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Abstract: Coronavirus disease 2019 (COVID-19) has been spreading rapidly and is still threatening
human health currently. A series of measures for restraining epidemic spreading has been adopted
throughout the world, which seriously impacted the gross domestic product (GDP) globally. However,
details of the changes in the GDP and its spatial heterogeneity characteristics on a fine scale worldwide
during the pandemic are still uncertain. We designed a novel scheme to simulate a 0.1◦ × 0.1◦

resolution grid global GDP map during the COVID-19 pandemic. Simulated nighttime-light remotely
sensed data (SNTL) was forecasted via a GM(1, 1) model under the assumption that there was no
COVID-19 epidemic in 2020. We constructed a geographically weighted regression (GWR) model
to determine the quantitative relationship between the variation of nighttime light (∆NTL) and the
variation of GDP (∆GDP). The scheme can detect and explain the spatial heterogeneity of ∆GDP at
the grid scale. It is found that a series of policies played an obvious role in affecting GDP. This work
demonstrated that the global GDP, except for in a few countries, represented a remarkably decreasing
trend, whereas the ∆GDP exhibited significant differences.

Keywords: GDP prediction; GM(1, 1); GWR; NPP-VIIRS; COVID-19

1. Introduction

Since Coronavirus Disease 2019 (COVID-19) first broke out, it has infected more than
435 million people [1] and caused millions of deaths globally [2]. As the disease has severely
threatened public health, serious restrictions for preventing the spread of COVID-19 have
been adopted worldwide [3], which provides a rare opportunity for exploring how a global
public health emergency could impact the environment and economy [4].

It is confirmed that the pandemic has posed significant impacts on anthropic emis-
sions and atmospheric environment quality [5,6], ecology [7,8], and the global economy [9].
Firstly, reduced anthropogenic emissions and decreased aerosol optical depth (AOD) was
proven due to restrictions on anthropic activities during the COVID-19 epidemic [5,7].
Meanwhile, population-weighted mean PM2.5 (particulate matter smaller than 2.5 µm)
concentrations were proven to decrease by 11 to 15 µg/m3 during the lockdown in China,
Europe, and North America in 2020 compared with the corresponding time in 2018 to
2019 largely owing to a series of transportation restriction measures [10]. Secondly, de-
creasing human activities during the pandemic generated obvious effects on the ecological
environment worldwide. Specifically, COVID-19 restrictions led to an earlier, greener,
and brighter spring season in China in 2020, which further suggested that reductions in
human activities generated significant effects on the ecological environment [7]. Although
economic development was seriously influenced due to restrictions on human activities,
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biodiversity received benefits to some extent [11]. For example, marine animals started
to roam more frequently than ever before owing to reductions in marine traffic and noise
deduction. Some unusual animals were found in urban environments because of the
decreased interference of humans.

Thirdly, the global economy was remarkably affected due to the COVID-19 epidemic.
Previous studies estimated the pandemic posed negative effects on economic development.
The impact of the epidemic on the gross domestic product (GDP) was much stronger
than that of the financial crisis in 2008; the world economic growth rate has slowed from
an average of 4.63% (2000–2007) to an average of 3.4% (2008–2018). The International
Monetary Fund (IMF) reported that global economic growth has dropped from 2.8%
in 2019 to −3.3% in 2020 due to the COVID-19 pandemic [12]. Countries all over the
world have implemented control measures such as lockdowns that strongly restrict human
activities, which account for the slowing in economic development globally [5]. The GDP
of Europe in 2020 decreased by −5.8% compared with the previous year 2019, following
North America by−4.1%, and Asia and the Pacific by−1.3%, respectively [8]. Additionally,
one published paper indicated that lockdowns of longer duration posed negative effects on
GDP growth. This finding demonstrated a systematic deterioration of the economic system
owing to containment policies based on a longer duration of lockdown in society [13].
Moreover, mobility declined significantly both for long-distance air travel and for surface
transportation [8]. In addition, about 90–150 million people could fall into extreme poverty
because of the pandemic [14]. Food shortage and poverty phenomena have occurred
because of the decrease in agricultural products, the shortages of labor, and deductions of
incomes, which may increase the risks of food security and inadequate nutrition [9].

GDP is a significant metric to assess the economic situation and development status
of a country or region [13]. As an important aspect, the impacts of COVID-19 on the
GDP at the regional scale have been explored. However, the precision was inadequate to
indicate the spatial heterogeneity of the GDP variations on a global scale [15], and assessing
this at the grid scale due to the pandemic is still a big challenge [16]. The traditional
GDP estimation methods are, on the one hand, severely restricted by spatiotemporal
resolution, effectiveness, and finance consumption, and on the other hand, easily affected
by human opinion, which thus has difficult to use on a global scale. For example, plenty of
algorithms have been implemented to evaluate more precise GDP previously, including
the cash-demand method [17], the consumer expenditure method [18], and the multiple
indicators/multiple cause (MIMIC) algorithm [17]. The Difference-in-Differences technique
was widely used to detect the policy effects on GDP, but it can hardly be utilized to infer
GDP variations at a grid scale [19]. Fortunately, the geographically weighted regression
(GWR) model has been proven to be effective in solving local modeling and estimating
social-economic parameters at the grid scale [20].

Recently, remotely sensed technology has been widely used to monitor human activi-
ties and the physical environment dynamic [21]. Specifically, remotely sensed technology
largely supports scientists in studying environmental and socioeconomic issues at global
or regional scales with swift responses [22]. For example, the ability of nighttime light
(NTL) images in estimating socioeconomic parameters has been proven, which supplies a
novel perspective for reflecting human activities. NTL images are adaptable for inferring
GDP, population [23], electricity consumption, greenhouse gas emissions, poverty, and
urbanization [24]. Additionally, NTL images have been successfully used to address some
unusual issues, such as war [25], natural disasters [26], large-scale power outages [27],
fishing activities [28], light pollution [29], and human physiological and psychological
health [30], etc. Currently, the NTL data have also been introduced to detect human mobil-
ity and economic activities during the period of COVID-19 in 2020 [31,32]. For instance, the
change trends of NTL probably generated by changes in human activities due to restrictions
during pandemics have been captured by nighttime-light remotely sensed technology. The
change detection for the NTL value was conducted via comparisons between epidemic
periods and corresponding periods of the previous year. The NTL indicated lights in China,
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Morocco, and India were dimming during the COVID-19 pandemic period accounting
for the lockdown measures adopted by the governments [31,32]. Obviously, previous
studies confirmed that the artificial light changing trend can be effectively detected using
nighttime-light remotely sensed satellites [33]. NTL can be selected as a trustworthy proxy
to monitor the decline and recovery in economic activities and to further understand the
impact of the COVID-19 epidemic on human activities and the economy [34]. The variation
in NTL was indirectly used to reflect variation in GDP during the COVID-19 pandemic
previously [31,34]. For example, the comparison of NTL images from before and after
the outbreak of COVID-19 has been conducted, and the variation in NTL was used to
qualitatively approximatively describe the variation in GDP during the COVID-19 pan-
demic [33,34]. However, previous studies ignored the natural economic growth of human
societies that would have occurred if there had been no COVID-19 pandemic in 2020, and
the quantitative estimation of GDP variation globally during the COVID-19 pandemic has
never been considered to date.

To address the above issues, the present study aims (1) to obtain simulated NTL (SNTL)
images via a GM(1, 1) model under the assumption that there was no COVID-19 epidemic
in 2020, (2) to calculate the deviation (∆NTL) between observed actual NTL (ANTL) and
the SNTL using ArcGIS10.0, and (3) to determine the quantitative relationship between
∆NTL and the variation of GDP(∆GDP) via the geographically weighted regression (GWR)
model and map the ∆GDP at a 0.1◦ × 0.1◦ scale globally in 2020.

2. Materials and Methods
2.1. Study Areas

One hundred and fifty-one major countries globally were selected as study areas in
the current work (Figure 1). Other countries were excluded because statistics or COVID-19
infection data were not available or not consistent. Countries with ambiguous COVID-19
statistics and small GDP totals were excluded from consideration in this study. After data
screening, 151 countries were finally retained as the study area.
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Figure 1. The map of the COVID-19 infection rate by January 2021 globally. Note: the COVID-19
infection rate was calculated by dividing the total COVID-19 infection cases by the total population.

2.2. Data Source and Preprocessing

National demographics population data from 2020 were merged from the IMF and
the United Nations Department of Economic and Social Affairs (UN DESA). Similarly, pop-
ulation data were also pretreated by screening and comparison for keeping the correctness
for each country in 2020.

The country boundary file, with the WGS-84 coordinate system, was obtained from
the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of
Sciences (Table 1). One hundred and fifty-one country boundaries were consistent with the
above datasets.



Sustainability 2022, 14, 15201 4 of 21

Table 1. Data sources and descriptions.

Data Sorts Data Description Study Duration

NPP/VIIRS NTL imagery NPP/VIIRS monthly images 2013–2020
Population The population is presented in thousands 2020

COVID-19 epidemic-related data Cumulative cases and deaths of each country 2020
GDP, current prices Billions of U.S. dollars 2013–2020

Country boundary file Shape format 2015

2.3. Methods

To quickly and accurately assess GDP changes in the face of the COVID-19 pandemic,
nightlight remote sensing images were selected as a proxy to infer GDP globally. The
workflow of this study was shown as follows (Figure 2). Firstly, we conducted data
preparation for further model fitting and mapping. Secondly, SNTL was predicted via a
GM(1, 1) model using global NTL images from 2013 to 2019 under the assumption that
there was no COVID-19 pandemic in 2020. Thirdly, the ∆NTL image was determined by
the ANTL image, deducting the SNTL image from 2020. Then, the total ∆NTL values of
NTL remotely sensed data at the country scale were summarized using the zonal statistics
tool ArcGIS 10.0. Similarly, the ∆GDP data at the country scale were calculated by the
actual GDP (GDPa) data obtained from the IMF, deducting the predicted GDP (GDPf) data
forecasted by the IMF for 2020. Furthermore, GWR was introduced for calibrating ∆GDP at
the national scale. The performance of the GWR model was evaluated by cross-validation
on the national scale. Finally, the GWR model was downscaled for mapping the ∆GDP at
the grid scale globally, and the spatial distribution features of the ∆GDP were indicated.
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2.3.1. Simulating the NTL Image

Professor Julong Deng proposed the Grey System Theory (GST) in the 1980s, and
GM(1, 1) is one of the most important models of the GST [35]. The GM(1, 1) model for
solving grey forecasting issues, with a compatible model group including differential, dif-
ference, and exponential models, has been widely used in addressing uncertain issues [36].
Published papers have proved that the GM(1, 1) model can be used in dealing with grey
forecasting issues, and the reliability of the GM(1, 1) model is accepted in addressing
uncertain problems [35,37].
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The NTL was significantly affected by the COVID-19 pandemic which was a classic
uncertain issue and can be simulated by the GM(1, 1) model. Therefore, the GM(1, 1)
model was introduced to simulate NTL under the assumption of no epidemic spreading in
2020. Before simulating the NTL image of 2020, the performance of the GM(1, 1) model
in simulating the NTL image in 2019 based on the NTL image from 2013 to 2018 was
validated by the actual NTL image from 2019 via the coefficient of determination (R2), the
root mean square error (RMSE), and the Mean Absolute Error (MAE). Cross-validation
was conducted as follows. Firstly, we used NTL images from the years 2013–2018 to fit
the GM(1, 1) model for predicting NTL images of the year 2019 (SNTL). Secondly, cross-
validation was conducted between the SNTL of the year 2019 and actual NTL images from
the year 2019 on both national scales and grid scales. Finally, the SNTL image for 2020
under the assumption of no COVID-19 pandemic was obtained by GM(1, 1). The steps of
the GM(1, 1) model are shown as follows:

(1) Set all NTL images from 2013 to 2019 as the original sequence with respect to time:

X(0) = (x(0)1 , x(0)2 , . . . , x(0)n ) (1)

where X(0) represents the original sequence and x(0)i represents the NTL image in a specific
year i; i is from 1 to 8 in the current study.

(2) 1-AGO (Accumulated Generating Operation) was performed to the original se-
quence X(0) for a regular sequence X(1) below:

X(1) = (x(1)1 , x(1)2 , . . . , x(1)n ) (2)

where x(1)k was determined as follows:

x(1)k = ∑k
i=1 x(0)i , k = i, 2, . . . , n (3)

where x(1)k denotes the elements in the regular sequence; k is from 1 to 8 in the current study.
(3) The sequence of mean generation of consecutive neighbors Z(1) was calculated

from X(1):
Z(1) = (z(1)2 , z(1)3 , . . . , z(1)n ) (4)

z(1)k = 0.5x(1)k−1 + 0.5x(1)k , k = 2, 3 . . . , n (5)

where Z(1) denotes the sequence of consecutive neighbors of the AGO sequence X(1). z(1)k
denotes the elements in the sequence of consecutive neighbors.

(4) So, GM(1, 1) is defined below:

x(0)k + az(1)k = b (6)

where the definition of x(0)k and z(1)k are the same as (1) and (5), and a and b are the
development coefficient and the ash effect, respectively. a and b in Equation (6) were
determined via a least square estimate as follows.

If â = (a, b)T is the parameter of the GM(1, 1) model, and:

B =


− 1

2 (x(1)1 + x(1)2 ) 1
− 1

2 (x(1)2 + x(1)3 ) 1
...

...
− 1

2 (x(1)n−1 + x(1)n ) 1

, Y =


x(0)2

x(0)3
...

x(0)n

 (7)

Y = Bâ (8)
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where B and Y denote the independent variable matrix and dependent variable matrix of
formula (8), respectively, â denotes the column vector of [a, b].

â = (a, b)T =
(

BT × B
)−1

BTY (9)

(5) The following equation:

dx(1)

dt
+ ax(1) = b (10)

where Equation (10) is named as the whitenization function, dx(1)
dt is the derivative of a

continuous function.
(6) The solution of Equation (10):

x(1)t =

(
x(1)1 −

b
a

)
e−at +

b
a

(11)

where Equation (11) is named as a time-response function, and t and e denote the continuous
variable and the Euler number, respectively.

(7) The corresponding sequence:

x̂(1)k+1 =

(
x(0)1 −

b
a

)
e−ak +

b
a

, k = 1, 2, . . . , n (12)

where Equation (12) is named as the time-response sequence, and x̂(1)k+1 denotes the elements
in the corresponding sequence.

Then, the simulated NTL image from Equation (11) was calculated below:

x̂(0)k+1 = x̂(1)k+1 − x̂(1)k (13)

where x̂(0)k+1 represents the SNTL in 2020.

2.3.2. Calculating ∆GDP and ∆NTL

∆GDP was selected to describe the variation of GDP due to the COVID-19 pandemic.
One hypothesis must be indicated that the change of GDP in 2020 was mainly caused
by the pandemic, and other possible impact factors were neglected in the present study
(Equation (14)).

∆GDP = GDPa −GDPf (14)

where ∆GDP represents the variation of GDP at the national scale in 2020. Both GDPa and
GDPf were obtained from the IMF, and represent the observed actual GDP and forecasted
GDP in 2020, respectively.

∆NTL was chosen to reflect the dynamic of anthropic activities owing to COVID-19 in
2020 (Equation (15)).

∆NTL = ANTL− SNTL (15)

where ∆NTL represents the deduction between the ANTL and the SNTL in 2020.

2.3.3. Calculating ∆NTLTotal

The ∆NTLTotal describes the total radiance brightness of ∆NTL. The ∆NTLTotal denotes
the total ∆NTL value that was measured by the zonal statistic of ArcGIS 10.0 in each
country. ∆NTLTotal is also selected as the independent variable for GWR modeling in
Section 2.3.4. [38,39].

∆NTLTotal = ∑DNmax
i=T (ni × DNi) (16)
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where DNi and ni represent each cell value and the number of cells with the i cell value in
a political division, respectively. DNmax and T are the maximum and minimum cell values
in a political division, respectively.

2.3.4. Fitting GWR Model

The GWR model improves on the ordinary least squares (OLS) regression model by
incorporating spatial variation into the coefficient estimation of the explanatory variables
in regression models. This study used the GWR model to construct the quantitative
relationship between ∆NTL and ∆GDP, which enables us to reveal the spatial heterogeneity
of the relationship between ∆NTL and ∆GDP. The GWR model was fitted using ∆GDP in
Equation (14) and ∆NTL data in Equation (15) (Equation (17)) [20].

∆GDPi = β1(ui ,vi)
+ β2(ui ,vi)

·∆NTLTotal + εi (17)

where ∆GDPi is the value of ∆GDP simulated by the GWR model in county i, the definition
of ∆NTLTotal being the same as in Equation (16); β1 denotes the intercepts at a specific
location (ui, vi); and β2 is the location-specific slope. The location (ui, vi) represents the
central coordinates of a specific country; εi is the bias term for county i (i from 1 to 151).
Several statistical indicators including R2, RMSE, and MAE were used to assess model
precision. The expression of the above indicators was not stated due to limited space.

2.3.5. Spatial Distribution Characteristics of ∆GDP′

Equations (18) and (19) were used to correct the ∆GDP′ downscaled by Equation (17)
on a 0.1◦ × 0.1◦ grid scale globally [38,39].

∆GDP′ = ∆GDPj ×
∆GDP
∆GDPi

(18)

where ∆GDP′ denotes the value of ∆GDPj after correction on the j grid and i political
region; ∆GDPj denotes the value of ∆GDP simulated by GWR on the j grid; the definitions
of ∆GDP and ∆GDPi are the same as in Equations (14) and (17), respectively.

Although Equation (18) can significantly correct the bias of ∆GDP′ on a grid scale,
the relationship between ∆GDP and ∆NTL was ignored. Thus, this study introduces a
normalization coefficient as a weight to adjust the ∆GDP′. The final ∆GDP′ map was
determined by ∆GDP′ multiplying Xnorm.

Xnorm =
Xi − Xmin

Xmax − Xmin
(19)

where Xi represents DN value of ∆NTL on the i grid; Xmax and Xmin represent the max-
imum and the minimum DN values of the ∆NTL, respectively. Xnorm represents the
normalization coefficient of ∆NTL (Xnorm ∈ [0, 1]).

3. Results
3.1. Evaluating GM(1, 1) Model Performance

The performance of the GM(1, 1) model in predicting the NTL image for 2019 was
evaluated by cross-validation using three criteria, namely the R2, the RMSE, and the MAE
on national scales and grid scales (Figure 3). It is observed that the model has a better
performance at national scales (R2 = 0.9979, RMSE = 336.4794, MAE = 139.7872) than at
grid scales (R2 = 0.7598, RMSE = 0.8311, MAE = 0.0380).
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3.2. Calculating ∆NTL Image by ANTL and SNTL

The NTL in the majority of regions decreased globally. The ANTL brightness in 2020
decreased by 8.28% compared with the SNTL in 2020 simulated under the assumption of
there being no COVID-19 pandemic. The NTL of major economies across six continents was
significantly affected by the COVID-19 pandemic except for Antarctica and other minority
regions (Figure 4A).
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For China, the overall brightness of NTL decreased by 5.19%, and the regions with
brightness increasing account for 44.56%, whereas those with decreasing brightness account
for 55.44% (Table 2). The remarkable differences in the ∆NTL were divided by the Hu
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line [40]. The NTL variations were mainly distributed east of the Hu line, whereas the NTL
changes west of the Hu line were relatively subtle, especially in Tibet and Qinghai.

Table 2. Statistics for ∆NTL affected by the COVID-19 pandemic.

Location Total NTL Grids Grids and Proportion
of the NTL Increased

Grids and Proportion of
the NTL Decreased ∆NTL (Percentage)

China 9006 4013 (44.56%) 4933 (55.44%) −5.19%
United States 18,980 5828 (30.71%) 13,152 (69.29%) −2.51%

Japan 1051 211 (20.08%) 840 (79.92%) −9.97%
India 11,731 3580 (30.52%) 8151 (69.48%) −10.13%

Europe 19,413 5322 (24.41%) 14,091 (75.59%) −11.39%

For India, the overall brightness of NTL decreased by 10.13%, and the regions with
brightness increasing account for 30.52%, whereas those with decreasing brightness account
for 69.48% (Table 2). The areas where brightness was severely decreased were mainly
distributed in the interior of northern India (Uttar Pradesh, Bihar, and West Bengal) and the
western coastal areas (west of Maharashtra). In the south (Tamil Nadu), northwest (parts of
Punjab and Rajasthan), and central inland area (northern Andhra Pradesh), the decreased
brightness level was relatively moderate.

For the United States, the overall brightness of NTL decreased by 2.51%. The regions
with a brightness increase account for 30.71% whereas those with a decrease account for
69.29% (Table 2). The areas with severely decreased brightness were mainly located in
the eastern part of the United States, and some western regions also exhibited decreased
brightness trends (Figure 4A). Clearly, the majority region of the United States represented
decreased NTL trends, especially in the eastern areas, whereas some regions, including the
Boston-Washington urban agglomeration on the east coast, the San Diego-San Francisco
urban agglomeration on the west coast, the Chicago-Pittsburgh urban agglomeration on
the coast of the Great Lakes in the north, and the central urban agglomeration, exhibited
increased NTL features (Kansas City, Dallas-Fort Worth urban agglomeration). Interestingly,
although the NTL radiance in the periphery of the urban agglomeration was decreased, the
NTL radiance in the inner area of these urban agglomerations was increased.

For Japan, the overall brightness of NTL decreased by 9.97%. The regions with
increased NTL radiance account for 20.08% and those with decreased radiance account
for 79.92% (Table 2). The areas with decreased radiance were mainly located on Kyushu
Island, Shikoku Island, Honshu Island, and Hokkaido (Figure 4A). For example, the NTL
radiance of the three major urban agglomerations on the island of Honshu, including
the Tokyo urban agglomeration, the Osaka urban agglomeration, and the Nagoya urban
agglomeration, mainly presented decreased brightness characteristics. In contrast, a few
areas on the fringe of the Osaka urban agglomeration and the Nagoya urban agglomeration
represented increased brightness trends (Figure 4A).

For Europe, the NTL brightness decreased by 11.39%. The areas with increased NTL ra-
diance account for 24.41% whereas the decreased radiance areas account for 75.59% (Table 2).
The NTL radiance of main urban areas in Northern Europe, Eastern Europe, and Central
Europe was mainly decreased except for some Western European and Mediterranean
coastal cities such as London in the United Kingdom and Madrid in Spain (Figure 4A).

The NTL in South America and Africa decreased by 4.44% and 8.35%, respectively
(Figure 4A), whereas the overall decreased trends were not as pronounced as in the above-
mentioned parts of the world.

3.3. Calibrating and Mapping ∆GDP

Cross-validation was introduced to evaluate the precision of the GWR model using
R2, RMSE, and MAE, respectively. Clearly, there is a significant positive linear correlation
between ∆NTL and ∆GDP at the national scale, and the R2, RMSE, and MAE were 0.7735,
66.2612 (billions of USD), and 31.6523 (billions of USD), respectively (Figure 5a). Meanwhile,
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the actual ∆GDP obtained from the International Monetary Fund (IMF) was used to validate
the predicted ∆GDP calibrated by the GWR model. The results showed the precision was
acceptable with R2 = 0.6707, RMSE = 105.1068, and MAE = 28.5157, respectively (Figure 5b).
Moreover, the t-test was conducted to verify the difference between actual ∆GDP and
predicted ∆GDP (Table 3), and the results of the t-test are presented in the Appendix A
(Tables A1 and A2).
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Table 3. Paired Samples Statistics.

Pair 1 Mean N Std. Deviation Std. Error Mean

∆GDP −40.74895810 151 139.553830153 11.356729636
∆GDPi −39.43238498 151 120.223505126 9.783650094

3.4. Determining the ∆GDP by the GWR Model

The ∆GDP demonstrated decreased trends in most regions all over the world during
the COVID-19 pandemic, and the world economy has been seriously affected and has fallen
into stagnation and recession (Figure 4B).

For China, the GDP decreased by 3.36%, and the areas with increased GDP account for
36.31% but the areas with a decrease account for 63.69% (Table 4). The significant differences
of the ∆GDP could also be divided by the Hu line. The GDP changes mainly accumulated
east of the Hu line, whereas west of the Hu Line, the ∆GDP was not remarkable, especially
in Tibet and Qinghai. Specifically, the main GDP reduction areas were distributed in the
north of China, the central part of China especially Hubei province, and the eastern part of
China (Figure A1 (China, d–f)). In contrast, three main urban agglomerations including
the Beijing-Tianjin-Hebei, the Yangtze River Delta, and the Pearl River Delta represented
features of sporadically increased GDP (Figure A1 (China, a–c)).

Table 4. The variation of GDP due to the COVID-19 pandemic.

Location Area with Increased GDP
(Grids and Proportion)

Area with Decreased GDP
(Grids and Proportion)

Total GDP Change
(Billions of USD)

Total GDP Change
(Percentage)

China 3272 (36.31%) 5739 (63.69%) −548.50 −3.36%
United States 5870 (30.90%) 13,125 (69.1%) −1389.01 −6.22%

Japan 24 (2.28%) 1027 (97.72%) −364.362 −6.73%
India 3258 (27.76%) 8478 (72.24%) −493.41 −15.41%

Europe 2057 (10.88%) 16,844 (89.12%) −1117.02 −5.09%

For India, the GDP reduced by −15.41%, and the areas with increased GDP account
for 27.76% but the areas with a decrease account for 72.24% (Table 4). The significant
GDP reduction areas were mainly located in the interior of northern India (Uttar Pradesh,
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Bihar, West Bengal) and the western coastal areas (west of Maharashtra). In the south
(Tamil Nadu), northwest (parts of Punjab and Rajasthan), and central inland area (northern
Andhra Pradesh), the decrease level was relatively moderate (Figure A1 (India, d–f)). In
contrast, partial regions of India demonstrated increased trends, including the rural areas
of the northwest and west of New Delhi, and the rural areas of central and south India such
as Chennai, Mumbai, New Delhi, etc. (Figure A1 (India, a–c)).

For the United States, the GDP decreased by 6.22%. The areas with increased GDP
account for 30.90% and the areas with a decrease account for 69.1% (Table 4). Although
parts of western regions such as Salt Lake City, Seattle, and Meridian represented decreased
GDP trends, the majority of areas showing a decrease were distributed in the eastern part of
the country (Figure A1 (United States)). In contrast, some urban agglomerations including
Boston-Washington on the east coast, San Diego-San Francisco on the west coast, and
Chicago-Pittsburgh on the coast of the Great Lakes in the north exhibited increased GDP
features (Figure A1 (United States, a,c,d,f)).

For Japan, the GDP decreased by 6.73%. The areas with increased GDP account for
2.28% and the areas showing a decrease account for 97.72% (Table 4). Clearly, the de-
creased GDP trends were the prominent characteristic of the entire country (Figure A2
(Japan, e)). The sporadic increased GDP areas were mainly distributed in the major ur-
ban agglomerations such as Tokyo, Osaka, Nagoya, Sapporo, and Fukuoka (Figure A2
(Japan, a–d,f)).

For Europe, the GDP decreased by 5.09%. The increased GDP areas account for
10.88% whereas the decreased GDP areas account for 89.12% (Table 4). Even though a few
countries such as Ireland and some European cities including London, Birmingham, and
Madrid had increased GDP, the decreased GDP trends were the dominant characteristic
across the entirety of Europe. The GDP in the metropolitan areas of Europe such as Paris,
Berlin, Moscow, St. Petersburg, and Warsaw showed slightly increasing trends (Figure A2
(Europe, a–f)).

For South America, GDP decreased by 9.8%. The decrease happened in the majority
of regions except for Porto Alegre and São Paulo in Brazil, and Asuncion, the capital
of Paraguay.

For Africa, GDP decreased by 3.23%. Further observations showed that the GDP in
the south of the Sahara decreased except for Pretoria in South Africa. In contrast, the GDP
of Egypt demonstrated increasing trends (Figure 4B).

4. Discussion
4.1. Evaluation of GM(1, 1) in Predicting NTL Image

Earth’s artificially lit outdoor area increased by 2.2% from 2012 to 2016, with a total
radiance growth of 1.8% yearly. Overall, the radiance of regions lit higher than 5 nw/cm/sr
grew by 1.8% yearly globally [41]. Specifically, some of the world’s brightest regions, such
as Italy, Netherlands, Spain, and the United States were relatively stable. In addition, some
developing countries including South America, Africa, and Asia revealed an increasing
trend in nighttime lights [42]. In contrast, a small number of countries such as Yemen and
Syria are experiencing warfare, which led to a decreasing trend in nighttime lights [25].
Obviously, the NTL exhibits a relatively stable changing trend according to the above
literature. Meanwhile, the NTL was remarkably influenced by the pandemic which can be
regarded as a grey system [35]. Therefore, the GM(1, 1) model is suitable for simulating
NTL under the assumption of no epidemic.

Obviously, the performance of GM(1, 1) in predicting the NTL in 2019 at the national
scale is better than on the grid scale according to the present study. The possible reasons are
analyzed and listed below. The relative lower precision at the grid scale is mainly because
each pixel may have a slight positive or negative bias through the predicted process and
these biases were simultaneously summarized once. The lower precision may be generated
by the accumulation of biases [35]. Positive and negative biases are offset resulting in a
higher precision at the country scale. Therefore, using the global NTL images from 2013 to
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2019 combined with the GM(1, 1) model to simulate the NTL image assuming that there
was no pandemic in 2020 is reliable in the present study.

4.2. Variation Characteristics of Global GDP

It is widely known that 94% of the population and 96% of the GDP of China is mainly
distributed east of the Hu line [40,43]. Although the area west of the Hu line of China
accounts for 44% of the area of China, the population and GDP only account for 6%
and 4%. Therefore, the GDP variations east of the Hu line are more significant on the
west side. Additionally, COVID-19 broke out in December 2019, which overlapped with
the Lunar New Year holiday [43], which led to human and economic activities in urban
areas representing a decreasing trend because plenty of urban residents returned to their
hometowns to celebrate the Lunar New Year [7,33]. Meanwhile, a first-level public health
emergency response was carried out by several provinces in China and a series of social
and economic activities were suspended on 23 January 2020 to prevent the spread of the
pandemic, which seriously affected GDP and led to a significant GDP reduction in the
northern, central, and eastern parts of China. The GDP of Hubei province suffered the most
serious influence due to the tough restrictions implemented by the local authorities [34].

In India, the situations were similar, and the lockdown suspended industries, the traffic
system, and normal work routines [44]. The differences lie in the urbanization rate, which is
only 34.93%. This means a larger population lives in rural areas when compared with China.
It was reported that the NTL brightness significantly increased in the surrounding areas of
Delhi, Mumbai, and Kolkata after the lockdown, possibly because of the urban residents’
return to their hometowns [32]. Thus, areas with decreasing GDP were mainly distributed
within the cities, whereas regions with increasing GDP were located in suburban areas.
Moreover, economic activities in northern India (Uttar Pradesh, Bihar) and northeastern
India (West Bengal) far from urban agglomerations were seriously affected by the pandemic
during the national lockdown. Hence, GDP in most of the north and northeast of India has
suffered a serious decrease (Figures 4B and A1).

For the United States, travel from China was restrained on 30 January 2020, and then
a series of restrictions was implemented for preventing the rapid increase in COVID-19
cases, including social distancing orders, shelter-in-place orders, school closures, and travel
restrictions. These restrictions led to a sharp decrease in human activities [45]. Interestingly,
the GDP of the inner area in the urban agglomeration increased but in the surrounding
areas it decreased during the spreading of COVID-19. The possible reasons were as
follows. Firstly, the urbanization rate of the United States is up to 82.66% and a larger
population lives in cities [46]. The NTL of the United States demonstrated that the majority
of people who live in urban areas did not move to suburban areas for shelter. Secondly, the
attitude toward COVID-19 of the residents in the United States was completely different
from that in Asia and the policies implemented by the local authorities were relatively
flexible. Therefore, the main industries, even though they were affected, were still running
during the pandemic. In contrast, GDP in the vast western and eastern inland areas was
greatly reduced which was in line with the decreasing trends of NTL radiance obtained
by Section 3.2 of this study. The capacity for reduction in risks from phenomena such as
pandemics in small and medium cities in the U.S. was significantly weaker than in urban
agglomerations [43].

In contrast, most European countries started a lockdown policy at the end of March
2020, and Japan did so in mid-April 2020. During the national lockdown, nearly all indus-
trial activities were suspended in these countries, thus that the economy suffered a serious
hit during the epidemic. NTL and GDP decreased in Europe and Japan due to lockdown
restrictions. The highly industrialized open economies of Japan and most European coun-
tries, occupying the high end of the international value chain and having a high degree of
external dependence, were susceptible to suffering a huge shock owing to the spreading of
the pandemic infection globally [47]. The urbanization rate of Japan and Europe is about
93.02% and 72.54%, respectively. Although people stayed at home and refrained from
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non-essential travel, the regional economic resilience was low and the economy suffered a
serious influence owing to the limited resources during the lockdown [43].

4.3. The Relationship between ∆GDP and COVID-19 Infection Rate

Did the COVID-19 infection rate affect ∆GDP directly? We found that ∆GDP has
no direct relation to the COVID-19 infection rate (Figure 6a), but the prevention and
control measures caused changes in human activities that led to variations in GDP [31–33].
Figure 4B demonstrates that most countries suffered decreased GDP trends and the COVID-
19 infection rate had no linear relation with ∆GDP. However, at the country scale, the
∆GDP is significantly correlated with the Governmental Response Stringency Index [5,48],
an indicator of the severity of government lockdown measures to slow the transmission
of COVID-19 (Figure 6b). It is noted that some countries presenting a positive ∆GDP or
experiencing warfare were excluded for avoiding outliers (Figure 6b).
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Figure 6. The relationship between COVID-19 infection rate and ∆GDP rate (a). The relationship
between the COVID-19 Government Response Stringency Index (GRSI) and ∆GDP rate (b). Note: A
GRSI with a value from 0 to 100 (100 = strictest) was surveyed according to nine response indicators
including travel bans, school closures, and workplace closures [5,48]. The GRSI was rescaled to 0–1
for unit consistency with the variation of GDP in the present study.

4.4. The Possible Reasons for Countries Having Positive GDP Growth during the Spread
of COVID-19

It was reported that the global economy was ravaged by the COVID-19 pandemic in
2020 [1–5]. However, several countries, including Iran, Afghanistan, Egypt, Côte d’Ivoire,
Vietnam, Myanmar, South Korea, and Ireland kept an increasing trend in GDP (Figure 7).
Specifically, it was inferred that the GDP of South Korea would drop by 1.23% in 2020
according to IMF-projected GDP data; however, the actual GDP of South Korea only
reduced by 1% in 2020 (Tables 5 and 6) even though it was troubled by the virus at the
beginning of the year [12]. It is also noted that the public health system of South Korea was
considered a model of COVID-19 infection prevention. South Korea never carried out a
complete national lockdown, i.e., borders were not thoroughly closed down, and most of
the businesses kept running [47]. Therefore, South Korea’s GDP decreased less than the
prediction by IMF.
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Table 5. Actual GDP and Projected GDP in 2020.

Location Actual GDP in 2020
(Billions of USD)

Projected GDP for 2020
(Billions of USD)

∆GDP
(Billions of USD)

South Korea 1630.87 1626.55 4.32
Iran 635.72 463.08 172.64

Myanmar 81.26 72.11 9.15
Vietnam 340.82 284.85 55.97
Ireland 418.72 402.05 16.67

Côte d’Ivoire 61.40 48.35 13.05
Egypt 361.85 353.00 8.85

Afghanistan 19.81 18.86 0.95

Note: the data were made available by the IMF.

Meanwhile, warnings from China in early January 2020 concerning COVID-19 prompted
responses in Southeast Asian countries such as Vietnam and Myanmar (Figure 7). Vietnam
is one of the few countries where the COVID-19 pandemic was controlled by the end of
2020 [12]. Severe outcomes were aborted due to timely protection and restrictions on travel.
The GDP growth of Southeast Asian countries varied from 2.9% (in Vietnam) to 3.2% (in
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Myanmar) benefiting from prompt response measures (Tables 5 and 6). Moreover, in 2020, a
large number of foreign companies entered Myanmar to invest. To assure economic growth,
maintaining growth in imports and exports was one of the important measures in Vietnam.
According to statistics for 2020, the total import and export volume of Vietnam was about
543.9 billion USD, a year-on-year increase of 5.1%, achieving a surplus of 19.10 billion USD.
Hence, the ∆GDP of Vietnam and Myanmar was positive in 2020 [49].

Table 6. Actual GDP growth rate and projected GDP growth rate in 2020.

Location Actual GDP Growth Rate in
2020 (%)

Projected GDP Growth Rate for
2020 (%)

South Korea −1.00 −1.23
Iran 1.50 −20.33

Myanmar 3.20 −8.42
Vietnam 2.90 −13.56
Ireland 2.50 0.92

Côte d’Ivoire 2.30 −17.40
Egypt 3.60 1.06

Afghanistan 2.67 −2.23
Note: the data were made available by the IMF.

For Iran, the GDP in 2020 was expected to decrease by 20.33% according to IMF-
inferred GDP data. However, Iran’s actual exports were increased by 24.41%, and imports
raised by 7.53% in 2020, due to the increase in import and export trade. In addition,
compared with the months before the pandemic, transaction volume increased by 12%
year-on-year according to electronic payment and online terminal consumption data after
the national lockdown ended [50]. Hence, despite the impact of the COVID-19 pandemic,
the real GDP of Iran rose by 1.5% in 2020 (Tables 5 and 6) (Figure 7).

For Egypt, the actual GDP increased by 3.60% in 2020, which was higher than the IMF
prediction (1.06%) (Table 6). A series of flexible anti-epidemic policies were adopted by the
Egyptian government to prevent a pandemic, and ensure economic development [12,51].
Moreover, several financial and material resources were invested in various aspects by
the government to stimulate economic development. For example, 100 billion EGP were
allocated by the central bank to prevent the epidemic from spreading, to cut the prices of
electricity and gas, and to supply support for the real estate industries and tourism [51].
Thus, the ∆GDP of Egypt was 8.85 billion USD higher than predicted (Table 6 and Figure 7).

Ireland had urged multinational corporations to construct factories through tax reduc-
tion before the pandemic outbreak. Lots of large technology companies have established
regional headquarters in Ireland, such as Facebook, and Google’s parent company. In
addition, pharmaceutical companies, such as Pfizer and Merck, have established large
manufacturing plants. The demand for medicines, digital services, and equipment such
as video communications has largely increased during the COVID-19 pandemic, which
has increased Irish merchandise exports, hitting a record high in 2020 [52]. Thus, the GDP
growth of Ireland in 2020 was higher than expected (Figure 7) (Tables 5 and 6).

Afghanistan is experiencing continuous wars and armed conflicts that have led to
tremendous damage over most of the past two decades. The GDP of Afghanistan was pre-
dicted to decrease by 2.23% in 2020 according to IMF forecasts (Tables 5 and 6). Fortunately,
a peace deal between the US and the Taliban was achieved in February 2020. Moreover,
armed groups announced ceasefires to support responses to COVID-19. Overall, armed
conflict events (battles and explosions) in Afghanistan obviously declined during the first
months of the COVID-19 pandemic [53]. The economy of Afghanistan obtained a rare
opportunity and recovered to a certain extent in 2020 (Figure 7).

Côte d’Ivoire is one of the largest economies in West Africa. It mainly depends on
agriculture production [54]. Nearly one-fifth of its GDP is generated by primary industry.
For example, Côte d’Ivoire is one of the world’s largest cocoa producers and exporters
accounting for 30% of world production, one of the world’s top three cashew nut producers
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and exporters, and an important exporter of palm oil, coffee, and petroleum [55]. Clearly,
Côte d’Ivoire received few impacts during the COVID-19 pandemic due to the agricultural
economy feature (Figure 7), which ensured its actual GDP increased by 2.3% in 2020
(Tables 5 and 6).

In addition, quantitative analysis between GDP and influencing factors for some coun-
tries are presented in the Supplementary Materials (Tables S1 and S2, and Figures S1 and S2).

4.5. Limitation

In spite of the merits of the current work, some limitations need to be addressed in
the future. Firstly, the reliability of the GM(1, 1) model in estimating NTL images should
be further evaluated. Although the GM(1, 1) model is considered a versatile forecasting
model and the NTL has a significant positive correlation with socioeconomic variables
including GDP, urban area, and population density [56], random disturbances are not
conducive to grey modeling. Actually, the NTL radiance in some regions of the world
is changing but not stable. A rather large random disturbance can reduce the forecast
accuracy of the GM(1, 1) model [35]. Secondly, the capacity of NTL in estimating primary
industry is weak. The contribution of the agricultural sector was not fully considered
when NTL images were used for estimating GDP spatial distribution [57]. In the current
study, the primary industry GDP was not distinguished from the national GDP statistics
data. Thus, the estimation accuracy needs further improvement in the future. Nighttime
light appears to be an unstable phenomenon in some minority areas due to war or other
sudden events, equivalent to outliers. However, nighttime light is relatively stable in most
parts of the world. Thirdly, country-level GDP data were introduced to research on a
global scale due to the availability of data. Although the GWR model is a local model that
can be used to reflect the spatial heterogeneity of GDP at the country scale, there are still
some shortcomings in capturing geographic differences within countries with larger areas.
Fourthly, the inner mechanism for GDP is complicated. To our knowledge, GDP is not only
affected by natural factors but also impacted by anthropic factors. In addition, GDP may
be influenced by some uncontrollable factors such as welfare, trade war, and sanctions.
Though GDP was seriously impacted by the COVID-19 pandemic all over the world, the
policies and measures were the most important affecting factors for GDP. For example,
it was reported that timing and the stringency of lockdown policies were endogenous to
the economy during the pandemic. The spatiality of transmission, immunity of humans,
qualities of healthcare systems, the effectiveness of state policy/measure, and vaccination
coverage rates were completely different in each nation, which led to the consequences
of subsequent socio-economic situations differing during the COVID-19 pandemic [58].
Additionally, countries had different schemes for testing and reporting COVID-19 cases.
For example, extensive testing for COVID-19 was done by some countries but not others.
Our results may have some uncertainties and biases. Fifthly, the GDP of 151 countries
including actual GDP and predicted GDP used in the present were obtained from the
IMF. The quality and precision of the IMF GDP may exist as uncertainties due to a lack of
effective evaluation and external validation. Meanwhile, the assessment for the 0.1 × 0.1◦

resolution maps of GDP variation globally obtained from the current study was inadequate
owing to few global grid-scale GDP products existing. To address the above issues, we
plan to comprehensively consider the potentially influential factors for GDP, and put more
affecting factors into consideration for estimating GDP. Moreover, to improve the accuracy
of GDP predicted via NTL images, the secondary and tertiary industry production will be
inferred by NTL images, and the primary industry production is planned to be calculated
based on the land use/cover data [57]. Furthermore, fine scales such as states, prefectures,
and provinces will be introduced to the study if the data availability can be solved in the
future. Machine learning models may be considered to infer GDP globally on the grid scale
to promote precision [59].
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5. Conclusions

This study proposed a new perspective regarding the impacts of the global COVID-
19 pandemic on socio-economic activities. The GM(1, 1) model was introduced to infer
simulated NTL (SNTL) images under the assumption that there was no COVID-19 epidemic
in 2020, and the ∆NTL was obtained by actual observed NTL deducting SNTL. Furthermore,
the ∆GDP was calculated by actual statistical GDP data deducting predicted GDP data
at the country scale. The GWR was introduced to quantitatively determine the relation
between ∆GDP and ∆NTL at the country scale. Finally, the distribution of the ∆GDP was
mapped using the GWR model globally at 0.1◦ × 0.1◦ resolution in 2020. Some interesting
results were achieved. First, the GM(1, 1) model can be used to predict NTL images
based on historical NTL images, and the prediction accuracy of the GM(1, 1) model in
estimating NTL images globally was acceptable. Second, the NTL in the majority of world
decreased but some minority areas exhibited increased trends. The ANTL brightness in
2020 decreased by 8.28% compared with the SNTL in 2020 simulated under the assumption
that there was no COVID-19 pandemic. The NTL of major economies across six continents
was significantly affected by the COVID-19 pandemic to some extent. Third, there is a
significant positive linear correlation between ∆NTL and ∆GDP at the national scale, and
the R2, RMSE, and MAE were 0.7735, 66.2612, and 31.6523, respectively. The GWR model
combined with ∆NTL can be used to map the ∆GDP at the grid scale globally. The ∆GDP
demonstrated decreased trends in most regions all over the world during the spread of the
COVID-19 pandemic in 2020, and the world economy has been seriously affected, falling
into stagnation and recession. The methods used in this paper can supply a scientific
basis for determining the effects of the COVID-19 pandemic on GDP and an effective and
fast method for mapping variation of GDP at a grid scale globally. The outcomes of the
present study can be used for policy decision-making and loss assessment owing to the
COVID-19 pandemic.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su142215201/s1.
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Appendix A

Table A1. Paired Samples Correlations.

N Correlation Sig.

Pair 1 ∆GDP & ∆GDPi 151 0.879 0.000
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Table A2. Paired Samples Test.

Paired Differences

t df
Sig.

(2-Tailed)
Mean Std.

Deviation
Std. Error

Mean

95% Confidence Interval of
the Difference

Lower Upper

Pair 1 ∆GDP − ∆GDPi −1.317 66.469 5.410 −12.005 9.371 −0.243 150 0.808Sustainability 2022, 14, x FOR PEER REVIEW  19  of  23 
 

 

   

Figure A1. The 0.1° × 0.1° resolution ΔGDP map of China, India, and the United States in 2020. Figure A1. The 0.1◦ × 0.1◦ resolution ∆GDP map of China, India, and the United States in 2020.
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