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Abstract: In the process of cyclic loading, strain development not only presents the strain softening
phenomenon, but also a strain hardening phenomenon, depending on the different values of static
deflection stress. The strain hardening and strain softening characteristics of soft clay are studied by
cyclic triaxial tests. The test results show that when the static deflection stress is zero, the value of
cyclic cumulative strain is small, and the strain development presents the softening phenomenon.
When the static deflection stress is greater than zero, the accumulation strain increases with increasing
cyclic deflection stress, and the strain development present strain hardening phenomenon. Therefore,
a strain softening index and strain hardening index were proposed to describe the cyclic characteristics
of soil. Moreover, an equivalent cyclic creep model was established by considering the strain
hardening index to describe cyclic characteristics of suction pile. The results obtained using the
proposed method are in reasonably good agreement with the measured results. This can provide a
new method for analyzing the cyclic characteristics of soil and the suction pile.

Keywords: pile; strain softening; strain hardening; cumulative deformation; cyclic creep model

1. Introduction

Suction piles typically need to be designed for cyclic lateral loading (Ye et al. [1];
Kong et al. [2]; Tong et al. [3]; Zhang and Andersen [4]). In the process of cyclic loading,
the strain development not only exhibits the strain softening phenomenon, but also the
strain hardening phenomenon, depending on the static deflection stress. However, research
has mostly focused on strain softening, ignoring the strain hardening of soft clay. This
paper analyzes the strain hardening characteristic and strain accumulation characteristics
of soil. At the same time, an equivalent cyclic creep model is proposed for the cyclic bearing
characteristics of suction piles.

To study the cyclic characteristics of soft clay, Andersen [5], Huo and Lei [6], Mitchell
and King [7], Liu [8] and Zhuang [9] conducted a large number of cyclic triaxial tests and
found that the static stress, cyclic stress, and number of cycles have an effect on the cyclic
cumulative deformation characteristics of soft clay. Zhou and Gong [10], Matasovic and
vucetic [11], Yao and Nie [12], Cai et al. [13], and Idriss et al. [14] found that the soft clay
presents strain softening phenomenon under the condition of no static deviator stress. The
test results showed that the higher the cyclic deviatoric stress, the more obvious the soil
softening effect. Idriss et al. [14] proposed the concept of softening factor to describe the
strain softening phenomenon of soft clay. Based on the strain softening factor, Wang [15]
proposed an equivalent strain softening factor. In terms of strain accumulation, Moni-
smith et al. [16] conducted a large number of cyclic triaxial tests to study the characteristics
of cyclic cumulative strain. Li and Selig [17] and Chai and Miura [18] established the cyclic
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cumulative deformation method by considering the number of cycles, static deflection
stress level, cyclic deflection stress level and other factors. Huang [19] proposed the concept
of relative deflection stress level D*, which considers a more comprehensive set of factors.
Hyde and Brown [20] and Yasuhara et al. [21] established the cyclic creep constitutive
model to describe the cyclic cumulative deformation of soft clay. Based on the theory
of static creep, Wang et al. [22] proposed an equivalent cyclic cumulative deformation
empirical model of soft clay based on a large number of cyclic triaxial test data. Moreover,
Zhu et al. [23] established an equivalent cyclic cumulative deformation model to analyze
the long-term cyclic bearing characteristics of soil by considering soil weakening factors
in the creep element model. However, when the static deflection stress is greater than
zero, strain develops, with the strain hardening phenomenon being present, while strain
softening is not applicable to the cyclic accumulation model. Therefore, it is necessary to
study the strain hardening characteristics of soil.

The above research has mainly studied the strain softening phenomenon during
testing. At the same time, the strain accumulation model, in which the strain softening
factor is considered, is not yet accurate enough to describe the cyclic bearing characteristics
of soft clay. In the process of cyclic loading, the strain development not only exhibits the
strain softening phenomenon, it also exhibits the strain hardening phenomenon, depending
on the different values of static deflection stress. Therefore, the cyclic bearing characteristics
of soil are studied by means of cyclic triaxial tests. At the same time, an equivalent cyclic
creep model is established by considering the strain hardening index to describe the cyclic
bearing characteristics of suction piles.

2. Cyclic Triaxial Tests of Soft Clay

The specimen soil was taken from the coast of Guanyun. As shown in Figure 1a,
the remolded test soil was consolidated using the vacuum preloading method. When the
soil consolidation was completed, the soil cyclic triaxial test was started using the GDS
apparatus (Figure 1b). Three confining pressures were selected to conduct cyclic triaxial
tests under the different static deflection stress (qs) and the cyclic deviatoric stress (qd). The
specific test schemes are shown in Table 1. The stress–strain curves of saturated soft clay
are shown in Figure 2. The Mohr–Coulomb ultimate strength (qf) indices of soft clay were
calculated to be c = 18.3 kPa and ϕ = 19.6◦.
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Table 1. Test parameters.

Type Confining Pressure
σ3 (kPa)

Loading Rate
(kPa/min)

Frequency
(Hz)

Static Deflection
Stress Ratio

Cyclic Deflection
Stress Ratio

Consolidation 50/100/150 0.1 - 0/0.4/0.5/0.6/0.8 -

Cyclic loading 50/100/150 - 0.1 0.4/0.5/0.6 0.1/0.2/0.3
0.1 0 0.3/0.4/0.5/0.6
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Figure 2. Strength characteristics of soft clay.

2.1. Strain Softening Results

Figure 3 shows the stress–strain curves with static deflection stress of zero. Under
the low cyclic deflection stress, the strain accumulation is not obvious. At the same time,
the strain softening is small. With increasing cyclic deflection stress, the strain softening
is more obvious. However, the strain accumulation is very small. It can be seen that the
strain softening increases with increasing cyclic deflection stress.

Figure 4 shows the strain softening under the following numbers of cycles: 1, 10, 1000
and 2000. It can be observed that the maximum value and the minimum value of strain
increases with increasing number of cycles. When the cyclic deflection stress ratio is larger,
the strain amplitude is larger. Moreover, the maximum value of strain is linearly related to
the logarithm of the number of cycles.

2.2. Strain Hardening Results

Figure 5 shows the cyclic cumulative strain development process under different cyclic
deflection stress ratios. When the static deflection stress (qs) is 0.4 and the cyclic deviatoric
stress (qd) is 0.1, the cyclic cumulative strain is small. When the static deflection stress (qs) is
0.5 and the cyclic deviatoric stress (qd) is 0.3, the cyclic cumulative strain is larger. It can be
observed that the cyclic deflection stress obviously affects the strain accumulation results. The
cyclic cumulative strain increases with static deflection stress and cyclic deflection stress.



Sustainability 2022, 14, 15152 4 of 18

Sustainability 2022, 14, 15152 3 of 19 
 

Table 1. Test parameters. 

Type 
Confining Pressure 

σ3 (kPa) 

Loading Rate 

(kPa/min) 

Frequency 

(Hz) 

Static Deflection 

Stress Ratio 

Cyclic Deflection 

Stress Ratio 

Consolidation 50/100/150 0.1 - 0/0.4/0.5/0.6/0.8 - 

Cyclic loading 50/100/150 - 
0.1 0.4/0.5/0.6 0.1/0.2/0.3 

0.1 0 0.3/0.4/0.5/0.6 

0 5 10 15 20 25
0

50

100

150

200

250

Strain/%

S
tr

es
s/

k
P

a

 s3=150kPa

 s3=100kPa

 s3=50kPa

 

Figure 2. Strength characteristics of soft clay. 

2.1. Strain Softening Results 

Figure 3 shows the stress–strain curves with static deflection stress of zero. Under the 

low cyclic deflection stress, the strain accumulation is not obvious. At the same time, the 

strain softening is small. With increasing cyclic deflection stress, the strain softening is 

more obvious. However, the strain accumulation is very small. It can be seen that the 

strain softening increases with increasing cyclic deflection stress. 

-0.4 -0.2 0.0 0.2 0.4

-30

-20

-10

0

10

20

30

N=2000

p
/k

P
a

e/%

 

-1.0 -0.5 0.0 0.5 1.0

-40

-20

0

20

40

N=2000

p
/k

P
a

e/%

 

(a) (b) 

Sustainability 2022, 14, 15152 4 of 19 
 

-15 -10 -5 0 5 10 15

-50

-25

0

25

50

p
/k

P
a

e/%

 

-50 -40 -30 -20 -10 0 10 20 30 40 50

-60

-40

-20

0

20

40

60

N=1

p
/k

P
a

e/%

 

(c) (d) 

Figure 3. stress–strain relationship (σ3 = 100 kPa). (a) qd = 0.3 qf; (b) qd = 0.4 qf; (c) qd = 0.6 qf; (d) qd = 0.7 

qf. 

Figure 4 shows the strain softening under the following numbers of cycles: 1, 10, 1000 

and 2000. It can be observed that the maximum value and the minimum value of strain 

increases with increasing number of cycles. When the cyclic deflection stress ratio is larger, 

the strain amplitude is larger. Moreover, the maximum value of strain is linearly related 

to the logarithm of the number of cycles. 

-1 0 1 2 3 4 5
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

 

 
e/

%

N

 Test value

 Fitting value

N=1000 N=2000N=10N=1

 

-1 0 1 2 3 4 5
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08  Test value

 Fitting value

 

 

e/
%

N

N=1000 N=2000N=10N=1

 

(a) (b) 

-1 0 1 2 3 4 5 6
-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12
 Test value

 Fitting value

 

 

e/
%

N

N=2000N=1000N=500N=100N=1

 

-1 0 1 2 3 4 5 6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15  Test value

 Fitting value

 

 
e/

%

N

N=2000N=1000N=500N=100N=1

 

(c) (d) 

Figure 3. Stress–strain relationship (σ3 = 100 kPa). (a) qd = 0.3 qf; (b) qd = 0.4 qf; (c) qd = 0.6 qf; (d) qd = 0.7 qf.
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Figure 4. Development of strain softening. (a) qs = 0.4 qf, qf = 0.1 qf; (b) qs = 0.5 qf, qf = 0.1 qf; (c) qs =
0.4 qf, qd = 0.2 qf; (d) qs = 0.5 qf, qd = 0.2 qf; (e) qs = 0.4 qf, qd = 0.3 qf; (f) qs = 0.5 qf, qd = 0.3 qf.
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Figure 6a shows that when the static deflection stress (qs) is 0.4 and the cyclic deviatoric
stress is 0.2, the cyclic cumulative strain is small. When the static deflection stress (qs) is
0.4 and the cyclic deviatoric stress (qd) is 0.3, the cyclic cumulative strain is larger than the
result when the static deflection stress (qs) is 0.4 and the cyclic deflection stress (qd) is 0.2.
Figure 5b shows that when the static deflection stress (qs) is 0.5 and the cyclic deflection
stress (qd) is 0.2, the cyclic cumulative strain is small. When the static deflection stress (qs)
is 0.5 and the cyclic deflection stress (qd) is 0.3, the cyclic cumulative strain is larger than
the result of the static deflection stress (qs) is 0.5 and the cyclic deflection stress (qd) is 0.2. It
can be observed that the cyclic cumulative strain increases with increasing static deflection
stress and cyclic deflection stress.

Figure 7 shows the strain amplitude under the following numbers of cycles: 1, 10, 1000
and 2000. It can be seen that the maximum value of strain decreases with the number of
cycles. The strain decreases rapidly at the beginning of the curve and slowly at the end of
the curve. At the same time, when the cyclic deflection stress is larger, the strain amplitude
is smaller. Moreover, the maximum value of strain is linearly related to the logarithm of
the number of cycles. Simultaneously, with increasing cyclic deflection stress, the strain
hardening phenomenon becomes more obvious.
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3. Strain Softening and Hardening Index
3.1. Strain Softening Index

When the static deflection stress is zero, the value of cyclic cumulative strain is low
and the strain develops present strain softening phenomenon. It can be seen from Figure 8
that when the static deflection stress is 0, the gradient of the hysteresis loops of the Nth
cycle number was smaller than the gradient of the hysteresis loops of the first cycle number.
As a result, the gradient of the hysteresis loops decreases constantly with the number of
cycles. Therefore, the strain development of soil exhibits the strain softening phenomenon.
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The gradient of the hysteresis loops of the Nth cycle is expressed as follows:

EN =
qN,max − qN,min

εN,max − εN,min
(1)

where qN,max and qN,min are the maximum and minimum deflection stresses; εN,max and
εN,min are the maximum and minimum deflection strains.

The strain softening index can be expressed as follows:

δ =
EN
E1

=
(ε1,max − ε1,min)

(εN,max − εN,min)
(2)

According to the test results, the softening index has a certain relationship with the
development of the number of cycles. To realize the strain softening phenomenon using
the finite element method, a strain softening index was proposed to describe the strain
softening process of soil by considering the factor of the static deflection stress and cyclic
deflection stress. Therefore, the strain softening index can be described as follows:

δ = 1− α

(
qd
q f

)n1(
1 +

qs

q f

)n2(
p
pa

)n3
lgwt (3)

where α, n1, n2 and n3 are the fitting parameters. The value of α is 0.16, the value of n1 is
3.6, the value of n2 is 7.64, and the value of n3 is 0.02; w is the cyclic frequency; qf is ultimate
strength of soil; qs is the static deflection stress; qd is the cyclic deflection stress; and qa is
the reference stress.

The strain softening index and fitting results under different cyclic deflection stresses
and different static deflection stresses are shown in Figure 9. It can be observed that
the strain–time curve obtained by the strain softening index is consistent with the test
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results. Therefore, the strain softening index is able to accurately describe the strain
softening phenomenon.
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3.2. Strain Hardening Index

Figure 10 shows that the strain increment decreases with increasing number of cycles.
Figure 11 shows that with increasing number of cycles, the hysteresis loops gradually
incline toward the strain reverse direction. The maximum and minimum strains decrease
with decreasing number of cycles. As a result, the shear modulus of soil is constantly
increasing with increasing number of cycles. Therefore, the strain development of soil
exhibits the strain hardening phenomenon.
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The strain hardening index is proposed to describe the strain hardening processes.
The strain hardening index can be expressed as follows:

η =
EN

s
E1

s
=

ε1,max − ε1,min

εN,max − εN,min
(4)

where E1
s is the soil shear modulus of the first cycle; EN

s is the soil shear modulus of the
Nth cycle; ε1,max is the maximum strain in the first cycle; ε1,min is the minimum strain in
the first cycle; εN,max is the maximum strain in the Nth cycle; εN,min is the minimum strain
in the Nth cycle.



Sustainability 2022, 14, 15152 11 of 18

To analyze the hardening index, the strain hardening index in consideration of the
cyclic deflection stress and static deflection stresses was expressed as follows:

η = 1 + α

(
qd
q f

)n1(
1 +

qs

q f

)n2(
p
pa

)n3
lgwt (5)

where α, n1, n2 and n3 are the fitting parameters. The value of α is 0.14, the value of n1 is
3.8, the value of n2 is 7.58, and the value of n3 is 0.018; w is the cyclic frequency; qf is the
ultimate strength of the soil; qs is the static deflection stress; qd is the cyclic deflection stress;
and qa is the reference stress.

The strain hardening index fitting results under different cyclic deflection stresses and
different static deflection stresses are shown in Figure 12. The strain hardening index fitting
results are consistent with the test results. It can be observed that the strain hardening
index is able to accurately describe the strain hardening phenomenon of soil.
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4. Equivalent Cyclic Creep Model

To describe the cyclic cumulative deformation characteristics of soil, an equivalent
cyclic creep model is proposed in this paper. As shown in Figure 13, the equivalent cyclic
creep model innovatively introduces the stress control switch and strain hardening index
into the equivalent cyclic creep model, making it able to effectively describe the cyclic
accumulation characteristics and strain hardening characteristics of soil. Therefore, the
equivalent cyclic creep model is established as follows:

ε(t) =
σs + σcyc sin wt

ηE0
+

σs + σcyc

E1

(
1− e−

E1
η1

t
)

(6)

where σs is the static deflection stress; σcyc is the cyclic deflection stress; E0, E1, η1 are the
fitting parameters.
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The equivalent cyclic creep constitutive model of soft clay is shown in Equation (7):

εn = εe
n + εve

n
σe

n = σn
σve

n = σn − σcyc sin wt + σcyc
σve

n = E1 A−1εve
n + η1 A−1 .

ε
ve
n.

ε
ve
n = 1

η1
Aσve

n −
E1
η1

εve
n

(7)

A =



1 −µ −µ
−µ 1 −µ
−µ −µ 1

2(1 + µ)
2(1 + µ)

2(1 + µ)

 (8)

where εn is the total strain at step n; εe
n is the instantaneous elastic strain of the Hookean

body at step n; εve
n is the viscoelastic strain of the Kelvin body at step n;

.
ε

ve
n is the viscoelastic

strain rate of the Kelvin body at step n; and σn, σe
n, and σve

n are the total stress, the stress of
the Hookean body, and the stress of the Kelvin body, respectively, at step n.

The expression of stress–strain increment relationship can be expressed as follows:

.
ε

ve
n+1 =

.
ε

ve
n +

∂
.
ε

ve
n

∂t
∆tn (9)

∆εve
n = ∆tn

[
(1− θ)

.
ε

ve
n + θ

.
ε

ve
n+1

]
(10)

where ∆tn is the calculation step size at step n; and θ is the difference coefficient.
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The increment expression of viscoelastic body can be expressed as follows:

∆εve
n =

θ∆tn A∆σve
n

η1
+

.
ε

ve
n ∆tn

(
1− θE1∆tn

η1

)
(11)

∆σve
n =

(
∆σn − ∆twσcyc cos wt

)
(12)

∆εve
n = B∆tn

.
ε

ve
n + Cn∆σve

n (13)

where B = 1− θ∆tnE1
η1

Cn = θ∆tn
η′2

A.
For the current incremental step, the Jacobian matrix can be obtained as follows:

∆σn = E0 A−1εe
n (14)

∆εe
n =

1
E0

A∆σn (15)

∆εn = ∆εe
n + B∆tn

.
ε

ve
n + Cn

(
∆σn − ∆twσcyc cos wt

)
(16)

∆σn = D̂
(

∆εn − B∆tn
.
ε

ve
n + Cn∆twσcyc cos wt

)
(17)

D̂ =

(
Cn +

1
E0

A
)−1

(18)

where the D̂ is the Jacobian matrix in ABAQUS.
To verify the correctness of the equivalent creep model in the ABAQUS subroutine, some

the test results were selected to compare them with the finite element results. It can be seen
from Figures 14–16 that the results obtained using the proposed method are in reasonably
good agreement with the test results. Therefore, the equivalent cyclic creep model can be used
to analyze the strain accumulation and strain hardening process of soft clay.
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In ABAQUS, the diameter of the suction pile model was set to 100 mm, the wall
thickness was set to 5 mm and the length was set to 600 mm. The FE model was established
using the C3D8 solid element. The equivalent creep model is adopted for soil constitutive.
The load direction of suction pile is horizontal. Figure 17 shows the displacement cloud
diagram of suction pile following different numbers of cycles. It can be seen that the
displacement increases with increasing numbers of cycles.
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Figure 17. Cyclic cumulative deformation of suction pile. (a) N = 50; (b) N = 1500.
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Figure 18 shows the displacement–time curve of suction pile under different loading
conditions. The displacement of the suction pile is small under conditions with low static
load ratio and low cyclic load ratio. With increasing cyclic load ratio, the cyclic displacement
of the suction pile develops more obviously. The displacement develops rapidly in the
early stage, and slowly in the later stage. It can be seen that the cumulative displacement
of the caisson increases with increasing cyclic load ratio. Therefore, the equivalent cyclic
creep model can be used to analyze the cyclic cumulative deformation characteristics of the
suction pile.
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Figure 18. Displacement–time curve. (a) Fa = 0.4 Ff; (b) Fa = 0.5 Ff; (c) Fa = 0.6 Ff.

Figure 19 shows the displacement accumulation deformation process of the suction
pile. With the increase in the number of cyclic loads, the cyclic cumulative deformation of
the caisson pile model gradually increases. The results from the proposed method are in
reasonably good agreement with the measured results [24]. This provides a new method
for analyzing the cyclic characteristics of soil and suction piles.
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5. Conclusions

In this paper, the strain hardening characteristics and strain softening characteristics
of soft clay were studied by cyclic triaxial tests. Moreover, an equivalent cyclic creep model
was established to describe the strain accumulation and strain hardening characteristics of
soil and the cyclic characteristics of the suction pile. The main conclusions obtained were
as follows:

(1) In the process of cyclic loading, the strain development not only exhibits the strain
softening phenomenon, but also the strain hardening phenomenon, depending on
the different values of static deflection stress. Therefore, a strain softening index and
strain hardening index were proposed to describe the cyclic characteristics of soil.

(2) An equivalent cyclic creep model was established in consideration of the strain
hardening index to describe the cyclic cumulative deformation and strain harden-
ing characteristics of soil. Simultaneously, the results obtained using the proposed
method were in reasonably good agreement with the measured results. Therefore,
the equivalent cyclic creep model can be used to analyze the strain accumulation and
strain hardening process of soft clay.

(3) The equivalent cyclic creep model was applied to analyze the cyclic bearing char-
acteristics of the suction pile. The results show that the finite element results were
consistent with the model test results. This can provide a new method for analyzing
the cyclic characteristics of soft clay and the cyclic cumulative deformation character-
istics of suction piles.
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