
Citation: Alsharef, A.; Sonia;

Kumar, K.; Iwendi, C. Time Series

Data Modeling Using Advanced

Machine Learning and AutoML.

Sustainability 2022, 14, 15292.

https://doi.org/10.3390/

su142215292

Academic Editor: Hassan Abdalla

Received: 24 September 2022

Accepted: 7 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Time Series Data Modeling Using Advanced Machine Learning
and AutoML
Ahmad Alsharef 1, Sonia 1,*, Karan Kumar 2 and Celestine Iwendi 3,*

1 Yogananda School of AI, Computer and Data Science, Shoolini University, Solan 173229, India
2 Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University),

Mullana, Ambala 133207, India
3 School of Creative Technologies, University of Bolton, Bolton BL3 5AB, UK
* Correspondence: sonia@shooliniuniversity.com (S.); celestine.iwendi@ieee.org (C.I.)

Abstract: A prominent area of data analytics is “timeseries modeling” where it is possible to forecast
future values for the same variable using previous data. Numerous usage examples, including
the economy, the weather, stock prices, and the development of a corporation, demonstrate its
significance. Experiments with time series forecasting utilizing machine learning (ML), deep learning
(DL), and AutoML are conducted in this paper. Its primary contribution consists of addressing the
forecasting problem by experimenting with additional ML and DL models and AutoML frameworks
and expanding the AutoML experimental knowledge. In addition, it contributes by breaking down
barriers found in past experimental studies in this field by using more sophisticated methods. The
datasets this empirical research utilized were secondary quantitative data of the real prices of the
currently most used cryptocurrencies. We found that AutoML for timeseries is still in the development
stage and necessitates more study to be a viable solution since it was unable to outperform manually
designed ML and DL models. The demonstrated approaches may be utilized as a baseline for
predicting timeseries data.

Keywords: time series modeling; machine learning; deep learning; AutoML; data drift

1. Introduction

Research on time series analytics is demonstrated in past research works [1,2] with
a rich background and its pivotal importance trended recently with the growth of data
volumes [3–5]. Due to the significance of the field, tools that are reliable, scalable, and
accurate in forecasting are in high demand. The last decade has seen a spike in the number
of suggested forecasting models [6–8]. Recent developments should eventually provide
the possibility to efficiently model this type of data. However, the ambiguity of timeseries
data makes modeling it a difficult task. ML and DL models generally can perform well in
the task [9] but require experience to set up the model and adjust its hyperparameters [10].
Moreover, in sophisticated models, the number of hyperparameters to adjust becomes large
and necessitates laborious effort. Moreover, the designed model might become vulnerable
to data drift [11,12] where the properties of the independent variable change over time,
which is a common issue in timeseries data [13,14]. AutoML strives to solve the former two
problems by automatically finding an appropriate model and adjusting its hyperparameters
in light of the data [15]. A variety of AutoML frameworks are available for forecasting
timeseries data, for example, EvalML [16], AutoKeras [17], and others [18,19].This paper
represents the results and findings of experiments in the utilization of AutoML to tackle
the data drift in timeseries data in providing higher-accuracy predictions.

Hamayel et al. (2021) [20] proposed three variants of Recurrent Neural Networks
(RNNs) including Gated Recurrent Unit (GRU), Long Sort Term Memory (LSTM), and Bi-
Directional LSTM (Bi-LSTM) to forecast the prices of several cryptocurrencies. Among the
models, Bi-LSTM achieved the worst, with GRU achieving the best. Awoke et al. (2021) [21]

Sustainability 2022, 14, 15292. https://doi.org/10.3390/su142215292 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142215292
https://doi.org/10.3390/su142215292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4350-3911
https://doi.org/10.3390/su142215292
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142215292?type=check_update&version=2

Sustainability 2022, 14, 15292 2 of 19

developed LSTM and GRU for Bitcoin forecasting and found that GRU-based models are
superior at predicting extremely volatile time series. Several AutoML comparative stud-
ies [22–25] compared different AutoML frameworks on standard tasks. The studies showed
either a large variance or no significant variance across models. However, in simple classifi-
cation tasks, AutoML frameworks did not substantially outperform conventional models or
humans [26]. Paldino et al. (2021) [26] tested four AutoML frameworks (AutoGluon, H2O,
TPOT, and Auto-Sklearn) against a benchmark of traditional forecasting algorithms (naive,
exponential smoothing, and Holt-Winter’s) on a range of timeseries forecasting tasks. Their
findings demonstrated that AutoML approaches are still immature for timeseries forecast-
ing problems. However, mainly, the models did not give concern to the data drift problem
and aimed to have high accuracy on the testing dataset. Alsharef et al. [27] reviewed differ-
ent ML and AutoML solutions that can be utilized in forecasting and recommended the
use of the EvalML AutoML framework to solve the problem of forecasting concerning data
drift issues. Other comparative studies [9,28] evaluated different techniques to solve the
problem of forecasting having promising results. In addition, non-financial applications of
timeseries analysis found a place in most recent research. For example, product sales [29]
and weather [30]. Daniela et al. [31] researched the process of data analysis and generation
of prediction models of energy consumption in smart buildings. Huseyin et al. [32] pro-
posed a hybrid model for streamflow forecasting due to the necessity of water management
after the growth in water consumption.

This paper includes an experimental study on the effectiveness of various approaches
that can be used for the problem of forecasting timeseries data including RNN, GRU, LSTM,
Independent RNN (IndRNN), Auto-Regressive (AR), Moving Average (MA), Auto-Regressive
Moving Average (ARMA), Auto-Regressive Integrated Moving Average (ARIMA), and Linear
Regression (LR). Additionally, two AutoML frameworks—EvalML and Auto-Keras—were
utilized to automatically search for the best prediction models concerning the data. The
datasets were quantitative and included historical timeseries data of real prices of the
cryptocurrencies Ethereum and Bitcoin gathered from a reputable bulletin [33,34]. With
MSEs of 298 and 287, respectively, IndRNN was shown to have a stronger prediction
potential than the other currently used approaches. Additionally, deep learning models
outperformed linear models in terms of prediction accuracy. For AutoML, the best models
with the Ethereum dataset, according to AutoML frameworks EvalML and Auto-Keras,
were Random Forest and GRU, respectively, with MSEs of 762 and 414. The best models
with the Bitcoin dataset, on the other hand, were Decision Tree Regressor and LSTM, with
MSEs of 693 and 376.We concluded that AutoML for timeseries modeling is currently in
development, and it necessitates hard work from researchers to evolve.

Due to the characteristics of time series data such as being structured and small in size,
the models did not require high infrastructure and had a relatively low computation cost
compared with 2d and 3d data that require high computation costs, for example. The experi-
ments of this work did not consider the computational cost of the models. No model required
more than 45 min to train (training ARIMA on BTC-ETH dataset with parameters [2,6,7] on a
normal laptop device was the slowest operation). The experiments were performed on the
processor “Intel Core i5-7200U CPU” with “8192 MB RAM Memory”.

This paper contributed in:

1. Performing a comparative experimental study on different ML and DL models and
AutoML frameworks.

2. Defining the problem of data drift and investigating the ability of the automation in
ML to tackle it.

3. Representing a contribution to establishing the use of theory-based methods such as
AutoML in experimental studies.

4. Adding to the growing body of literature by elaborating the problem of data drift
and elaborating the AutoML concept where this work can serve as an example for
researchers to conduct empirical or review studies on ML and AutoML.

Sustainability 2022, 14, 15292 3 of 19

5. This experimental work can be applied in extended time series domains and enables
the widening of the same research domain with other data features.

6. This work provided a comprehensive analysis of cryptocurrency data in an area where
data significantly vary (from time to time and cryptocurrency to another).

2. Literature Review
2.1. TimeSeries Forecasting

Massive volumes of timeseries data are now accessible, providing businesses and pro-
fessionals with new potential for data mining and decision making. Linear models [35,36]
for timeseries forecasting [37] have been extensively used for a while, and many scientists
still use them since they are accurate and straightforward to understand. However, recent
breakthroughs in machine learning research showed that neural networks can be more
effective models to forecast timeseries [38] as they achieve higher accuracy [9]. However,
these linear and deep learning methods need in-depth domain expertise for data pre-
processing, feature selection, and hyperparameter tuning in order to successfully complete
a forecasting task [39]. Since it is difficult to find researchers with both machine learning
and domain knowledge, using time series forecasting techniques may be a tedious task for
organizations conducting research in different domains [40]. The need for frameworks to
automate the ML process has increased as a result of this gap [40]. Automated machine
learning (AutoML) provides solutions to build and run machine learning pipelines while
minimizing human involvement [41].Analyzing data with limited human involvement has
become an interesting topic for researchers and industries [42–44]. However, establishing a
mechanism that automates the whole ML process for forecasting is not yet a developed
area of study, and also contains limitations and peculiarities that should be handled in
special ways [26].

Examples from the plethora of studies in timeseries forecasting in the sustainability
domain and its applications include the following examples.

Oana et al. [45] conducted a study on economic applications on the basis of the
Eurostat database [46]. The study was built around the problem of the circular economy
over data with features that cover all areas of interest (production and consumption, waste
management, secondary raw materials, and competitiveness and innovation). For each
selected feature, experimented time series prediction models were able to reveal accurate
forecasts with respect to different time horizons. The limitation concerned the length of
the data series available in the Eurostat database (only since 2000) making possible the
establishment of a limited predictive horizon.

Muhammad et al. [47] conducted a study on economic applications focused on fore-
casting the data of the inflation and exchange rates from 1989 to 2020 in a generalizable
use case, using different ML algorithms such as KNNs, polynomial regression, ANNs, and
SVM. The data set was split into a training set (from 1989 to 2018) and a testing set(from
2019 to 2020). For forecasting inflation rates based on error prediction, the test set showed
that the polynomial regression and ANN methods outperformed SVM and KNN. On the
other hand, forecasting the exchange rate, SVM RBF outperformed KNN, polynomial
regression, and ANNs. The results showed that the parameter setting of all ML algorithms
is also important.

Jintian et al. [48] conducted a study on economy that investigated the impacts of
democracy, environmental regulations, renewable energy, globalization, and economic
growth on “ecological footprints” [49], which is a method to measure human demand on
natural capital, i.e., the quantity of nature it takes to support people or economy, from
1990 to 2018, in a generalizable use case example of N-11 (Next Eleven) countries. They
applied the cross-sectional autoregressive distributed lags (CS-ARDL) methods. The results
showed that environmental regulation significantly mitigates ecological footprint, while
economic growth escalates ecological footprints. Additionally, all selected features were
contributing factors to environmental quality.

Sustainability 2022, 14, 15292 4 of 19

Antonio et al. [50] conducted a study on climate change that analyzed in a generaliz-
able use case the regularity of monthly rainfall timeseries during the period 1953 to 2012,
recorded at 133 measuring stations well-distributed across the study area. They used the
sample entropy (SampEn) method, by calculating SampEn values in 10 year sliding win-
dows for the whole series and by applying statistical tests for two 30-year subperiods. The
study was able to provide detailed spatiotemporal analysis of rainfall regime, to distinguish
among different rainfall regimes, and to identify climatic phenomena.

Eyad et al. [51] carried out a study on climate change aimed to analyze hydrological
variability by conducting an intensive analysis of extreme events, under dry and wet
conditions. They utilized four meteorological stations selected to provide daily rainfall
rates based on a dataset of recorded data periods of rainfall ranging from 24 years to 70 years.
They mentioned that the performance of any model on a different storm event could be
different based on the recording interval and, therefore, the results will change accordingly.

This work adds to the plethora of timeseries analytics in sustainability applications,
providing a generalizable empirical study on ML and AutoML techniques that can be
utilized for modeling.

2.2. Machine Learning

The moving average (MA) model is a simple straightforward approach where the
predicted value at time t + 1 is equal to the average (mean) of the earlier values up to time t.
Despite linear models’ underlying simplicity, some of them, such as ARIMA, have been
shown to be very accurate and efficient predictors [9,28,52]. ANN is designed to analyze and
learn from many different unidentified inputs. Because ANNs are non-linear, they may be
used to compute intricate relationships between input and output [28,53]. For this reason, it
can be utilized to effectively predict timeseries volatile data. ANN contains parameters and
hyperparameters [54] that significantly control the processes of learning. The parameters
and hyperparameters affect the whole process of predicting and determining their values
and significantly influence the model behavior. These parameters should be selected or
initialized carefully by the researcher intending to achieve satisfactory outcomes. Most
machine learning algorithms require extensive domain knowledge, pre-processing, feature
selection, and hyperparameter optimization to be able to solve a forecasting task with
a satisfying result [39]. Analysts with both machine learning and domain expertise are
relatively rare, which makes engagement with time series forecasting methods expensive
for organizations. Moreover, machine learning models are vulnerable to data drift [11,12]
where the properties of the independent variable change over time. Therefore, an pre-
designed model might not be able to forecast future data accurately.

2.3. Data Drift Problem

After a machine learning model is placed into production and users start using it, one
of the main concerns of data scientists is whether the model will still capture the pattern
of new incoming data and whether it will efficiently continue to capture the pattern of
newly incoming data as it was functioning during its design phase. Data drift is defined
as the changes to data structure, semantics, and infrastructure that are unforeseen and
undocumented as a consequence of modern data architectures [55]. In other words, data
driftis a type of model drift that occurs when the characteristics of the independent input
variables change. Data drift examples include seasonal variations in data, shifts in customer
preferences, exposure to new items, etc. This issue is common when working with time
series data which is volatile and vulnerable to sudden change. The following Figure 1
illustrates the problem of data drift.

Sustainability 2022, 14, 15292 5 of 19

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 21

customer preferences, exposure to new items, etc. This issue is common when working

with time series data which is volatile and vulnerable to sudden change. The following

Figure 1 illustrates the problem of data drift.

Figure 1. Data drift problem.

2.4. Automated Machine Learning

The term “AutoML” refers to the automation of machine learning tasks such that no

(or very little) manual work is necessary [56]. With AutoML, non-experts had the oppor-

tunity to use machine learning methods to tackle a particular problem without needing

any previous technical or domain expertise [57]. Most methods of AutoML aim to com-

pletely automate the model selection, hyperparameter optimization, and feature selection

processes. [58]. Previously, many methods and tactics only addressed a portion of this

AutoML process and in recent years, various completely automated methods have

emerged.

The AutoML automated approach underlines several steps until the selected model

becomes ready to perform forecasting:

1. Model Selection: The objective of model selection, given a collection of ML models

and a dataset, is to identify ML models with the greatest accuracy when trained on

the dataset. AutoML aims to determine the model that best fits the data without hu-

man involvement, iterating over many models to be trained on the same input data

and selecting the model with the best performance [59,27].

2. Hyperparameter Optimization (HPO): Setting and adjusting hyperparameters ap-

propriately will often result in a model with enhanced performance. Additionally,

research has shown that an appropriate choice of hyper-parameters considerably im-

proves the performance of models in comparison with the default model settings

[60,61]. HPO is an important technique in machine learning that became essential

owing to the upscaling of neural networks to improve accuracy. Due to the upscaling

of neural networks for improved accuracy, a potential set of hyperparameter values

becomes essential, necessitating that researchers have experience with neural net-

works when manually setting the hyperparameter [27]. Bayesian Optimization [62]

and Random Search [63] are examples of strategies for automated HPO.

3. Feature Engineering: This is another step that can be achieved by AutoML which is

tedious and repetitive when performed manually [27].

Recently, many frameworks have been proposed that combine all three former steps

of AutoML. For example: AutoKeras[17], EvalML[16], AutoGluon[64], Auto-Weka [65],

Auto-PyTorch[66], and others.

EvalML[16] is an open-source AutoML framework that automatically executes fea-

ture selection, model selection, hyper-parameter optimization, etc. It uses random forest

classifier/regressor for feature selection and Bayesian optimization to optimize its pipeline

Figure 1. Data drift problem.

2.4. Automated Machine Learning

The term “AutoML” refers to the automation of machine learning tasks such that
no (or very little) manual work is necessary [56]. With AutoML, non-experts had the
opportunity to use machine learning methods to tackle a particular problem without
needing any previous technical or domain expertise [57]. Most methods of AutoML aim
to completely automate the model selection, hyperparameter optimization, and feature
selection processes. [58]. Previously, many methods and tactics only addressed a portion
of this AutoML process and in recent years, various completely automated methods
have emerged.

The AutoML automated approach underlines several steps until the selected model
becomes ready to perform forecasting:

1. Model Selection: The objective of model selection, given a collection of ML models
and a dataset, is to identify ML models with the greatest accuracy when trained on the
dataset. AutoML aims to determine the model that best fits the data without human
involvement, iterating over many models to be trained on the same input data and
selecting the model with the best performance [27,59].

2. Hyperparameter Optimization (HPO): Setting and adjusting hyperparameters ap-
propriately will often result in a model with enhanced performance. Addition-
ally, research has shown that an appropriate choice of hyper-parameters consid-
erably improves the performance of models in comparison with the default model
settings [60,61]. HPO is an important technique in machine learning that became
essential owing to the upscaling of neural networks to improve accuracy. Due to the
upscaling of neural networks for improved accuracy, a potential set of hyperparameter
values becomes essential, necessitating that researchers have experience with neural
networks when manually setting the hyperparameter [27]. Bayesian Optimization [62]
and Random Search [63] are examples of strategies for automated HPO.

3. Feature Engineering: This is another step that can be achieved by AutoML which is
tedious and repetitive when performed manually [27].

Recently, many frameworks have been proposed that combine all three former steps
of AutoML. For example: AutoKeras [17], EvalML [16], AutoGluon [64], Auto-Weka [65],
Auto-PyTorch [66], and others.

EvalML [16] is an open-source AutoML framework that automatically executes fea-
ture selection, model selection, hyper-parameter optimization, etc. It uses random forest
classifier/regressor for feature selection and Bayesian optimization to optimize its pipeline
hyperparameters. It builds and optimizes ML pipelines depending on an objective function
parameter, e.g., MSE in case of timeseries forecasting. It supports various supervised

Sustainability 2022, 14, 15292 6 of 19

ML problem types, including regression, classification, time series regression, and time
series classification. In this work, we set the problem type as “timeseries regression”. In
our previous paper [27], we compared different AutoML frameworks and we gave the
recommendation to use EvalML for timeseries forecasting. This work will use it to auto
search for the optimal models and auto optimize concerning the data.

AutoKeras [17] is an AutoML system depending on the widely used Keras API.
Amongst other equivalent AutoML systems, Auto-Keras emphasizes deep learning over
basic ML models. It uses a special Neural Architecture Search (NAS) algorithm for searching
over neural architectures to best address a modeling job. Since AutoKeras uses an efficient
algorithm for auto search in advanced optimal models, this work will use the this AutoKeras
AutoML system.

We concluded by combining our current empirical study and our previous literature
study [27] of different AutoML steps and frameworks and determined that the computa-
tional cost of AutoML depends on the search space and the searching algorithm. In other
words, efficiency depends on the initial space and algorithm set by the pipeline designer.
Therefore, some manual work is still required. Some frameworks, such as EvalML, select
the search spaces depending on the problem type; in the case of time series, it searches
within architectures used frequently for time series and this minimizes the search space of
the model selection, HPO, and feature engineering resulting in a computationally efficient
pipeline. Other frameworks, such as AuroKeras, search within more sophisticated archi-
tectures such as neural networks where it runs each model for a certain number of epochs
to estimate its accuracy with given data resulting in a lower computationally efficient but
more accurate pipeline. However, overall, the computational cost for time series data
analysis is not a big concern compared with larger data such as3rd images, for example,
since it has a low volume, clear structure, less complex model architecture, and lower
number of parameters.

3. Experimental Work
3.1. Data and Pre-Processing
3.1.1. Data Collection

Two datasets were employed for training and testing the proposed models [33,34].

• The datasets were collected from a reliable bulletin (Yahoo Finance).
• The first dataset contained the daily Ethereum cryptocurrency prices in U.S. Dollars

(ETH-USD) from 8 July 2015 to 9 August 2022 with 2590 observations.
• The 2nd data set contained the daily Bitcoin cryptocurrency prices in U.S. Dollars

(BTC-USD) from 17 September 2014 to 9 August 2022 with 2886 observations.
• Each dataset contained mainly the following features: date (date of observation taken),

Close price, Open price, High price, Low price, Volume, and Adj Close price.

The study used the Date and Close features for analysis since the closing price is the
most important feature of the data and it is the basic data that is used in the analysis of the
stock market [67].

3.1.2. Data Visualization

A chart showing the fluctuations in the 1st dataset (Ethereum close prices in USD
historical data) starting from 2017 is provided in the following Figure 2.

Sustainability 2022, 14, 15292 7 of 19Sustainability 2022, 14, x FOR PEER REVIEW 7 of 21

Figure 2. ETH-USD line graph.

We observed that the data had minimal fluctuations until the end of2020 when a

spike in price and the following fluctuations can be seen.

A chart showing the fluctuations in the 2nd dataset (Bitcoin close prices in USD his-

torical data) starting from 2015 is provided in the following Figure 3.

Figure 3. BTC-USD Line graph.

We observed that the data had mild fluctuations until early 2021 when a trough in

price followed by an immediate spike and later fluctuations can be seen.

As we can conclude from the charts, while the prices of both cryptocurrencies are

highly volatile, Ethereum is more stable to an extent. On the other hand, Bitcoin is an older

cryptocurrency with a larger volume of historical data available.

As a part of understanding the data, ACF and PACF plots were drawn for both da-

tasets to determine the best parameters to be used with AR, MA, ARMA, and ARIMA

models.

ACF [68] is a function that gives values of autocorrelation of any series with its lagged

values. ACF plot describes how highly the present value of a series is connected to its past

values.

PACF [68] is a partial autocorrelation function where instead of finding correlations

of the present with lags, it finds a correlation of the residuals (which remains after remov-

ing the effects which are already explained by the earlier lag(s)). In PACF, we correlate

the “parts” of 𝑦𝑡and 𝑦𝑡−3 that are not predicted by 𝑦𝑡−1 and 𝑦𝑡−2.

The following figures 4-7, show ACF and PACF plots for the datasets used in this

empirical study.

Figure 4 shows the ACF plot for the 1st database, ETH-USD.

0

1000

2000

3000

4000

5000

6000
C
lo
se

Date

0.00
10,000.00
20,000.00
30,000.00
40,000.00
50,000.00
60,000.00
70,000.00
80,000.00

9
/1
7
/2
0
1
4

2
/1
4
/2
0
1
5

7
/1
4
/2
0
1
5

1
2
/1
1
/2
0
1
5

5
/9
/2
0
1
6

1
0
/6
/2
0
1
6

3
/5
/2
0
1
7

8
/2
/2
0
1
7

1
2
/3
0
/2
0
1
7

5
/2
9
/2
0
1
8

1
0
/2
6
/2
0
1
8

3
/2
5
/2
0
1
9

8
/2
2
/2
0
1
9

1
/1
9
/2
0
2
0

6
/1
7
/2
0
2
0

1
1
/1
4
/2
0
2
0

4
/1
3
/2
0
2
1

9
/1
0
/2
0
2
1

2
/7
/2
0
2
2

7
/7
/2
0
2
2

C
lo
se

Date

Figure 2. ETH-USD line graph.

We observed that the data had minimal fluctuations until the end of2020 when a spike
in price and the following fluctuations can be seen.

A chart showing the fluctuations in the 2nd dataset (Bitcoin close prices in USD
historical data) starting from 2015 is provided in the following Figure 3.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 21

Figure 2. ETH-USD line graph.

We observed that the data had minimal fluctuations until the end of2020 when a

spike in price and the following fluctuations can be seen.

A chart showing the fluctuations in the 2nd dataset (Bitcoin close prices in USD his-

torical data) starting from 2015 is provided in the following Figure 3.

Figure 3. BTC-USD Line graph.

We observed that the data had mild fluctuations until early 2021 when a trough in

price followed by an immediate spike and later fluctuations can be seen.

As we can conclude from the charts, while the prices of both cryptocurrencies are

highly volatile, Ethereum is more stable to an extent. On the other hand, Bitcoin is an older

cryptocurrency with a larger volume of historical data available.

As a part of understanding the data, ACF and PACF plots were drawn for both da-

tasets to determine the best parameters to be used with AR, MA, ARMA, and ARIMA

models.

ACF [68] is a function that gives values of autocorrelation of any series with its lagged

values. ACF plot describes how highly the present value of a series is connected to its past

values.

PACF [68] is a partial autocorrelation function where instead of finding correlations

of the present with lags, it finds a correlation of the residuals (which remains after remov-

ing the effects which are already explained by the earlier lag(s)). In PACF, we correlate

the “parts” of 𝑦𝑡and 𝑦𝑡−3 that are not predicted by 𝑦𝑡−1 and 𝑦𝑡−2.

The following figures 4-7, show ACF and PACF plots for the datasets used in this

empirical study.

Figure 4 shows the ACF plot for the 1st database, ETH-USD.

0

1000

2000

3000

4000

5000

6000

C
lo
se

Date

0.00
10,000.00
20,000.00
30,000.00
40,000.00
50,000.00
60,000.00
70,000.00
80,000.00

9
/1
7
/2
0
1
4

2
/1
4
/2
0
1
5

7
/1
4
/2
0
1
5

1
2
/1
1
/2
0
1
5

5
/9
/2
0
1
6

1
0
/6
/2
0
1
6

3
/5
/2
0
1
7

8
/2
/2
0
1
7

1
2
/3
0
/2
0
1
7

5
/2
9
/2
0
1
8

1
0
/2
6
/2
0
1
8

3
/2
5
/2
0
1
9

8
/2
2
/2
0
1
9

1
/1
9
/2
0
2
0

6
/1
7
/2
0
2
0

1
1
/1
4
/2
0
2
0

4
/1
3
/2
0
2
1

9
/1
0
/2
0
2
1

2
/7
/2
0
2
2

7
/7
/2
0
2
2

C
lo
se

Date

Figure 3. BTC-USD Line graph.

We observed that the data had mild fluctuations until early 2021 when a trough in
price followed by an immediate spike and later fluctuations can be seen.

As we can conclude from the charts, while the prices of both cryptocurrencies are
highly volatile, Ethereum is more stable to an extent. On the other hand, Bitcoin is an older
cryptocurrency with a larger volume of historical data available.

As a part of understanding the data, ACF and PACF plots were drawn for both datasets
to determine the best parameters to be used with AR, MA, ARMA, and ARIMA models.

ACF [68] is a function that gives values of autocorrelation of any series with its lagged
values. ACF plot describes how highly the present value of a series is connected to its
past values.

PACF [68] is a partial autocorrelation function where instead of finding correlations of
the present with lags, it finds a correlation of the residuals (which remains after removing
the effects which are already explained by the earlier lag(s)). In PACF, we correlate the
“parts” of yt and yt−3 that are not predicted by yt−1 and yt−2.

The following Figures 4–7, show ACF and PACF plots for the datasets used in this
empirical study.

Figure 4 shows the ACF plot for the 1st database, ETH-USD:
Figure 5 shows the PACF plot for the 1st database, ETH-USD:
Figure 6 shows the ACF plot for the 2nd database, BTC-USD:
Figure 7 shows the PACF plot for the 2nd database, BTC-USD:

Sustainability 2022, 14, 15292 8 of 19
Sustainability 2022, 14, x FOR PEER REVIEW 8 of 21

Figure 4. ACF Plot (ETH-USD).

Figure 5 shows the PACF plot for the 1st database, ETH-USD:

Figure 5. PACF Plot (ETH-USD).

Figure 6 shows the ACF plot for the 2nd database, BTC-USD:

Figure 6. ACF Plot (BTC-USD).

Figure 7 shows the PACF plot for the 2nd database, BTC-USD:

Figure 7. PACF Plot (BTC-USD).

Figure 4. ACF Plot (ETH-USD).

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 21

Figure 4. ACF Plot (ETH-USD).

Figure 5 shows the PACF plot for the 1st database, ETH-USD:

Figure 5. PACF Plot (ETH-USD).

Figure 6 shows the ACF plot for the 2nd database, BTC-USD:

Figure 6. ACF Plot (BTC-USD).

Figure 7 shows the PACF plot for the 2nd database, BTC-USD:

Figure 7. PACF Plot (BTC-USD).

Figure 5. PACF Plot (ETH-USD).

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 21

Figure 4. ACF Plot (ETH-USD).

Figure 5 shows the PACF plot for the 1st database, ETH-USD:

Figure 5. PACF Plot (ETH-USD).

Figure 6 shows the ACF plot for the 2nd database, BTC-USD:

Figure 6. ACF Plot (BTC-USD).

Figure 7 shows the PACF plot for the 2nd database, BTC-USD:

Figure 7. PACF Plot (BTC-USD).

Figure 6. ACF Plot (BTC-USD).

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 21

Figure 4. ACF Plot (ETH-USD).

Figure 5 shows the PACF plot for the 1st database, ETH-USD:

Figure 5. PACF Plot (ETH-USD).

Figure 6 shows the ACF plot for the 2nd database, BTC-USD:

Figure 6. ACF Plot (BTC-USD).

Figure 7 shows the PACF plot for the 2nd database, BTC-USD:

Figure 7. PACF Plot (BTC-USD). Figure 7. PACF Plot (BTC-USD).

Sustainability 2022, 14, 15292 9 of 19

3.1.3. Data Pre-Processing

The following Table 1 illustrates data quality properties.

Table 1. Data Quality Assessment Properties.

Property Description 1st Dataset (ETH-USD) 2nd Dataset (BTC-USD) Notes

Event data loss There are gaps in the event
data/time series.

70 out of 2590
observations were missing
from the 1st dataset.

60 out of 2886 observations
were missing from the
2nd dataset.

Missed values were replaced with
their corresponding previous
values (Forward Fill) and we
assumed that the value did not
change on that day where the most
recent value is closest to the current.

Values out of range
The values are out of range
for the domain under
observation.

False False
1st dataset’s values ranged between
0 and 5000. 2nd dataset values
ranged between 0 and 70,000.

Value spikes Spikes or sudden changes are
implausible for the domain. True True Datasets contained spikes

(price spikes).

Wrong timestamps Timestamps are wrong. False False Datasets did not have
wrong timestamps.

Rounded measurement value
The value is not to the
optimal level of detail or has
slight variations.

False False

As a part of pre-processing, the
float values of price were
normalized to the nearest integer to
facilitate calculations and
readability of data.

Signal noise
Small changes which are not
in the process but result from
inaccurate measurements.

No No Datasets did not have signal noise.

Data Not Updated Data arenot up-to-date. No No The data are up-to-date and were
updated on 31 December 2021.

Unreliable data source The data source is not
considered fully reliable. False False

Data were collected from a reliable
source, Yahoo Finance, which
provides financial news, data,
financial reports, and
original content.

Units of measurements The units of measurement are
the same for all data sources. True True

Unified for all datasets
(U.S. Dollars) where all the values
are in U.S. Dollars.

Data formats Different data formats, e.g.,
float vs. string, etc. True True

The prices were given as float
numbers or string values (e.g., 21 k).
This was taken into consideration
in the pre-processing where all data
formats were unified as natural
integer numbers.

Short data history The history of recorded data
is short for good analysis. True True

BTC and ETH are among the oldest
cryptocurrencies in exchange and
the historical data available are
large when compared with other
cryptocurrencies; however, data
volume is still not
perfectly sufficient.

Calculated/forced values Compensated values are used
instead of real measurements. False False All data values are real

measurements not calculated.

The cleaning process included filling the missed values by approximating each missed
value by its corresponding previous value. In other words, the missed price of a certain
day is considered the same price as the previous days. The data format was unified by
converting strings to numbers, handling symbols such as “$”, and converting all to a unified
number format. Data values were rounded into an integer number. For example, a value of
222.5 was rounded to 222 to facilitate calculation. The closing price is the most important
feature of the data. It is the basic data that is used in the analysis of the stock market [67].
We selected the “Close” price as a target for modeling and “Date” and historical “Close”
prices as an input.

3.2. Methodology

• This work used a combination of machine learning models and AutoML frameworks
that auto-find and tune optimal ML models to solve the problems of forecasting time
series and data drift. The machine learning models included: LR, AR, MA, ARMA,

Sustainability 2022, 14, 15292 10 of 19

ARIMA, RNN, GRU, LSTM, and IndRNN. The AutoML frameworks included: EvalML
and Auto-Keras.

• The datasets included: Ethereum cryptocurrency prices in U.S. Dollars (ETH-USD)
from 2015 to 2022 and Bitcoin cryptocurrency prices in U.S. Dollars (BTC-USD) from
2014 to 2022.

• The MSE and MAE scores were used as evaluation metrics to compare the models’
efficiency, which is the mean of the squared errors. The larger this metric is the
larger the error indicating that the model is less accurate. The units of MSE and MAE
are the same as the unit of measurement for the quantity, which is being estimated,
U.S. Dollars in our case.

• The programming language used for implementation was Python.
• After data pre-processing and feature selection, this work experimented with 9 machine

learning models to model the timeseries data and then experimented with two AutoML
frameworks to model the same.

3.2.1. Machine Learning

The 9 machine learning models used in this work included 5 linear models: MA, AR,
ARMA, LR, and ARIMA, and 4 deep learning models: RNN, GRU, LSTM, and IndRNN.
The linear models were:

• Auto-Regressive (AR) [27,69] with the parameters: p = 12 on the 1st dataset and
p = 12 on the 2nd dataset. These parameters were set using PACF plots [68] that can
determine the partial autocorrelation between a value and its proceedings in a time
series. The higher the partial autocorrelation, the higher the impact on prediction.

• Moving Average (MA) [70] with the parameters: q = 14 on the 1st dataset and q = 14
on the 2nd dataset. These parameters were set using ACF plots [68] that can determine
the autocorrelation between a value and its proceedings in a time series. The higher
the autocorrelation, the higher the impact on prediction.

• ARMA [71] with the parameters: p = 12, q = 14 on both the 1st dataset and 2nd
dataset. These parameters were set using both ACF and PACF plots that can determine,
combined, the optimal order for the ARMA model parameters.

• ARIMA [72] with the parameters: p = 7, d = 1, and q = 7 on the 1st dataset and p = 6,
d = 2, and q = 7 on the 2nd dataset. These parameters were set using the grid search
optimization algorithm [23] which automatically discovers the optimal order for an
ARIMA model.

• Linear Regression (LR) [73] where all training data points (closing prices) for each dataset
were used to draw a fitting line of the data using the ordinary least squares method.

The deep learning models were RNN, GRU, LSTM, and IndRNN. These deep learning
models followed state-of-the-art architecture, and the problem configuration of all the deep
learning models was as follows:

• Forecast horizon: 5;
• Max delay (lookback): 20;
• Gap: 0;
• Batch size: 20 for each deep learning model;
• Number of hidden layers: 3, for each deep learning model;
• Learning rate: 0.001, for each deep learning model;
• Time index: Date.

where:

• Forecast horizon: The number of future periods we are attempting to forecast. In this
example, we want to forecast prices for the next 5 days, hence the value is 5. According
to [74], predicting a long horizon is not an easy task and choosing a shorter horizon
such as 5 is more useful.

• Max delay: The maximum number of past values to investigate from the present value
in order to construct forecasting input features. Increasing the max delay (look-back

Sustainability 2022, 14, 15292 11 of 19

period) might result in lesser error rates, but would imply a higher dimensional input
and hence increased complexity [75]. In our example, a sliding window method was
used, where the previous 20 values were used to predict the next 5 values.

• Gap: The number of periods that pass between the end of the training set and the
beginning of the test set. Throughout our example, the gap is zero since we are
trying to forecast the prices for the following five days using the data as it is “today”.
However, if we were to forecast prices for the next Monday through Sunday using
data from the prior Friday, the difference would be 2 (Saturday and Sunday separate
Monday from Friday).

• Time index: The column of the training set, having the date of the corresponding observation.

3.2.2. AutoML

This work used 2 AutoML frameworks to automatically find optimal models and tune
them concerning the data. These frameworks were EvalML and Auto-Keras.

EvalML is an AutoML framework for creating, optimizing, and evaluating machine
learning pipelines based on domain-specific objective functions. In this work, our goal is
to forecast future values for the time series by utilizing its historical values. EvalML time
series functionality is designed for this purpose. We used EvalML with the same problem
configuration of our state-of-the-art deep learning models: {Forecast horizon: 5, Max delay:
20, Gap: 0, Time index: Date} for the same reasons we selected them with state-of-the-art
DL models. The same datasets were loaded: ETH-USD and BTC-USD. First, we cleaned
the data following the same procedure with ML and DL models. Second, we used the
DefaultDataChecks of EvalML to check the health of data where EvalML accepts a Pandas
data frame as an input, which can also run type inference on this data directly.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 21

However, if we were to forecast prices for the next Monday through Sunday using

data from the prior Friday, the difference would be 2 (Saturday and Sunday separate

Monday from Friday).

• Time index: The column of the training set, having the date of the corresponding

observation.

3.2.2. AutoML

This work used 2 AutoML frameworks to automatically find optimal models and

tune them concerning the data. These frameworks were EvalML and Auto-Keras.

EvalML is an AutoML framework for creating, optimizing, and evaluating machine

learning pipelines based on domain-specific objective functions. In this work, our goal is

to forecast future values for the time series by utilizing its historical values. EvalML time

series functionality is designed for this purpose. We used EvalML with the same problem

configuration of our state-of-the-art deep learning models: {Forecast horizon: 5, Max de-

lay: 20, Gap: 0, Time index: Date} for the same reasons we selected them with state-of-the-

art DL models. The same datasets were loaded: ETH-USD and BTC-USD. First, we cleaned

the data following the same procedure with ML and DL models. Second, we used the

DefaultDataChecks of EvalML to check the health of data where EvalML accepts a Pandas

data frame as an input, which can also run type inference on this data directly.

These default data checks have a built-in functionality to validate data by checking

for errors and recommending a preprocessing action. In our case, this automated prepro-

cessing was recommended to apply log-normal transformation on the data as a normaliz-

ing and preprocessing action. For this reason, the lognormal transformation was applied

to the dataset. Third, we used the AutoSplit functionality of EvalML to split the data into

training and testing datasets depending on the problem type (time series regression in this

case) and the problem configurations (forecast horizon, max delay, gap, and time index).

We performed this action which was recommended by the AutoML framework,

EvalML, having DefaultDataChecks [76]which is a collection of data checks defined to

check for some of the most common data issues.

After that, we performed the AutoSplit functionality of EvalML which splits the data

into training and testing data depending on the problem type and timeseries problem

configurations.

The AutoSplit divided each dataset into 80% of the samples as training data and 20%

of them as testing data with cross validation as shown in the following Figure 8.

Figure 8. Auto-split into training and testing datasets.

We applied AutoML techniques to let the machine determine the best prediction

models. We followed the same window slide method where the data of the previous 20

These default data checks have a built-in functionality to validate data by checking for
errors and recommending a preprocessing action. In our case, this automated preprocessing
was recommended to apply log-normal transformation on the data as a normalizing and
preprocessing action. For this reason, the lognormal transformation was applied to the
dataset. Third, we used the AutoSplit functionality of EvalML to split the data into training
and testing datasets depending on the problem type (time series regression in this case)
and the problem configurations (forecast horizon, max delay, gap, and time index).

We performed this action which was recommended by the AutoML framework,
EvalML, having DefaultDataChecks [76] which is a collection of data checks defined to
check for some of the most common data issues.

After that, we performed the AutoSplit functionality of EvalML which splits the data into
training and testing data depending on the problem type and timeseries problem configurations.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 21

However, if we were to forecast prices for the next Monday through Sunday using

data from the prior Friday, the difference would be 2 (Saturday and Sunday separate

Monday from Friday).

• Time index: The column of the training set, having the date of the corresponding

observation.

3.2.2. AutoML

This work used 2 AutoML frameworks to automatically find optimal models and

tune them concerning the data. These frameworks were EvalML and Auto-Keras.

EvalML is an AutoML framework for creating, optimizing, and evaluating machine

learning pipelines based on domain-specific objective functions. In this work, our goal is

to forecast future values for the time series by utilizing its historical values. EvalML time

series functionality is designed for this purpose. We used EvalML with the same problem

configuration of our state-of-the-art deep learning models: {Forecast horizon: 5, Max de-

lay: 20, Gap: 0, Time index: Date} for the same reasons we selected them with state-of-the-

art DL models. The same datasets were loaded: ETH-USD and BTC-USD. First, we cleaned

the data following the same procedure with ML and DL models. Second, we used the

DefaultDataChecks of EvalML to check the health of data where EvalML accepts a Pandas

data frame as an input, which can also run type inference on this data directly.

These default data checks have a built-in functionality to validate data by checking

for errors and recommending a preprocessing action. In our case, this automated prepro-

cessing was recommended to apply log-normal transformation on the data as a normaliz-

ing and preprocessing action. For this reason, the lognormal transformation was applied

to the dataset. Third, we used the AutoSplit functionality of EvalML to split the data into

training and testing datasets depending on the problem type (time series regression in this

case) and the problem configurations (forecast horizon, max delay, gap, and time index).

We performed this action which was recommended by the AutoML framework,

EvalML, having DefaultDataChecks [76]which is a collection of data checks defined to

check for some of the most common data issues.

After that, we performed the AutoSplit functionality of EvalML which splits the data

into training and testing data depending on the problem type and timeseries problem

configurations.

The AutoSplit divided each dataset into 80% of the samples as training data and 20%

of them as testing data with cross validation as shown in the following Figure 8.

Figure 8. Auto-split into training and testing datasets.

We applied AutoML techniques to let the machine determine the best prediction

models. We followed the same window slide method where the data of the previous 20

The AutoSplit divided each dataset into 80% of the samples as training data and 20%
of them as testing data with cross validation as shown in the following Figure 8.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 21

However, if we were to forecast prices for the next Monday through Sunday using

data from the prior Friday, the difference would be 2 (Saturday and Sunday separate

Monday from Friday).

• Time index: The column of the training set, having the date of the corresponding

observation.

3.2.2. AutoML

This work used 2 AutoML frameworks to automatically find optimal models and

tune them concerning the data. These frameworks were EvalML and Auto-Keras.

EvalML is an AutoML framework for creating, optimizing, and evaluating machine

learning pipelines based on domain-specific objective functions. In this work, our goal is

to forecast future values for the time series by utilizing its historical values. EvalML time

series functionality is designed for this purpose. We used EvalML with the same problem

configuration of our state-of-the-art deep learning models: {Forecast horizon: 5, Max de-

lay: 20, Gap: 0, Time index: Date} for the same reasons we selected them with state-of-the-

art DL models. The same datasets were loaded: ETH-USD and BTC-USD. First, we cleaned

the data following the same procedure with ML and DL models. Second, we used the

DefaultDataChecks of EvalML to check the health of data where EvalML accepts a Pandas

data frame as an input, which can also run type inference on this data directly.

These default data checks have a built-in functionality to validate data by checking

for errors and recommending a preprocessing action. In our case, this automated prepro-

cessing was recommended to apply log-normal transformation on the data as a normaliz-

ing and preprocessing action. For this reason, the lognormal transformation was applied

to the dataset. Third, we used the AutoSplit functionality of EvalML to split the data into

training and testing datasets depending on the problem type (time series regression in this

case) and the problem configurations (forecast horizon, max delay, gap, and time index).

We performed this action which was recommended by the AutoML framework,

EvalML, having DefaultDataChecks [76]which is a collection of data checks defined to

check for some of the most common data issues.

After that, we performed the AutoSplit functionality of EvalML which splits the data

into training and testing data depending on the problem type and timeseries problem

configurations.

The AutoSplit divided each dataset into 80% of the samples as training data and 20%

of them as testing data with cross validation as shown in the following Figure 8.

Figure 8. Auto-split into training and testing datasets.

We applied AutoML techniques to let the machine determine the best prediction

models. We followed the same window slide method where the data of the previous 20

Figure 8. Auto-split into training and testing datasets.

Sustainability 2022, 14, 15292 12 of 19

We applied AutoML techniques to let the machine determine the best prediction
models. We followed the same window slide method where the data of the previous
20 days were used to predict the following 5 days’ data. We used the AutoML search
function of the EvalML framework. We passed the training data, the type of problem, and
the number of batches. It returned the top models that fit the training data.

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 21

days were used to predict the following 5 days’ data. We used the AutoML search function

of the EvalML framework. We passed the training data, the type of problem, and the num-

ber of batches. It returned the top models that fit the training data.

This gave us the best 5 models to be used in forecasting that were: Random Forest,

Extra Trees, LightGBM, XGBoost, and Decision Tree on the 1st dataset and Decision Tree,

Elastic Net, XGBoost, Random Forest, and Extra Trees on the 2nd dataset.

AutoKeras is a widely used AutoML framework based on Keras. It uses a network

morphism Neural Architecture Search (NAS), which is a method for model selection, to

automatically search and tune deep neural networks. Many NAS approaches require a

large number of searched networks to reach good performance. Moreover, many of them

train each neural network in the search scope from scratch, which makes the searching

process very slow. However, Auto-Keras uses network morphism NAS methodology that

keeps the functionality of a neural network while changing its neural architecture and this

could be helpful as it enables more efficient training during the search [17]. Using Au-

toKeras to search within advanced neural network architectures on both datasets, we con-

figured the auto search within 30 different models and trained each model for 30 epochs

to determine its efficiency with a batch size of 20, with the same problem configuration:

{Forecast horizon: 5, Max delay: 20, Gap: 0, Time index: Date}.

This gave us the best model to be used in forecasting which was a GRU-based archi-

tecture on the 1st dataset and an LSTM-based architecture on the 2nd dataset.

4. Result Analysis

4.1. Machine Learning

This work experimented with nine different machine learning models including five

linear models: LR, MA, AR, ARMA, and ARIMA, and four deep learning models: RNN,

GRU, LSTM, and IndRNN. After applying the experiments on the preprocessed data us-

ing the former models, the tested mean squared errors (MSEs) and mean absolute errors

(MAEs) resulting for each model on each dataset are provided in the following Table 2.

Table 2. MSE and MAE of experimented models (rounded to nearest integer).

Prediction

Model
LR AR MA ARMA ARIMA RNN GRU LSTM IndRNN

Time Series

Featurizer

{’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True, ‘delay_features’: False,

‘forecast_horizon’: 5, ‘gap’: 0}

MSE ETH-USD 11,835 17,500 16,410 6124 675 478 389 311 298

MSE BTC-USD 9952 11,422 10,214 3177 554 495 386 302 287

MAE ETH-USD 45.09 65.94 47.24 41.56 14.51 13.18 12.41 11.57 11.73

MAE BTC-USD 46.70 61.88 47.35 31.25 13.13 12.35 12.80 11.75 10.77

As Bitcoin is an older cryptocurrency with larger historical data available, the same

models worked and achieved better accuracy than Ethereum which is newer and has less

available data. Bitcoin was more predictable due to the availability of data and the large

dataset used for training. IndRNN showed the best efficiency since it addresses the

This gave us the best 5 models to be used in forecasting that were: Random Forest,
Extra Trees, LightGBM, XGBoost, and Decision Tree on the 1st dataset and Decision Tree,
Elastic Net, XGBoost, Random Forest, and Extra Trees on the 2nd dataset.

AutoKeras is a widely used AutoML framework based on Keras. It uses a network
morphism Neural Architecture Search (NAS), which is a method for model selection, to
automatically search and tune deep neural networks. Many NAS approaches require a
large number of searched networks to reach good performance. Moreover, many of them
train each neural network in the search scope from scratch, which makes the searching
process very slow. However, Auto-Keras uses network morphism NAS methodology that
keeps the functionality of a neural network while changing its neural architecture and
this could be helpful as it enables more efficient training during the search [17]. Using
AutoKeras to search within advanced neural network architectures on both datasets, we
configured the auto search within 30 different models and trained each model for 30 epochs
to determine its efficiency with a batch size of 20, with the same problem configuration:
{Forecast horizon: 5, Max delay: 20, Gap: 0, Time index: Date}.

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 21

days were used to predict the following 5 days’ data. We used the AutoML search function

of the EvalML framework. We passed the training data, the type of problem, and the num-

ber of batches. It returned the top models that fit the training data.

This gave us the best 5 models to be used in forecasting that were: Random Forest,

Extra Trees, LightGBM, XGBoost, and Decision Tree on the 1st dataset and Decision Tree,

Elastic Net, XGBoost, Random Forest, and Extra Trees on the 2nd dataset.

AutoKeras is a widely used AutoML framework based on Keras. It uses a network

morphism Neural Architecture Search (NAS), which is a method for model selection, to

automatically search and tune deep neural networks. Many NAS approaches require a

large number of searched networks to reach good performance. Moreover, many of them

train each neural network in the search scope from scratch, which makes the searching

process very slow. However, Auto-Keras uses network morphism NAS methodology that

keeps the functionality of a neural network while changing its neural architecture and this

could be helpful as it enables more efficient training during the search [17]. Using Au-

toKeras to search within advanced neural network architectures on both datasets, we con-

figured the auto search within 30 different models and trained each model for 30 epochs

to determine its efficiency with a batch size of 20, with the same problem configuration:

{Forecast horizon: 5, Max delay: 20, Gap: 0, Time index: Date}.

This gave us the best model to be used in forecasting which was a GRU-based archi-

tecture on the 1st dataset and an LSTM-based architecture on the 2nd dataset.

4. Result Analysis

4.1. Machine Learning

This work experimented with nine different machine learning models including five

linear models: LR, MA, AR, ARMA, and ARIMA, and four deep learning models: RNN,

GRU, LSTM, and IndRNN. After applying the experiments on the preprocessed data us-

ing the former models, the tested mean squared errors (MSEs) and mean absolute errors

(MAEs) resulting for each model on each dataset are provided in the following Table 2.

Table 2. MSE and MAE of experimented models (rounded to nearest integer).

Prediction

Model
LR AR MA ARMA ARIMA RNN GRU LSTM IndRNN

Time Series

Featurizer

{’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True, ‘delay_features’: False,

‘forecast_horizon’: 5, ‘gap’: 0}

MSE ETH-USD 11,835 17,500 16,410 6124 675 478 389 311 298

MSE BTC-USD 9952 11,422 10,214 3177 554 495 386 302 287

MAE ETH-USD 45.09 65.94 47.24 41.56 14.51 13.18 12.41 11.57 11.73

MAE BTC-USD 46.70 61.88 47.35 31.25 13.13 12.35 12.80 11.75 10.77

As Bitcoin is an older cryptocurrency with larger historical data available, the same

models worked and achieved better accuracy than Ethereum which is newer and has less

available data. Bitcoin was more predictable due to the availability of data and the large

dataset used for training. IndRNN showed the best efficiency since it addresses the

This gave us the best model to be used in forecasting which was a GRU-based archi-
tecture on the 1st dataset and an LSTM-based architecture on the 2nd dataset.

4. Result Analysis
4.1. Machine Learning

This work experimented with nine different machine learning models including five
linear models: LR, MA, AR, ARMA, and ARIMA, and four deep learning models: RNN,
GRU, LSTM, and IndRNN. After applying the experiments on the preprocessed data using
the former models, the tested mean squared errors (MSEs) and mean absolute errors (MAEs)
resulting for each model on each dataset are provided in the following Table 2.

Table 2. MSE and MAE of experimented models (rounded to nearest integer).

Prediction Model LR AR MA ARMA ARIMA RNN GRU LSTM IndRNN

Time Series Featurizer {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True, ‘delay_features’: False, ‘forecast_horizon’: 5, ‘gap’: 0}

MSE ETH-USD 11,835 17,500 16,410 6124 675 478 389 311 298

MSE BTC-USD 9952 11,422 10,214 3177 554 495 386 302 287

MAE ETH-USD 45.09 65.94 47.24 41.56 14.51 13.18 12.41 11.57 11.73

MAE BTC-USD 46.70 61.88 47.35 31.25 13.13 12.35 12.80 11.75 10.77

As Bitcoin is an older cryptocurrency with larger historical data available, the same
models worked and achieved better accuracy than Ethereum which is newer and has
less available data. Bitcoin was more predictable due to the availability of data and the
large dataset used for training. IndRNN showed the best efficiency since it addresses
the problems of gradient vanishing and exploding. LSTM showed the 2nd best efficiency

Sustainability 2022, 14, 15292 13 of 19

due to its capability to process longer sequences than RNN and GRU due to its memory.
ARIMA showed good efficiency due to its good configuration generated automatically
using GridSearch.

4.2. EvalML

The ranking of the models when applying EvalML autosearch on the Ethereum dataset
is shown in the following Table 3.

Table 3. EvalML ETH-USD autosearch results.

Index Pipeline Name MSE Score Model Parameters and Hyperparameters

0 Random Forest Regressor w/Imputer + Time
Series Featurizer + DateTimeFeaturizer 334

{‘Time Series Featurizer’: {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True,
‘delay_features’: True, ‘forecast_horizon’: 5, ‘conf_level’: 0.05, ‘gap’: 0,
‘rolling_window_size’: 0.25}, ‘Random Forest Regressor’: {’n_estimators’: 100,
‘max_depth’: 6, ‘n_jobs’: -1}, ‘pipeline’: {’gap’: 0, ‘max_delay’: 20, ‘forecast_horizon’:
5, ‘time_index’: ‘Date’}}

1 Extra Trees Regressor w/Imputer + Time Series
Featurizer + DateTimeFeaturizer 363

{‘Time Series Featurizer’: {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True,
‘delay_features’: True, ‘forecast_horizon’: 5, ‘conf_level’: 0.05, ‘gap’: 0,
‘rolling_window_size’: 0.25}, ‘Extra Trees Regressor’: {’n_estimators’: 100,
‘max_features’: ‘auto’, ‘max_depth’: 6, ‘min_samples_split’: 2,
‘min_weight_fraction_leaf’: 0.0, ‘n_jobs’: -1}, ‘pipeline’: {’gap’: 0, ‘max_delay’: 20,
‘forecast_horizon’: 5, ‘time_index’: ‘Date’}}

2 LightGBM Regressor w/Imputer + Time Series
Featurizer + DateTimeFeaturizer 396

{‘Time Series Featurizer’: {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True,
‘delay_features’: True, ‘forecast_horizon’: 5, ‘conf_level’: 0.05, ‘gap’: 0,
‘rolling_window_size’: 0.25}, ‘LightGBM Regressor’: (boosting_type: gbdt,
learning_rate: 0.1, n_estimators: 20, max_depth’: 0, ‘num_leaves’: 31,
Win_child_samples’: 20, ‘n-jobs’. -1, ‘bagging_freq’: 0, ‘bagging_fraction’: 0.9),
‘pipeline’: {’gap’: 0, ‘max_delay’: 20, ‘forecast_horizon’: 5, ‘time_index’: ‘Date’}}

3 XGBoost Regressor w/Imputer + Time Series
Featurizer + DateTimeFeaturizer 422

{‘Time Series Featurizer’: {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True,
‘delay_features’: True, ‘forecast_horizon’: 5, ‘conf_level’: 0.05, ‘gap’: 0,
‘rolling_window_size’: 0.25}, ‘XGBoost Regressor’: {’eta’: 0.1, ‘max_depth’: 6,
‘min_child_weight’: 1, ‘n_estimators’: 100, ‘n_jobs’: -1}, ‘pipeline’: {’gap’: 0,
‘max_delay’: 20, ‘forecast_horizon’: 5, ‘time_index’: ‘Date’}}

4 Decision Tree Regressor w/Imputer + Time Series
Featurizer + DateTimeFeaturizer 533

{’Time Series Featurizer’: {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True,
‘delay_features’: False, ‘forecast_horizon’: 5, ‘conf_level’: 0.05, ‘gap’: 0,
‘rolling_window_size’: 0.25}, ‘Decision Tree Regressor’: {’gap’: 0, ‘forecast_horizon’:
5}, ‘pipeline’: {’time_index’: ‘Date’, ‘gap’: 0, ‘max_delay’: 20, ‘forecast_horizon’: 10}}

The former table showed the ranking of models with their respective cross-validation
MSE scores. The top five models were as follows:

1. Random Forest;
2. Extra Trees;
3. Light Gradient Boosting Machine (LightGBM);
4. eXtreme Gradient Boosting (XGBoost);
5. Decision Tree Regressor.

All the models contained an imputer for replacing missing data, a timeseries featurizer,
and a date–time featurization component. By training the former models on the ETH-USD
training dataset and testing on the ETH-USD testing dataset, we obtained an MSE as a test
score for each model as shown in the following Table 4.

Table 4. EvalML ETH-USD testing scores.

ETH-USD EvalML

Model MSE

Random Forest 762

Extra Trees 768

LightGBM 1062

XGBoost 1059

Decision Tree Regressor 1079

Sustainability 2022, 14, 15292 14 of 19

The previous results showed that the best model suggested with EvalML achieved an
MSE of 762 on ETH-USD dataset which is higher than the MSE achieved by many of the
manually designed deep learning models indicating that it is not optimal. This can infer
that the EvalML autosearch did not yet outperform the traditional deep learning.

The ranking of models when applying EvalML autosearch on the Bitcoin dataset is
shown in the following Table 5.

Table 5. EvalML BTC-USD autosearch results.

Index Pipeline Name MSE Score Model Parameters and Hyperparameters

0 Decision Tree Regressor w/Imputer + Time Series
Featurizer + DateTime Featurization component 368

{’Time Series Featurizer’: {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True,
‘delay_features’: False, ‘forecast_horizon’: 5, ‘conf_level’: 0.05, ‘gap’: 0,
‘rolling_window_size’: 0.25}, ‘Decision Tree Regressor’: {’gap’: 0, ‘forecast_horizon’:
5}, ‘pipeline’: {’time_index’: ‘Date’, ‘gap’: 0, ‘max_delay’: 20, ‘forecast_horizon’: 10}}

1 Elastic Net Regressor w/Imputer + Time Series
Featurizer + DateTimeFeaturizer + Standard Scaler 394

{‘Time Series Featurizer’: {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True,
‘delay_features’: True, ‘forecast_horizon’: 5, ‘conf_level’: 0.05, ‘gap’: 0,
‘rolling_window_size’: 0.25}, ‘Elastic Net Regressor’: {’alpha’: 0.0001, ‘l1_ratio’: 0.15,
‘max_iter’: 1000, ‘normalize’: False}, ‘pipeline’: {’gap’: 0, ‘max_delay’: 20,
‘forecast_horizon’: 5, ‘time_index’: ‘Date’}}

2 XGBoost Regressor w/Imputer + Time Series
Featurizer + DateTimeFeaturizer 470

{‘Time Series Featurizer’: {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True,
‘delay_features’: True, ‘forecast_horizon’: 5, ‘conf_level’: 0.05, ‘gap’: 0,
‘rolling_window_size’: 0.25}, ‘XGBoost Regressor’: {’eta’: 0.1, ‘max_depth’: 6,
‘min_child_weight’: 1, ‘n_estimators’: 100, ‘n_jobs’: -1}, ‘pipeline’: {’gap’: 0,
‘max_delay’: 20, ‘forecast_horizon’: 5, ‘time_index’: ‘Date’}}

3 Random Forest Regressor w/Imputer + Time Series
Featurizer + DateTimeFeaturizer 542

{‘Time Series Featurizer’: {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True,
‘delay_features’: True, ‘forecast_horizon’: 5, ‘conf_level’: 0.05, ‘gap’: 0,
‘rolling_window_size’: 0.25}, ‘Random Forest Regressor’: {’n_estimators’: 100,
‘max_depth’: 6, ‘n_jobs’: -1}, ‘pipeline’: {’gap’: 0, ‘max_delay’: 20, ‘forecast_horizon’:
5, ‘time_index’: ‘Date’}}

4 Extra Trees Regressor w/Imputer + Time Series
Featurizer + DateTimeFeaturizer 638

{‘Time Series Featurizer’: {’time_index’: ‘Date’, ‘max_delay’: 20, ‘delay_target’: True,
‘delay_features’: True, ‘forecast_horizon’: 5, ‘conf_level’: 0.05, ‘gap’: 0,
‘rolling_window_size’: 0.25}, ‘Extra Trees Regressor’: {’n_estimators’: 100,
‘max_features’: ‘auto’, ‘max_depth’: 6, ‘min_samples_split’: 2,
‘min_weight_fraction_leaf’: 0.0, ‘n_jobs’: -1}, ‘pipeline’: {’gap’: 0, ‘max_delay’: 20,
‘forecast_horizon’: 5, ‘time_index’: ‘Date’}}

The former table showed the ranking of models with their respective cross validation
score. The top five models were as follows:

1. Decision Tree Regressor;
2. Elastic Net Regressor;
3. eXtreme Gradient Boosting (XGBoost);
4. Random Forest Regressor;
5. Extra Trees Regressor.

All the models contained an imputer for replacing missing data, a timeseries featurizer,
and a date–time featurization component. By training the former models on the BTC-USD
training dataset and testing on the BTC-USD testing dataset, we obtained an MSE as the
test score for each model as shown in the following Table 6.

Table 6. EvalML BTC-USD testing scores.

BTC-USD EvalML

Model MSE

Decision Tree Regressor 693

Elastic Net 838

XGBoost 1142

Random Forest 1322

Extra Trees 1457

The previous results showed that the best model suggested with EvalML achieved
an MSE of 693 on the BTC-USD dataset which is lower than the MSE achieved by many
of the manually designed deep learning models, indicating better efficiency; however, it

Sustainability 2022, 14, 15292 15 of 19

was not optimal since it yielded higher MSE than LSTM and IndRNN. This can infer that
EvalML autosearch did not yet outperform the traditional machine learning and deep
learning models.

4.3. AutoKeras

Using AutoKeras to search within advanced neural network architectures on the ETH-
USD dataset, we configured the auto search within 30 different models and trained for
30 epochs on each model (from its search scope) to determine its efficiency with a batch
size of 20, with the same problem configuration. The autosearch concluded that the best
architecture that fits the data included the following layers:

1. Input layer;
2. GRU layer;
3. GRU layer;
4. GRU layer;
5. Dropout layer;
6. Dense layer;

The above layers had the following hyperparameters illustrated in Table 7.

Table 7. AutoKeras ETH-USD recommended architecture.

Hyperparameter Best Value

Bidirectional False

Layer Type GRU

Number of Hidden Layers 3

Dropout 0.25

Optimizer Adam

Learning Rate 0.001

After training the resulting model for 200 epochs with the same configuration ({’time_index’:
‘Date’, ‘max_delay’: 20, ‘gap’: 0, ‘forecast_horizon’: 5}) and testing it, we obtained a test MSE of
414 on the first dataset (ETH-USD),which means higher accuracy than many of the manually
designed models and higher accuracy than EvalML suggested models; however, it was also
not optimal.

Using AutoKeras to search within advanced neural network architectures on the BTC-
USD dataset, we configured the auto search within 30 different models and trained for
30 epochs on each model (from its search scope) to determine its efficiency with a batch
size of 20, with the same problem configuration. The auto search concluded that the best
architecture that fits the data included the following layers:

1. Input layer;
2. Bidirectional LSTM layer;
3. Bidirectional LSTM layer;
4. Dropout layer;
5. Dense layer.

The above layers had the following hyperparameters illustrated in Table 8.
After training the resulting model for 200 epochs with the same configuration ({time_index:

Date, max_delay: 20, gap: 0, forecast_horizon: 5}) and testing it, we obtained a testing MSE of
376 on the first dataset (ETH-USD), which means higher accuracy than many of our proposed
models and higher accuracy than EvalML suggested models; however, it was also not optimal.

Sustainability 2022, 14, 15292 16 of 19

Table 8. AutoKeras BTC-USD recommended architecture.

Hyperparameter Best Value

Bidirectional True

Layer Type LSTM

Number of Hidden Layers 2

Dropout 0.2

Optimizer SGD

Learning Rate 0.001

5. Conclusions

Timeseries modeling, which forecasts future values for the time series using previous
data on the same variable, is found to have significance in data modeling. The many
cases in which it is utilized, including those involving the economy, the atmosphere,
asset prices, and capital investment data, demonstrate its significance. The efficiency of
different ML, DL, and AutoML methodologies that might be employed to solve this issue
was experimentally studied in this research concerning the data drift problem that was
challenging in previous studies. The datasets were quantitative historical timeseries data
gathered from a reliable bulletin on the prices of the cryptocurrencies Ethereum and Bitcoin.
Based on our experiments, we came to the conclusion that AutoML for timeseries is still
at the development level and necessitates further study to be a feasible approach. The
demonstrated techniques may be employed as a starting point for predicting timeseries
data with satisfying accuracy. This study did not provide an alternative AutoML pipeline
to overcome the current problems. A high-level scope experimental analysis of further
AutoML methods that tests numerous frameworks with various model selection and
optimization techniques will be part of future work. In addition, a new AutoML framework
with pipelines for timeseries forecasting will be designed and implemented to overcome the
current automated forecasting limitations. Moreover, comparative study needs to go one
step further and determine whether this difference is significant (for predictive purposes)
or simply due to the specific choice of data values in the sample, whereas depending on
performance metrics for comparing is not always sufficient. Further research can use the
Diebold–Mariano test [77] to determine whether the two forecasts are significantly different.

Author Contributions: Conceptualization, A.A. and S.; methodology, A.A. and S.; software, A.A. and
K.K.; validation, K.K.; formal analysis, A.A. and S.; investigation, K.K.; resources, S.; data curation,
S.; writing—original draft preparation, S. and K. K.; writing—review and editing, K.K. and C.I.;
visualization, C. I.; supervision, C. I. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs Data available in a publicly accessible repository that does not issue DOIs at: https://finance.
yahoo.com/quote/ETH-USD/history/?guccounter=1 (accessed on 10 August 2022), https://finance.
yahoo.com/quote/BTC-USD/history/?guccounter= (accessed on 10 August 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. De Gooijer, J.G.; Hyndman, R.J. 25 Years of IIF Time Series Forecasting: A Selective Review; Tinbergen Institute Discussion Paper,

No. 05-068/4; Tinbergen Institute: Amsterdam, The Netherlands, 2005; pp. 5–68.
2. Clements, M.P.; Franses, P.H.; Swanson, N.R. Forecasting economic and financial time-series with non-linear models. Int. J.

Forecast. 2004, 20, 169–183. [CrossRef]

https://finance.yahoo.com/quote/ETH-USD/history/?guccounter=1
https://finance.yahoo.com/quote/ETH-USD/history/?guccounter=1
https://finance.yahoo.com/quote/BTC-USD/history/?guccounter=
https://finance.yahoo.com/quote/BTC-USD/history/?guccounter=
http://doi.org/10.1016/j.ijforecast.2003.10.004

Sustainability 2022, 14, 15292 17 of 19

3. Cowpertwait, P.S.P.; Metcalfe, A. V Introductory Time Series with R; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 0387886982.
4. Parray, I.R.; Khurana, S.S.; Kumar, M.; Altalbe, A.A. Time series data analysis of stock price movement using machine learning

techniques. Soft Comput. 2020, 24, 16509–16517. [CrossRef]
5. Frick, T.; Glüge, S.; Rahimi, A.; Benini, L.; Brunschwiler, T. Explainable Deep Learning for Medical Time Series Data. In

Proceedings of the International Conference on Wireless Mobile Communication and Healthcare, Virtual Event, 18–19 December
2020; pp. 244–256.

6. Shen, Z.; Zhang, Y.; Lu, J.; Xu, J.; Xiao, G. A novel time series forecasting model with deep learning. Neurocomputing 2020,
396, 302–313. [CrossRef]

7. Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN–LSTM model for gold price time-series forecasting. Neural Comput. Appl. 2020,
32, 17351–17360. [CrossRef]

8. Du, S.; Li, T.; Yang, Y.; Horng, S.-J. Multivariate time series forecasting via attention-based encoder–decoder framework.
Neurocomputing 2020, 388, 269–279. [CrossRef]

9. Alsharef, A.; Bhuyan, P.; Ray, A. Predicting Stock Market Prices Using Fine-Tuned IndRNN. Int. J. Innov. Technol. Explor. Eng.
2020, 9, 309–315. [CrossRef]

10. Marc Claesen, B.D.M. Hyperparameter Search in Machine Learning. In Proceedings of the MIC 2015: The XI Metaheuristics
International Conference, Agadir, Morocco, 7–10 June 2015.

11. Ackerman, S.; Raz, O.; Zalmanovici, M.; Zlotnick, A. Automatically detecting data drift in machine learning classifiers. arXiv
2021, arXiv:2111.05672.

12. Ackerman, S.; Farchi, E.; Raz, O.; Zalmanovici, M.; Dube, P. Detection of data drift and outliers affecting machine learning model
performance over time. arXiv 2020, arXiv:2012.09258.

13. Rahmani, K.; Thapa, R.; Tsou, P.; Chetty, S.C.; Barnes, G.; Lam, C.; Tso, C.F. Assessing the effects of data drift on the performance
of machine learning models used in clinical sepsis prediction. medRxiv 2022. [CrossRef]

14. Fields, T.; Hsieh, G.; Chenou, J. Mitigating drift in time series data with noise augmentation. In Proceedings of the 2019 Interna-
tional Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December 2019;
pp. 227–230.

15. Tornede, T.; Tornede, A.; Wever, M.; Hüllermeier, E. Coevolution of remaining useful lifetime estimation pipelines for automated
predictive maintenance. In Proceedings of the Genetic and Evolutionary Computation Conference, Lille, France, 10–14 July 2021;
pp. 368–376.

16. Alteryx EvalML 0.36.0 Documentation. Available online: https://evalml.alteryx.com/en/stable/ (accessed on 1 August 2022).
17. Jin, H.; Song, Q.; Hu, X. Auto-keras: An efficient neural architecture search system. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1946–1956.
18. LeDell, E.; Poirier, S. H2O automl: Scalable automatic machine learning. In Proceedings of the AutoML Workshop at ICML,

Vienna, Austria, 17–18 July 2020.
19. Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a tree-based pipeline optimization tool for automating data

science. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20–24 July 2016;
pp. 485–492.

20. Hamayel, M.J.; Owda, A.Y. A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning
Algorithms. AI 2021, 2, 477–496. [CrossRef]

21. Awoke, T.; Rout, M.; Mohanty, L.; Satapathy, S.C. Bitcoin price prediction and analysis using deep learning models. In
Communication Software and Networks; Springer: Singapore, 2021; pp. 631–640.

22. Balaji, A.; Allen, A. Benchmarking automatic machine learning frameworks. arXiv 2018, arXiv:1808.06492.
23. Gijsbers, P.; LeDell, E.; Thomas, J.; Poirier, S.; Bischl, B.; Vanschoren, J. An open source AutoML benchmark. arXiv 2019,

arXiv:1907.00909.
24. Hanussek, M.; Blohm, M.; Kintz, M. Can AutoML outperform humans? An evaluation on popular OpenML datasets using

AutoML benchmark. arXiv 2020, arXiv:2009.01564.
25. Zoller, M.-A.; Huber, M.F. Benchmark and Survey of Automated Machine Learning Frameworks. arXiv 2019, arXiv:1904.12054.

[CrossRef]
26. Paldino, G.M.; De Stefani, J.; De Caro, F.; Bontempi, G. Does AutoML Outperform Naive Forecasting? Eng. Proc. 2021, 5, 36.
27. Alsharef, A.; Aggarwal, K.; Kumar, M.; Mishra, A. Review of ML and AutoML Solutions to Forecast Time-Series Data. Arch.

Comput. Methods Eng. 2022, 29, 5297–5311. [CrossRef]
28. Alsharef, A.; Sonia; Aggarawal, K. Predicting Time-Series Data Using Linear and Deep Learning Models—An Experimental

Study. In Data, Engineering and Applications; Springer: Singapore, 2022; pp. 505–516. ISBN 978-981-19-4686-8.
29. Ekambaram, V.; Manglik, K.; Mukherjee, S.; Sajja, S.S.K.; Dwivedi, S.; Raykar, V. Attention based multi-modal new product sales

time-series forecasting. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Virtual Event, 6–10 July 2020; pp. 3110–3118.

30. Karevan, Z.; Suykens, J.A.K. Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Netw.
2020, 125, 1–9. [CrossRef]

31. Durand, D.; Aguilar, J.; R-Moreno, M.D. An Analysis of the Energy Consumption Forecasting Problem in Smart Buildings Using
LSTM. Sustainability 2022, 14, 13358. [CrossRef]

http://doi.org/10.1007/s00500-020-04957-x
http://doi.org/10.1016/j.neucom.2018.12.084
http://doi.org/10.1007/s00521-020-04867-x
http://doi.org/10.1016/j.neucom.2019.12.118
http://doi.org/10.35940/ijitee.G5237.059720
http://doi.org/10.1101/2022.06.06.22276062
https://evalml.alteryx.com/en/stable/
http://doi.org/10.3390/ai2040030
http://doi.org/10.1613/jair.1.11854
http://doi.org/10.1007/s11831-022-09765-0
http://doi.org/10.1016/j.neunet.2019.12.030
http://doi.org/10.3390/su142013358

Sustainability 2022, 14, 15292 18 of 19

32. Kilinc, H.C.; Yurtsever, A. Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm
for Hydrological Time Series. Sustainability 2022, 14, 3352. [CrossRef]

33. © 2022 Yahoo Ethereum USD (ETH-USD) Price History & Historical Data-Yahoo Finance. Available online: https://finance.
yahoo.com/quote/ETH-USD/history/?guccounter=1 (accessed on 10 August 2022).

34. © 2022 Yahoo Bitcoin USD (BTC-USD) Price History & Historical Data-Yahoo Finance. Available online: https://finance.yahoo.
com/quote/BTC-USD/history/?guccounter=1 (accessed on 10 August 2022).

35. Bhuriya, D.; Kaushal, G.; Sharma, A.; Singh, U. Stock market predication using a linear regression. In Proceedings of the 2017 In-
ternational Conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 20–22 April 2017;
Volume 2, pp. 510–513.

36. Laine, M. Introduction to dynamic linear models for time series analysis. In Geodetic Time Series Analysis in Earth Sciences; Springer:
Cham, Switzerland, 2020; pp. 139–156.

37. Tseng, F.-M.; Tzeng, G.-H.; Yu, H.-C.; Yuan, B.J.C. Fuzzy ARIMA model for forecasting the foreign exchange market. Fuzzy Sets
Syst. 2001, 118, 9–19. [CrossRef]

38. Uras, N.; Marchesi, L.; Marchesi, M.; Tonelli, R. Forecasting Bitcoin closing price series using linear regression and neural
networks models. PeerJ Comput. Sci. 2020, 6, e279. [CrossRef] [PubMed]

39. Quemy, A. Two-stage optimization for machine learning workflow. Inf. Syst. 2020, 92, 101483. [CrossRef]
40. Dahl, S.M.J. TSPO: An Automl Approach to Time Series Forecasting. Master’s Thesis, Universidade Nova de Lisboa,

Lisbon, Portugal, 2020.
41. Manikantha, K.; Jain, S. Automated Machine Learning. Int. J. Adv. Res. Innov. Ideas Educ. 2021, 6, 245–281.
42. Xu, Z.; Tu, W.-W.; Guyon, I. AutoML Meets Time Series Regression Design and Analysis of the AutoSeries Challenge. In

Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Bilbao, Spain,
13–17 September 2021; pp. 36–51.

43. Wu, Q.; Wang, C. Fair AutoML. arXiv 2021, arXiv:2111.06495.
44. Wang, C.; Wu, Q.; Weimer, M.; Zhu, E. FLAML: A fast and lightweight automl library. Proc. Mach. Learn. Syst. 2021, 3, 434–447.
45. Dobre-Baron, O.; Nit,escu, A.; Nit,ă, D.; Mitran, C. Romania’s Perspectives on the Transition to the Circular Economy in an EU

Context. Sustainability 2022, 14, 5324. [CrossRef]
46. Eurostat. Available online: https://ec.europa.eu/eurostat/cache/metadata/en/cei_pc033_esmsip2.htm (accessed on

5 October 2021).
47. Khan, M.A.; Abbas, K.; Su’ud, M.M.; Salameh, A.A.; Alam, M.M.; Aman, N.; Mehreen, M.; Jan, A.; Hashim, N.A.A.B.N.; Aziz, R.C.

Application of Machine Learning Algorithms for Sustainable Business Management Based on Macro-Economic Data: Supervised
Learning Techniques Approach. Sustainability 2022, 14, 9964. [CrossRef]

48. Wang, J.; You, S.; Agyekum, E.B.; Matasane, C.; Uhunamure, S.E. Exploring the Impacts of Renewable Energy, Environmental
Regulations, and Democracy on Ecological Footprints in the Next Eleven Nations. Sustainability 2022, 14, 11909. [CrossRef]

49. Wackernagel, M.; Lin, D.; Evans, M.; Hanscom, L.; Raven, P. Defying the Footprint Oracle: Implications of Country Resource
Trends. Sustainability 2019, 11, 2164. [CrossRef]

50. Silva, A.S.A.d.; Barreto, I.D.D.C.; Cunha-Filho, M.; Menezes, R.S.C.; Stosic, B.; Stosic, T. Spatial and Temporal Variability of
Precipitation Complexity in Northeast Brazil. Sustainability 2022, 14, 13467. [CrossRef]

51. Abushandi, E.; Al Ajmi, M. Assessment of Hydrological Extremes for Arid Catchments: A Case Study in Wadi Al Jizzi, North-West
Oman. Sustainability 2022, 14, 14028. [CrossRef]

52. Abu Bakar, N.; Rosbi, S.; Bakar, N.A.; Rosbi, S. Autoregressive integrated moving average (ARIMA) model for forecasting
cryptocurrency exchange rate in high volatility environment: A new insight of bitcoin transaction. Int. J. Adv. Eng. Res. Sci. 2017,
4, 237311.

53. Li, Y.; Ma, W. Applications of artificial neural networks in financial economics: A survey. In Proceedings of the 2010 International
Symposium on Computational Intelligence and Design, Hangzhou, China, 29–31 October 2010; Volume 1, pp. 211–214.

54. Alto, V. Neural Networks: Parameters, Hyperparameters and Optimization Strategies. Available online: https://
towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5 (accessed
on 1 August 2022).

55. Bhatia, R. Data Drift: An In-Depth Understanding. Available online: https://www.linkedin.com/pulse/data-drift-in-depth-
understanding-rishabh-bhatia (accessed on 1 September 2022).

56. Hu, Y.-J.; Huang, S.-W. Challenges of automated machine learning on causal impact analytics for policy evaluation. In Proceedings
of the 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), Noida, India, 10–11 August 2017;
pp. 1–6.

57. Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Practical automated machine learning for the automl chal-
lenge 2018. In Proceedings of the International Workshop on Automatic Machine Learning at ICML, Stockholm, Sweden,
10–15 July 2018; pp. 1189–1232.

58. Mohr, F.; Wever, M.; Hüllermeier, E. ML-Plan: Automated machine learning via hierarchical planning. Mach. Learn. 2018,
107, 1495–1515. [CrossRef]

59. Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare.
Artif. Intell. Med. 2020, 104, 101822. [CrossRef] [PubMed]

http://doi.org/10.3390/su14063352
https://finance.yahoo.com/quote/ETH-USD/history/?guccounter=1
https://finance.yahoo.com/quote/ETH-USD/history/?guccounter=1
https://finance.yahoo.com/quote/BTC-USD/history/?guccounter=1
https://finance.yahoo.com/quote/BTC-USD/history/?guccounter=1
http://doi.org/10.1016/S0165-0114(98)00286-3
http://doi.org/10.7717/peerj-cs.279
http://www.ncbi.nlm.nih.gov/pubmed/33816930
http://doi.org/10.1016/j.is.2019.101483
http://doi.org/10.3390/su14095324
https://ec.europa.eu/eurostat/cache/metadata/en/cei_pc033_esmsip2.htm
http://doi.org/10.3390/su14169964
http://doi.org/10.3390/su141911909
http://doi.org/10.3390/su11072164
http://doi.org/10.3390/su142013467
http://doi.org/10.3390/su142114028
https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5
https://towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5
https://www.linkedin.com/pulse/data-drift-in-depth-understanding-rishabh-bhatia
https://www.linkedin.com/pulse/data-drift-in-depth-understanding-rishabh-bhatia
http://doi.org/10.1007/s10994-018-5735-z
http://doi.org/10.1016/j.artmed.2020.101822
http://www.ncbi.nlm.nih.gov/pubmed/32499001

Sustainability 2022, 14, 15292 19 of 19

60. Mantovani, R.G.; Horváth, T.; Cerri, R.; Vanschoren, J.; de Carvalho, A.C. Hyper-parameter tuning of a decision tree induction
algorithm. In Proceedings of the 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), Recife, Brazil, 9–12 October 2016;
pp. 37–42.

61. Melis, G.; Dyer, C.; Blunsom, P. On the state of the art of evaluation in neural language models. arXiv 2017, arXiv:1707.05589.
62. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process.

Syst. 2012, 25, 2951–2959. [CrossRef]
63. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
64. Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. Autogluon-tabular: Robust and accurate automl for

structured data. arXiv 2020, arXiv:2003.06505.
65. Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA: Automatic model selection and hyperparameter

optimization in WEKA. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 81–95.
66. Zimmer, L.; Lindauer, M.; Hutter, F. Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. IEEE Trans.

Pattern Anal. Mach. Intell. 2021, 43, 3079–3090. [CrossRef] [PubMed]
67. He, Y.; Fataliyev, K.; Wang, L. Feature selection for stock market analysis. In Proceedings of the International Conference on

Neural Information Processing, Daegu, Korea, 3–7 November 2013; pp. 737–744.
68. Momani, P.; Naill, P.E. Time series analysis model for rainfall data in Jordan: Case study for using time series analysis. Am. J.

Environ. Sci. 2009, 5, 599. [CrossRef]
69. Adhikari, R.; Agrawal, R.K. An introductory study on time series modeling and forecasting. arXiv 2013, arXiv:1302.6613.
70. Idrees, S.M.; Alam, M.A.; Agarwal, P. A prediction approach for stock market volatility based on time series data. IEEE Access

2019, 7, 17287–17298. [CrossRef]
71. Oancea, B. Linear regression with r and hadoop. Challenges Knowl. Soc. 2015, 1007–1012. Available online: https://scholar.archive.org/

work/46m3utxrpfhnlc4ssehtrpoyue/access/wayback/http://cks.univnt.ro/uploads/cks_2015_articles/index.php?dir=12_IT_in_
social_sciences%2F&download=CKS+2015_IT_in_social_sciences_art.144.pdf (accessed on 4 November 2022).

72. Zhang, M. Time Series: Autoregressive Models AR, MA, ARMA, ARIMA; University of Pittsburgh: Pittsburgh, PA, USA, 2018.
73. Kedem, B.; Fokianos, K. Regression Models for Time Series Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 0471461687.
74. Shah, S. Comparison of Stochastic Forecasting Models. 2021. Available online: https://doi.org/10.31219/osf.io/7fepu (accessed

on 4 November 2022).
75. Chakraborty, D.; Ghosh, S.; Ghosh, A. Autoencoder based Hybrid Multi-Task Predictor Network for Daily Open-High-Low-Close

Prices Prediction of Indian Stocks. arXiv 2022, arXiv:2204.13422.
76. EvalML Data Checks. Available online: https://evalml.alteryx.com/en/stable/user_guide/data_checks.html (accessed on

10 August 2022).
77. Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [CrossRef]

http://doi.org/10.48550/arXiv.1206.2944
http://doi.org/10.1109/TPAMI.2021.3067763
http://www.ncbi.nlm.nih.gov/pubmed/33750687
http://doi.org/10.3844/ajessp.2009.599.604
http://doi.org/10.1109/ACCESS.2019.2895252
https://scholar.archive.org/work/46m3utxrpfhnlc4ssehtrpoyue/access/wayback/http://cks.univnt.ro/uploads/cks_2015_articles/index.php?dir=12_IT_in_social_sciences%2F&download=CKS+2015_IT_in_social_sciences_art.144.pdf
https://scholar.archive.org/work/46m3utxrpfhnlc4ssehtrpoyue/access/wayback/http://cks.univnt.ro/uploads/cks_2015_articles/index.php?dir=12_IT_in_social_sciences%2F&download=CKS+2015_IT_in_social_sciences_art.144.pdf
https://scholar.archive.org/work/46m3utxrpfhnlc4ssehtrpoyue/access/wayback/http://cks.univnt.ro/uploads/cks_2015_articles/index.php?dir=12_IT_in_social_sciences%2F&download=CKS+2015_IT_in_social_sciences_art.144.pdf
https://doi.org/10.31219/osf.io/7fepu
https://evalml.alteryx.com/en/stable/user_guide/data_checks.html
http://doi.org/10.1198/073500102753410444

	Introduction
	Literature Review
	TimeSeries Forecasting
	Machine Learning
	Data Drift Problem
	Automated Machine Learning

	Experimental Work
	Data and Pre-Processing
	Data Collection
	Data Visualization
	Data Pre-Processing

	Methodology
	Machine Learning
	AutoML

	Result Analysis
	Machine Learning
	EvalML
	AutoKeras

	Conclusions
	References

