.

Since the seminal development of the univariate ARCH models by Engle [28] and
GARCH models by Bollerslev [29], the scientific literature has used these models to study
the volatility in time series. The multivariate GARCH family models are widely used
to verify, quantify, and monitor the volatility and dynamics of macroeconomics and fi-
nancial time series correlations (and for other types of time series) effectively [30]. With
a similar opinion, Cavicchioli [31] argues that the models of the GARCH family (The
GARCH model family is completed by successive methods such as IGARCH, TGARCH,
EGARCH, PARCH, CGARCH, FIGARCH, FIEGARCH, SWARCH, GJR-GARCH, NA-
GARCH, AGARCH, MGARCH, among others) are more effective than the classic time
series models, or the vector autoregressive moving-average (VARMA) process, in capturing
the effects and empirical characteristics of the time series.

To Bonga-Bonga [32] and many other authors, the contagion effect in financial markets
has been immensely proven in empirical terms in the literature. However, as far as we
know, this is the first time that someone has studied whether the effect and contagion of the
financial markets are verified by the EURO STOXX Sustainability Index. The term financial
contagion generally refers to transfers of shocks from financial crises [32]. Although there
is no consensual definition in the literature on the exact concept of financial contagion, it
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is used by financial economists to measure and describe the extent of the transmission of
shocks between markets.

The GARCH (p,q) process proceeds as reproduced in Equations (1) and (2) [29].

εt | ψt−1 ∼ N(0, ht) (1)

ht = α0 +
q

∑
i=1

αiε
2
t−1 +

p

∑
i=1

βiht−1 (2)

where εt represents a stochastic process in discrete time, ψt−1 is information set through
time t, and ht is the conditional volatility under the singularities of p ≥ 0, q > 0, α0 > 0,
α1 ≥ 0, i = 0, 1, . . . , q and βi ≥ 0, i = 1, 2, . . . , p. If p = 0 we have the ARCH (q) process in
regression. The condition α + β < 1 represents a stationary GARCH process in which the
persistence in volatility is interpreted under the results of the coefficients α and β. In the
situation where β > α, it means that in the face of shocks with long-term effects, volatility
does not decrease rapidly.

Later developments restricted the degree of interaction between the variables, allow-
ing, in turn, emphasis of the covariances (or correlations) between the variables of interest.
The conditional constant correlation (CCC) models and the dynamic conditional correlation
(DCC) are introduced [33,34].

Using the DCC model allows for the estimation of variable coefficients in the form
presented in Equation (3) [35].
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t = H−1
xx,thxy,t (3)

Being H−1
xx,t and hxy,t partitions of Ht which represents an array (Hxx,t) with the struc-

ture of variances and covariances between the regressors and a vector hxy,t which contains,
for each moment, the covariances of the dependent variable with the regressors included
in the equation which defines the mean.

Another GARCH methodology that became known by the acronym BEKK (Baba,
Engle, Kraft, and Kroner) was perfected by Engle and Kroner [36]. These last authors
proposed a parameterization that easily restricts the requirements of Ht to be positive for
all values of Et and xt in the sample space. This model can be written in the following
Equation (4).

Ht = CC‘ +
q

∑
j=1

K

∑
k=1

A‘
kjr

‘
t−j Ajk +

p

∑
j=1

K

∑
k=1

B‘
kj Hi−j Bkj (4)

where Ajk, Bkj, and C are N × N parameter matrices and C is lower triangular. Finally, the
decomposition of the constant term into a double matrix product aims to guarantee the
positivity of Ht.

Multivariate GARCH (MGARCH) models are an extension of univariate GARCH mod-
els. The MGARCH models can be represented by a VARX (l,s) model as in Equation (5) [29].

yt = µ + C1yt−1 + · · ·+ Clyt−1 + D0xt + · · ·+ Dsxt−s + εt (5)

where xt corresponds to a vector of exogenous variables of dimension M and Ci and Di
represent coefficient matrices of dimensions N × N and N ×M respectively.

Analyzing time dependence considering that financial volatilities move together
over time between assets and markets, leads to more relevant empirical models than
working with univariate analyses. The integration of financial markets is increasing and the
participating agents (institutional and private investors) seek benefits through international
diversification [37].

Since the emergence of multivariate analysis, the GARCH family models are increas-
ingly used to describe and predict changes in the volatilities of time series, especially
financial ones, gaining a new increase in use with the emergence of multivariate analy-
sis [37].
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In multivariate time series models, the impulse response function is used to analyze
the effect of when a shock on a system series. This concept is associated with the modeling
of the first moment of the series and can be generalized to the second moment using
MGARCH models, and they define the volatility impulse response function, VIRF, for an
MGARCH model, as the difference between the conditional and expected value expressed
by the following expression exposed in Equation (6) [38].

VIRFt (δ) = E
[
vech

(
Ht)

)∣∣∣ε0 = δ, ψ−1

]
− E[vech (Ht)

∣∣∣ε0 = 0, ψ−1] (6)

where VIRF represents the effect that a shock of magnitude δ exhibits on the conditional
variance, t, periods after it has occurred.

Several variants of GARCH models have emerged in the literature, but the most
popular ones are the diagonal BEKK versions, the Constant Conditional Correlation (CCC),
and the Dynamic Conditional Correlation (DCC) [39].

3. Data, Variables, Statistics, and Correlations

In this paper, we intend to verify the possibility of the performance of the stock indices
of European countries that have companies that are part of the EURO STOXX Sustainability
Index contaminating the volatility of this index. For this purpose, we used the valuations of
the EURO STOXX Sustainability Index, for the period between 3 July 2000 and 28 February
2020 (i.e., a period greater than 20 years before the COVID-19 pandemic).

Additionally, to understand if there was any change in the contribution to the model
after the COVID-19 pandemic declaration issued by the World Health Organization, we
estimated a second model with all data between 3 July 2000 and 30 September 2022.
The data were obtained from investing.com (accessed on 3 October 2022) and stoxx.com
(accessed on 3 October 2022), which are free to access.

As mentioned above, the EURO STOXX Sustainability Index only includes 226 com-
panies from 11 countries in the euro area which are listed on the stock exchange. These
companies are chosen based on strict sustainability criteria at an economic, social, and
environmental level. In comparison with other existing sustainability indices, the EURO
STOXX Sustainability Index, for the attribution of scores in addition to integrally using
sustainability, is concerned that companies create long-term value in the three aspects
considered.

Table 1 contains the main statistics used in the entire sample for the original series.
We can verify the high values of standard deviations, motivated by the various volatilities
that occurred during the long period under analysis, which included the subprime crisis,
sovereign debt, the COVID-19 pandemic, and now the war in Ukraine.

Table 1 also contains the results of the p-value of the Jarque–Bera test and the asym-
metry and kurtosis statistics. We performed the Jarque–Bera test (in which all p values
are less than 0.05, which implies the rejection of the normality hypothesis), to determine
the normality of the series, together with kurtosis and asymmetry. As we can see, the
variables do not follow a normal distribution, as the data are mostly skewed to the left. As
the statistics are all less than three, our variables are platykurtic, that is, the value of excess
kurtosis is negative, which means that the distributions have thinner tails than normal.

The countries where stock market indices have the highest standard deviations are
Germany, Spain, Portugal, and Finland. In the opposite direction are the stock indices of
Austria and Ireland. Regarding the EURO STOXX Sustainability Index, we found that
it reached a maximum value of 160 points in November 2021 and a minimum value of
57 points in March 2009. Its standard deviation was 23.658 points.

To obtain accurate results from the empirical analysis, we also consider the problem of
multicollinearity. The Pearson’s correlation test (Table 2), applied to our variables, showed
that there is no multicollinearity between the variables considered, considering that we
used the value of 0.80 as a limit, similar to other studies [40]. We can also verify that we
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only have two negative correlations, which are between the Portuguese and German, and
Finnish stock market indices.

Table 1. Main descriptive statistics.

Maximum Minimum Average Std Deviation Skewness Kurtosis Jarque–Bera

STOXX 160,00 57.000 103.54 23.658 0.2531 −0.7001 0.0000
PRT 13,688 3510.0 6580.2 2193.5 1.1735 0.7147 0.0000
NLD 829.10 194.30 423.12 125.19 0.5551 −0.1395 0.0000
ITA 4339.6 966.91 2410.4 825.24 0.5214 −0.5458 0.0000

DEU 16,290 2188.2 7599.3 3521.1 0.4899 −0.8935 0.0000
ESP 16,040 5266.3 9740.1 3212.4 1.1731 0.9489 0.0000
FRA 7385.4 2401.5 4397.5 957.38 0.3157 −0.6204 0.0000
BEL 4759.4 1425.9 3050.8 735.58 −0.0301 −0.9812 0.0000
AUT 648.95 138.35 301.25 109.18 1.1804 0.9687 0.0000
IRL 681.32 112.22 335.12 129.18 −0.2358 −0.6514 0.0000
FIN 5706.5 1085.1 2650.3 1127.7 0.5951 −0.4674 0.0000
LUX 2590.0 654.00 1435.3 368.41 0.5925 0.7814 0.0000

Source: Authors’ calculations. PRT–Portugal (PSI 20); NLD–The Netherlands (AEX); ITA–Italy (Italy 40); DEU–
Germany (DAX); ESP–Spain (IBEX 35); FRA–France (CAC 40); BEL–Belgium (BEL 20); AUT–Austria (FTSE
Austria); IRL–Ireland (FTSE Ireland); FIN–Finland (OMX Helsinki 25); LUX–Luxembourg (LUXXX).

Table 2. Pearson’s correlation coefficients.

STOXX PRT NLD ITA DEU ESP FRA BEL AUT IRL FIN LUX

STOXX 1 0.14 0.76 0.77 0.71 0.34 0.74 0.71 0.35 0.67 0.74 0.58
PRT - 1 0.04 0.35 −0.42 0.71 0.23 0.19 0.58 0.43 −0.31 0.58
NLD - - 1 0.73 0.71 0.18 0.74 0.76 0.26 0.65 0.77 0.43
ITA - - - 1 0.51 0.48 0.69 0.71 0.57 0.71 0.65 0.62

DEU - - - - 1 0.08 0.65 0.61 0.09 0.12 0.74 0.31
ESP - - - - - 1 0.38 0.51 0.71 0.42 0.19 0.70
FRA - - - - - - 1 0.68 0.40 0.58 0.71 0.60
BEL - - - - - - - 1 0.67 0.62 0.71 0.70
AUT - - - - - - - - 1 0.45 0.29 0.47
IRL - - - - - - - - - 1 0.20 0.40
FIN - - - - - - - - - - 1 0.41
LUX - - - - - - - - - - - 1

Source: Authors’ calculations. PRT–Portugal; NLD–The Netherlands; ITA–Italy; DEU–Germany; ESP–Spain;
FRA–France; BEL–Belgium; AUT–Austria; IRL–Ireland; FIN–Finland; LUX–Luxembourg.

4. GARCH Models Prerequisites

Before estimating the models of the GARCH family, it is first necessary to ensure the
presence of three essential requirements: (i) Test the stationarity of the variables, in which
the models developed by Dickey and Fuller [41] (the Augmented Dickey–Fuller–ADF and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS)) tests are the most used to determinate the lag
order of the variables with stationarity [42]; (ii) The presence of persistent volatility cluster-
ing should be observed, i.e., big changes tend to be followed by big changes, whatever the
sign and small changes tend to be followed by small changes [43]; (iii) There must be the
presence of ARCH effects, which can be detected, for example, by the ARCHLM test. These
three preconditions are usually called stylized facts for GARCH models.

4.1. Analysis of the Stationarity of Variables

The ADF test is based on the null hypothesis that the series is stationary against the
alternative hypothesis that the series has a unit root. In case of tstat < tcrit we do not
reject the null hypothesis, which means that the series is stationary. The KPSS test uses the
Lagrange Multiplier (LM) statistic, and the test statistic is compared with the critical value
for the desired significance level.
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As we mentioned, we performed the Augmented Dickey–Fuller (ADF) and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests, the results of which are shown in Table 3.

Table 3. Unit root tests.

ADF Test (p-Value) KPSS Test (p-Value)

Variables Level Ln First Diff. Level Ln First Diff.

STOXX 0.318 <0.01 <0.01 >0.1
PRT 0.125 <0.01 <0.01 >0.1
NDL 0.547 <0.01 <0.01 >0.1
ITA 0.357 <0.01 <0.01 >0.1

DEU 0.658 <0.01 <0.01 >0.1
ESP 0.327 <0.01 <0.01 >0.1
FRA 0.347 <0.01 <0.01 >0.1
BEL 0.224 <0.01 <0.01 >0.1
AUT 0.187 <0.01 <0.01 >0.1
IRL 0.380 <0.01 <0.01 >0.1
FIN 0.814 <0.01 <0.01 >0.1

Source: Authors’ calculation. Notes: <0.01 means lower than the 1% significance level; >0.1 means higher
than 10% significance level. STOXX–EURO STOXX Sustainability Index; PRT–Portugal; NLD–The Netherlands;
ITA–Italy; DEU–Germany; ESP–Spain; FRA–France; BEL–Belgium; AUT–Austria; IRL–Ireland; FIN–Finland;
LUX–Luxembourg.

As can be seen in Table 3, by the results of the ADF test, the original variables do
not show stationarity at the first level (recurrent situation in the financial time series)
(p-value > 0.05), so it was necessary to resort to calculous of the natural logarithm of the
first differences, to obtain stationarity of the variables. In other words, returns are used in
the models. The KPSS test confirms the previous results, so, using the natural logarithm of
the first differences, we do not fail to reject H0.

4.2. Testing the Presence of Persistent Volatility Clustering

Examining the following charts, we see the existence of persistent volatility on several
occasions at the same time. The most significant volatilities occurred between 2008 and
2009 due to the subprime financial crisis and around March 2020, when the World Health
Organization declared COVID-19 a pandemic [6]. There is also simultaneous volatility at
the beginning of this century, although less intense, which was due to the terrorist attack
on the Twin Towers in New York in September 2001.

Despite the graphical evidence (Figures 1 and 2) of the simultaneous existence of sev-
eral volatilities, we performed the White test to see the possible existence of heteroscedas-
ticity. The p-value of the test is 0.000, so we reject the null hypothesis of homoscedasticity,
as the variance of the error term is not constant, which reinforces the justification of the
GARCH modeling [28].

4.3. Verifying the Presence of ARCH Effects

Using the ARCH LM test, we can see in Table 4 that the results obtained show the
existence of ARCH effects once the p-value of the test is <0.05. Therefore, we do not reject
the null hypothesis that there are no ARCH effects.
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Table 4. LM test for autoregressive conditional heteroskedasticity (ARCH).

Lags (p) Chi2 df Prob > Chi2

1 238.028 1 0.0000
2 251.123 2 0.0000
3 278.789 3 0.0000

Source: Authors’ calculation.

Thus, the three prerequisites for the use of the GARCH family models are verified.

5. Baseline Models

As we mentioned earlier, the baseline models correspond to Multivariate GARCH
models. Once we have verified the existence of ARCH effects at least until the third lag,
we will estimate the MGARCH (1,1), MGARCH (1,2), and MGARCH (1,3) models, first for
the pre-COVID-19 period and then for the entire sample, using the Dynamic Conditional
Correlation (DCC).

Since we are studying a long time series, we intend to study the effects of the pan-
demic on the long-term model. The results obtained are shown in Table 5. Models 1, 2,
and 3 comprise the estimates, respectively, for the MGARCH (1,1), MGARCH (1,2), and
MGARCH (1,3) models, for the period between 3 July 2000 and 28 February 2020. In turn,
models 4, 5, and 6 follow the same methodology, but for the entire sample.

Table 5. Estimation results.

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

MGARCH
(1,1)

MGARCH
(1,2)

MGARCH
(1,3)

MGARCH
(1,1)

MGARCH
(1,2)

MGARCH
(1,3)

STOXX
PRT 0.0210 ** 0.0201 ** 0.0172 ** 0.0147 *** 0.0141 *** 0.0101 ***
NLD 0.0283 ** 0.0308 *** 0.0274 ** 0.0254 ** 0.0247 *** 0.0258 ***
ITA 0.0238 ** 0.0479 ** 0.0547 * 0.0187 * 0.0154 * 0.0137 *

DEU 0.0347 *** 0.0310 ** 0.0295 ** 0.0387 ** 0.0315 ** 0.0374 ***
ESP −0.0037 −0.0021 −0.0107 −0.0023 −0.0020 −0.0017
FRA 0.0619 ** 0.0547 * 0.0508 * 0.0635 * 0.0574 * 0.0599 *
BEL 0.0057 0.0089 0.0147 0.0021 0.0019 0.0018
AUT 0.0414 ** 0.0478 ** 0.0405 * 0.0408 ** 0.0401 ** 0.0409 **
IRL 0.0078 0.0061 0.0064 0.0935 0.0814 0.0714
FIN −0.0031 ** −0.0039 ** −0.0037 ** −0.0047 * −0.0038 * −0.0074 *
LUX 0.0701 *** 0.0787 *** 0.0615 ** 0.0901 ** 0.0847 ** 0.0571 **

ARC STOXX
ARCH L1 0.3354 *** 0.3505 *** 0.3471 *** 0.3914 *** 0.3714 *** 0.3514 ***

GARCH L1 0.4714 *** 0.2358 *** 0.1834 *** 0.4147 *** 0.4011 *** 0.3854 ***
GARCH L2 0.1518 *** 0.1594 *** 0.1381 *** 0.1278 ***
GARCH L3 0.1254 *** 0.1094 ***

Constant 0.0008 * 0.0009 ** 0.0008 ** 0.0009 ** 0.0006 *** 0.0009 ***
Observations 5001 5001 5001 5697 5697 5697

BIC 6325.19 6158.94 6110.57 6251.14 6210.19 6138.12
AIC 6471.35 6378.15 6007.87 6314.10 6304.74 6247.85

Source: Authors’ calculations. Notes: *, **, *** indicates 10%, 5% and 1%, respectively significance level. STOXX–
EURO STOXX Sustainability Index; PRT–Portugal; NLD–The Netherlands; ITA–Italy; DEU–Germany; ESP–Spain;
FRA–France; BEL–Belgium; AUT–Austria; IRL–Ireland; FIN–Finland; LUX–Luxembourg.

As can be seen in Table 5, the coefficients of the different models are similar and there
are few variations in statistical significance. In all the models considered, there are only
three stock indices that do not present statistical significance, which is the case of Spain,
Belgium, and Ireland. We also verified that in all models, only the Finland index has a
negative coefficient, which means that the relationship of its stock index with the Euro
STOXX Sustainability Index is inverse.
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To choose the best GARCH (p,q) model in each case, we perform the AIC test (Akaike‘s
information criterium) and the BIC (Bayesian information criterium). The best choice will
be the one in which the AIC and/or BIC criteria present the lowest results, because in
this case, less information will be lost, and the quality of the models will be better. These
statistical tests are widely used for economic and financial time series [44].

As we can see in Table 5, considering the AIC and BIC criteria, for the sample between
3 July 2000 and 28 February 2020, the best model is the GARCH (1,3). Following the same
criteria, for the sample between 3 July 2000 and 30 September 2022, the best model is also
the GARCH (1,3).

6. Discussion

Given the results obtained, we can visualize several important realities. In the first
place, and generally, in all models, there is a high and positive significant effect of conta-
gion between the stock indices of the eleven countries that make up the EURO STOXX
Sustainability Index and the value of the same index. The independent variables clearly
explain the volatility of the EURO STOXX Sustainability Index, that is, there are strong
external influences of the variables on the volatility of the index. Partially, our results con-
tradict those of Sharma et al. [10] and Jain et al. [25] considering that the authors conclude
that there are no significant differences in the performance of sustainability indices and
traditional ones. If they behaved commonly, no external differences would be revealed,
which is not the case, as the current results indicate.

We can also verify that, contrary to most of the stock indices considered, in all the
models, the stock indices of Spain, Ireland, and Belgium do not present statistical signif-
icance for the volatility of the EURO STOXX Sustainability Index. On the other hand,
and surprisingly, the Finland stock index is in a counter-cycle with the volatility of the
EURO STOXX Sustainability Index in all the estimated models. Therefore, risk-adjusted
opportunities may be identified for investors while including sustainable investments in
their portfolios, jointly with traditional market indexes, as also stated by Cunha et al. [9].

Of the stock market indices that positively explain the volatility of the EURO STOXX
Sustainability Index, and given the GARCH model (1,3) for the period before the COVID-19
pandemic, the Luxembourg and Italian stocks index are the ones that most contribute
to this volatility. In opposite terms, what contributes the least is the stock market index
of Portugal. Regarding the total sample, the stock market index that most contributes
to volatility is the French and the one that contributes the least is still the Portuguese.
Important sustainability indexes studies regarding their volatile behavior exploration have
been identified in the literature review, although with a different approach, not considering
these volatility transmission effects, as explored presently [11,23,24,26,28].

In all estimated models, the volatility that occurs in the previous days in the EURO
STOXX Sustainability Index affects the volatility of that same index in the following days,
which may mean that internal contagions remain in the days immediately following the
existence of that same volatility. Concerning the two-day lag, the internal influences keep
statistical significance, to levels normally considered, and in the third lag, these influences
keep to statistical significance, although with a lower intensity.

Considering only the model chosen through the AIC and BIC criteria, for the period
from July 2000 until the declaration by the World Health Organization of the COVID-19
pandemic, the GARCH effect is verified in the following days. The volatility of the previous
days in the EURO STOXX Sustainability Index, in the immediately following days, affects
the value of the EURO STOXX Sustainability Index. For lags of two days, statistical
significance remains concerning the contagion of this volatility.

Regarding the three-day lag, the volatility of the stock indices continues to show
statistical significance and there is contagion in the EURO STOXX Sustainability Index,
although with a lower intensity than the one-day lag. Despite the passage of time, the
volatility of stock indices can still influence the evolution of the EURO STOXX Sustainability
Index.
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Concerning the total sample, that is, with the influences of the volatility of the stock
market indices at the time of the COVID-19 pandemic, the evidence that is verified is
practically like that found previously, although two changes are observed. The coeffi-
cients associated with the Dutch, Austrian, Portuguese, and German stock market indices
reinforce their statistical significance. On the contrary, Finland’s stock index reduces
its statistical significance. As such, we are not able to confirm the results of Umar and
Gubareva [12] stating that there is a diversification potential of ESG investments during
pandemics due to the increased ESG indexes’ volatility. Due to data restrictions, it was not
possible to consider solely this period in the present study.

As in model 6, in this case, there are significant GARCH effects in the first, second,
and third lags, although with lower intensities. We can also verify that perhaps because the
volatility that we visualized in the graphs at the time of the pandemic was lower than the
volatility seen in the 2007 and 2008 financial crises, the internal effects of the lags reduced
their intensity, both for the first lag and for the second, despite maintaining their statistical
importance.

The statistical significance presented by the EURO STOXX Sustainability Index lags is
considered internal influences that influence the index itself, but which originated from the
contagion of influences external to the index, which are the stock market indices. In the
case of France, Germany, and Austria, in the estimation of the total sample, the intensities
of influence of the stock indices on the EURO STOXX Sustainability Index were reinforced.
In the case of Portugal, Holland, Italy, and Luxembourg, these intensities were reduced.
Despite this result, we can argue that ESG investments contribute to financial stability
and performance [2], and their availability emergence was justified [4], offering good
diversification potential and valuable risk-adjusted opportunities to investors’ portfolios.

7. Conclusions

This paper uses MGARCH modeling to study the possible presence of volatility conta-
gion effects between the stock indices of 11 countries and the EURO STOXX Sustainability
Index.

One of the concerns that one must have when defining sustainability is not to let there
be an excessive influence of economic and financial aspects on that same sustainability.

Despite the EURO STOXX Sustainability Index being made up of the traditional three
aspects of sustainability: economic, social, and environmental (triple bottom line), the
contagion of the financial markets in fixing the value of the index is strong and significant,
which may mean that the social components and environmental aspects of the index
are being undervalued, with only one component of the triple bottom line being given
high importance. Perhaps here we can speak of an exaggerated financial influence of the
stock markets in the EURO STOXX Sustainability Index, leaving social and environmental
sustainability in the background. We cannot forget that, mainly during the financial crises
of 2007 and 2008 and during the COVID-19 pandemic, these European countries revealed
enormous social concerns to offset the pernicious effects of these crises on their populations.

The internal elements of volatility that occur in the EURO STOXX Sustainability Index,
are felt intensely and significantly in the days immediately following the occurrence of
shocks in the stock indices. They remain statistically significant on subsequent days, but the
intensity is reduced. Perhaps here we can speak of a memory effect that tends to diminish
over time.

In addition to the strong and incomprehensible contagion of stock indices in the EURO
STOXX Sustainability Index, there is also a significant influence of the index’s internal
effects on the index itself, especially in the first and second lags.

This study also makes it possible to open up the discussion on the influence of stock
markets on sustainability indices, and the results can make it possible to bring new contri-
butions to the formulation of these indices, which should not be excessively contaminated
by the equity markets, otherwise, the concept of sustainability would only be focused on
economic and financial aspects.
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One of the suggestions for future work may be to verify whether this evidence occurs
in the same or similar way in other sustainability indices, or even in merely financial or
economic indices, broadening the empirical debate on the subject. Policymakers, portfolio
managers, and investors should consider these effects while composing their portfolios,
and greenwashing possibilities’ inclusion would be a valuable contribution to the emergent
literature on the topic.
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