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Abstract: With the trend of sustainable development growing worldwide, both the numbers of new
mega building construction projects and renovations to existing high-rise buildings are increasing. At
such construction sites, most construction workers can be described as performing various activities
in indoor spaces. The literature shows that the indoor safety protection measures in such construction
sites are often imperfect, resulting in an endless stream of incidents such as falls. Thus, this research
aims at developing a flexible indoor safety warning system, based on Wi-Fi-generated channel state
information (CSI), for monitoring the construction workers approaching restricted areas or floor
openings. In the proposed approach, construction workers do not have to carry any sensors, and each
indoor space only needs to have the specified Wi-Fi devices installed. Since deep learning methods
are employed to analyze the CSI data collected, the total deployment time, including setting up
the Wi-Fi devices and performing data collection and training work, has been measured. Efficiency
and effectiveness of the developed system, along with further developments, have been evaluated
and discussed by 12 construction safety experts. It is expected that the proposed approach can be
enhanced to accommodate other types of safety hazards and be implemented in all mega building
construction projects so that the construction workers can have safer working environments.

Keywords: channel state information (CSI); deep learning; fall accident; construction safety

1. Introduction

As the global population escalates, the number of new skyscrapers around the world
is increasing [1,2]. Although there is no universally accepted definition, a skyscraper can
be regarded as a very tall high-rise building with at least 100 m high and has become a
common sight where the land is expensive (e.g., in the centers of big cities) [3]. Another
trend with rising populations is that more and more existing, old high-rise buildings need
to be renovated to accommodate new dwellers in communities in a short period of time [4].
Indeed, all such construction or renovation work can be classified into the mega building
construction project type since there can be thousands of construction workers performing
their jobs at the same time.

Previous literature shows that in the United States, approximately 20% of job-related
deaths occur in the construction industry [5]. On top of that, the construction sites located
in commercial and residential areas account for 30% of all such fatal accidents [5]. Falls
remain the most common cause of deaths, and the literature shows that one-third of all
fatalities is a result of falls or related accidents [5]. Since a mega building construction
project can involve more construction workers at the same time than a typical construction
site, it can be estimated that there are more construction safety incidents in these types of
projects [6–8]. Nevertheless, nowadays governments and/or organizations worldwide are
eager to achieve various Sustainable Development Goals (SDGs) [2,4], one of which is to
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ensure safe working environments. In other words, the safety of construction sites needs to
be maintained [5,9], especially for mega building construction projects.

In fact, numerous approaches have been proposed to avoid the fall type of accidents for
construction safety, which can be simply divided into the active and passive systems [7,9].
The former, such as personal fall protection (PFP), uses an extra harness to actively protect
a construction worker from falling, which is primarily utilized in outdoor spaces such
as roofs and may significantly reduce the construction worker’s mobility [7]. The latter,
such as guardrails, floor covers, and sensors with warning mechanisms, strives to avoid
a construction worker from approaching floor openings or restricted areas and usually
requires much time to set up the system [9]. For instance, when one part or material of
guardrails is missing, it may take a few days to a week to get the guardrails installed [5].
Once the line of sight in construction sites is poor, the probability of having falls or related
accidents is high [5,9]. For sensor-based fall prevention systems, each construction worker
has to carry the sensor(s), and all sensor-generated data need to be well collected [10].
However, such assumptions seem to be unrealistic since construction sites are complex and
dynamic in nature [11,12], and the quality of the sensory data collected varies significantly
due to versatile field communication and/or sensors calibration problems. Thus, additional
time is required for re-collecting or re-processing the data. Hence, the warnings made by
such systems are often not immediate, significantly reducing their usefulness [13,14].

Therefore, the research area of this manuscript is concentrated on the construction
safety fall situations in mega building construction projects. Specifically, this research
aims at developing a passive, indoor safety warning system, based on Wi-Fi-generated
channel state information (CSI), for falls or related accidents. Once a construction worker
approaches any of indoor restricted areas such as floor openings, an alarm will be triggered
to remind him or her. Use of CSI requires the installation of a regular wireless access
point (WAP) at one end of an indoor space, as well as the installation of another special
wireless network interface card (NIC) at the other end of the space [15]. A customized
software program is also needed so as to collect and analyze the received Wi-Fi CSI data
set. Nevertheless, no sensor needs to be carried by human beings. By analyzing CSI
data, the literature shows that people’s standing position, facing orientation, squatting or
bending over, walking gait, etc., can be detected or recognized if appropriate algorithms
are employed [16–18]. In recent years, as deep learning technology has become more and
more mature, deep learning algorithms have gradually become one of the most promising
methods to analyze applications such as CSI with a large amount of data [19–24]. Further,
the current deep learning technology has proved that as long as the size of the CSI data
set collected is adequate, even if the data set contains erroneous values or does not cover
the full range of data, meaningful results will still be produced [22,23,25–27]. In addition
to the CSI-related hardware and software issues, the deployment time of such an indoor
safety warning system, including the hardware installation time and the data collection
and analysis time, cannot be long. Only when the aforementioned requirements are met,
field safety managers can quickly implement the proposed approach to each of the indoor
spaces that requires attention to construction safety for mega building construction projects.
To this end, the manuscript is structured as follows: Section 2 introduces related literature.
Section 3 describes the proposed approach, including deep learning algorithms used
and the collection and analysis of the Wi-Fi-generated CSI data. Section 4 discusses the
verification and validation of the proposed approach, followed by research conclusions
and future work.

2. Related Work
2.1. Mega Building Construction Projects and Construction Safety

Today, new skyscrapers or high-rise buildings are still needed in many of the devel-
oped or developing countries since the population of urban areas in these countries has
continued to increase [3]. In addition, since existing, old buildings in urban communities
are usually difficult to achieve the goal of energy conservation and carbon reduction, from
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the government’s perspective large-scale renovation for such buildings must be carried out
in order to realize the ambition of the SDGs [4]. In such a construction or renovation site,
thousands of construction workers may all work for the same mega building construction
project [2,4,6,8]. Investigation on construction safety for this type of projects has become
an imperative. Otherwise there would be more fatal accidents since the durations of such
projects are longer with more participants [9].

In fact, the literature shows that the construction industry is the industry most prone to
fatal accidents [14,28–31]. In the UK, the construction industry accounts for one-third of all
occupational fatalities [9]. In the United States, the construction industry has a maximum of
26 deaths per 100,000 people per year from 2010 to 2012, accounting for between 17% and
20% of all fatal occupational injuries [5]. A recent report shows that in China an average of
725 people died each year due to construction-related accidents [28].

A UK research report shows that in the construction industry, 11% of fatal acci-
dents occurred at the beginning of the project, 58% occurred in the middle of the project,
9% occurred at the later stage of the project, 7% occurred at the end of the project, and
15% occurred after the end of the project, which includes subsequent decoration works [9].
The same report shows that 4% of fatal accidents in the construction industry occurred in
design and engineering firms, 25% in the contractors or subcontractors for civil or infrastruc-
ture construction, 49% in the contractors or subcontractors for office buildings construction,
and 22% in the contractors or subcontractors for residential buildings construction [9]. From
the aforementioned statistics, it can be seen that building construction sites are the largest
accident place [5,30]. Additionally, more accidents indeed occur after the superstructure of
a building has been completed, which can be proved by the fact that most of the accidents
happen in the middle or late stages of the project [9]. During this period of time, many
construction workers are engaged in various indoor jobs [9]. There may be several hazards
on such an indoor construction site, such as unfinished doors, windows, elevators, stairs,
etc., but after all, it is still an indoor environment with basic space configuration and power
supply services [9]. Safety-related equipment or devices should be able to be installed
or deployed here. Nevertheless, few past studies have used the characteristics of indoor
construction sites to explore how to improve construction safety.

The fall type of accidents, which can be defined as people falling from height or
struck by falling object, has been identified as the most frequent accidents happened in the
construction industry worldwide [2]. In China, falls from a high place are the dominant
type of construction accident, accounting for 51.7% of all accidents [32]. Previous studies
indicated that the management of indoor workers’ positions is often utilized to achieve
indoor safety monitoring (i.e., to manage workers’ positions and to keep them out of danger
areas so as to prevent falls) [33–36]. Researchers have enumerated the factors leading to
falls, which include but are not limited to, failure of safety net systems, floor openings
not covered, personal factors such as bad temper and misbehavior of workers, no safety
checks, no safety signs, no on site monitoring systems of workers, no location tracking of
workers, poor quality of PPE used, failure to provide PPE, negligence in using safety belts
in heights, bad work conditions such as poor housekeeping, hot and rainy weather, dusty
and noisy conditions, fire hazards, low knowledge and skill level of workers, strong winds
when working at height, etc. [1,2,7–9]. Other researchers investigated the risks associated
with falls for high-rise buildings construction and classified such risks into five types:
(1) environmental risk; (2) financial risk; (3) political risk; (4) social risk; and (5) technical
risk [8].

In the United States, the Occupational Safety and Health Administration (OSHA)
defines a floor opening as an opening measuring 0.305 m (1 ft.) or more in its least
dimension in any floor or roof through which persons may fall [14]. In addition to a floor
opening, an indoor construction site may have a restricted area containing hazardous
materials or objects that may lead to accidents, such as high-voltage or electro-inductive
devices, toxic chemicals, etc. [5]. Such hazards could cause injuries as minor as a sprain or
strain to as serious as broken bones or even result in death [5]. Other researchers indicated
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that the construction worker who has an accident is usually not performing the scheduled
work, but just roaming the construction site (i.e., distracted), at which time the accident
typically occurs [9].

As for the fall prevention techniques, numerous methods have been proposed in the
literature, and some of them are listed as follows [7,10]: (1) fall hazard identification using
Building Information Modeling (BIM) tools; (2) fall hazard identification using video camera
techniques; and (3) real-time tracking systems for construction workers using various
sensors, wireless sensor networks, or radio frequency identification (RFID)-based sensors.
Other researchers have argued that the use of safety meetings, safety inspections, safety
incentives and penalties, strict organization safety policy and legislation, and improved
safety training and awareness could all help reduce the fall type of accidents [3]. Overall, the
attitude of construction workers towards safety is the key to the prevention of falls [29,31].
The hope of using these technologies is to remind them who are facing danger at the right
time, at the right place, but after the reminder, they still need to take action before the
accident can be truly avoided [5,9,28].

2.2. CSI

CSI can be defined as a matrix of complex values representing the amplitude atten-
uation and phase shift of wireless signals, which are transmitted between a WAP and a
NIC in the Wi-Fi environment following the IEEE 802.11n standard [37–48]. In fact, CSI can
be regarded as a time series of Wi-Fi signal measurements, which captures how wireless
signals travel through a confined space with surrounding static or dynamic objects in
time, frequency, and spatial domains [20]. Literature shows that CSI is mainly utilized
for wireless sensing purposes, and each entry of a CSI matrix consists of two parts, one is
a floating-point number of the real part, and the other is a floating-point number of the
imaginary part [37]. Many CSI-related studies deal with amplitude variations in the time
domain, which have different patterns for each distinct object detected and can be used
for human presence detection and activity or gesture recognition if appropriate algorithms
are employed [49–52]. Some studies are concentrated on CSI phase shifts in the spatial
and frequency domains (i.e., transmit/receive antennas and carrier frequencies), which
are related to signal transmission delay and direction [21]. In sum, CSI phase shifts infor-
mation is more difficult to be used to detect objects compared to CSI amplitude variations
information [21].

In fact, CSI is introduced to evaluate the communication link state [19]. In other
words, the quality of the wireless channel can be estimated by the CSI matrix, and the
communication rate can be adjusted accordingly [19]. In the IEEE 802.11n standard, CSI
is measured and parsed from the physical layer using orthogonal frequency division
multiplexing (OFDM) technology [20]. In mathematical form, CSI can be expressed as
Equation (1) below [20]:

Y = H × X + N (1)

where H is the CSI matrix; Y and X are the received and transmitted signal vectors respec-
tively; and N refers to an additive noise vector [17,49]. In practice the most commonly
used NIC for CSI measurements is Intel 5300 [53,54], which was also employed in this
research. Other NICs that can be used for CSI-related experiments are Atheros 9390 and
ESP32 [15,16]. The Intel 5300 NIC can report CSI for 30 groups of subcarriers, spread
evenly among the 56 subcarriers in a 20 MHz channel or the 114 subcarriers in a 40 MHz
channel [15]. Figure 1 shows the real Intel 5300 NIC configuration with three antennas, and
any IEEE 802.11n-based WAP can be used together with this NIC for CSI measurements.
Figure 2 shows the detailed CSI data format, and each entry in the CSI matrix can be
expressed as Equation (2) below [17,49]:

Hr,s,k,t = A + i B (2)
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where r represents each receiving antenna, s represents each transmitting antenna, k repre-
sents each subcarrier group, t represents each time point, A represents the real part number,
and iB represents the imaginary number [17,20,49]. Figure 3 shows sample portion of CSI
data. Theoretically, in each OFDM subcarrier with a certain frequency, the CSI matrix,
Hr,s,k,t, is a complex value that can be used to represent the amplitude and phase, as listed
in Equation (3) below [17,20,49]:

Hr,s,k,t = |H|ei X (3)

where |H| represents the amplitude and X represents the phase [17,20,49]. By applying
Euler’s formula, Equation (3) can be transformed into Equation (4), and the amplitude and
phase can be obtained by using Equations (5) and (6), respectively, as listed below:

Hr,s,k,t = |H|(cosX + i sinX) (4)

Amplitude |H| =
√

A2 + B2 (5)

Phase Radian X = tan−1(B/A) (6)
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Traditionally, the values of the receive signal strength indicator (RSSI) available in all
Wi-Fi environments have been investigated extensively in the literature for localization
purposes [15,37]. In fact, RSSI can be regarded as the total power combined value of all
signals received at the listener, while CSI is the signal measurement value from a pair of
antennas at a specific frequency [15,37]. Researchers have confirmed that compared with
CSI, RSSI is not a stable value [15,37]. This is due to the fact that wireless signals often travel
via both direct paths and indirect paths, such as reflection and scattering paths [15,37].
Hence, multiple aliased signals are superposed at the receiver as the RSSI value, which may
not decrease monotonically with the propagation distance, leading to larger localization
errors [15,37]. Nevertheless, CSI measures propagating wireless signals for each antenna
pair of transmitter and receiver at each subcarrier frequency in order to provide amplitude
and phase distortions [15,37]. In this way, CSI variations in the time domain have different
patterns for different humans or objects, which have been recognized as a better guide
when calculating distances or detecting objects [15,37].

3. Approach
3.1. Feasibility Analysis of Using Deep Learning for CSI Sensing

This section first discusses the feasibility of applying deep learning methods to CSI
sensing from the literature, then explores the problems that deep learning may face in
construction sites. Finally, construction safety experts were consulted to define the require-
ments that deep learning-based CSI sensing must fulfill, in hopes of designing a feasible
CSI sensing method for construction safety.

In the literature, dozens of analysis methods have been proposed for CSI sensing, and
researchers have classified such methods into three types: (1) pattern-based recognition;
(2) model-based recognition; and (3) deep learning-based recognition [20]. The first type
leverages pattern recognition methods, which includes machine learning algorithms, in
order to find distinct patterns to identify human behavior or moving objects [20]. The
second type utilizes a mathematical or physical model capable of describing simplified
human behavior or moving objects and then finds the unique relationship between CSI
signal variation and the model output [20]. Nevertheless, the major problem of the two
types of methods is that the prediction accuracy is not high, or the prediction stability is
not enough, so these methods are often only applicable to specific data sets. Once the field
environment sensed is slightly changed, such as adding a new object, either the entire
analysis process must be performed again, or unreasonable constraints must be imposed,
so as to obtain satisfactory prediction results.
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Recently, since the use of the CSI technique can generate a large number of data sets
without difficulty, and since the type of deep learning methods is particularly suitable for
processing big data, using deep learning for CSI sensing has gradually become evident. In
other similar fields involving a large amount of data, such as image recognition, as long
as the quality of the data sets collected is good, deep learning has been regarded as one
of the most effective methods for such prediction tasks. However, since almost all image
recognition methods cannot operate in poor light conditions, and there is a concern of
destroying personal privacy in collecting images [16], image-based methods may not be
appropriate for construction safety applications. CSI sensing using deep learning, on the
other hand, does not have the aforementioned issues. It can be expected that applying deep
learning in CSI sensing will soon become the preferred method as deep learning does for
image recognition.

In addition, researchers have conducted several experiments to sort out the factors that
should be considered when analyzing Wi-Fi signals. The following lists such factors that
are related to construction safety in indoor spaces and may deserve further investigations
for this research:

• Past research has pointed out that Wi-Fi signals are attenuated differently when
passing through walls of different materials [55]. However, inside an indoor space, as
long as the interior partition pertains to the lightweight wall type, the indoor Wi-Fi
signal will not suffer a lot of attenuation [55].

• Based on the IEEE 802.11n standard, Wi-Fi environments can have the 2.4 GHz or
5 GHz frequency bands. If the indoor space is small (i.e., less than 100 m2), and there
are no obstacles in the middle, using 5 GHz will have better CSI sensing results than
using 2.4 GHz [49]. This is due to the fact that the amplitude variability at 5 GHz is
smaller than at 2.4 GHz resulting in less data noise [49]. However, in real-world indoor
environments, since the 2.4 GHz frequency band has stronger signal penetration ability
than 5 GHz, and the 2.4 GHz transmission distance is longer, it is recommended to use
2.4 GHz for CSI sensing [49].

• Based on the IEEE 802.11n standard, 14 channels are designated in the 2.4 GHz range,
spaced 5 MHz apart from each other. For the United States and some other countries,
there are 11 channels open for use in the 2.4 GHz frequency band. With today’s internet
trend, even a new building may have nearby existing Wi-Fi signals. When CSI sensing
is performed, it is better to use the least loaded channel in order to have more well
distinguished results [49].

• With the use of IEEE 802.11n, there is the possibility of using signal bandwidths of
either 20 MHz or 40 MHz. Theoretically, a higher bandwidth corresponds to a higher
data throughput; however, it reduces the number of channels that can be used [49].
When CSI sensing is performed, there is no discernible difference between using the
40 MHz bandwidth or the 20 MHz bandwidth [49].

• For the WAP, theoretically the higher the number of antennas, the better. If a person is
not on the sight line, it is almost impossible to detect any activities and movements
in the one-transmission-antenna-and-one-receiving-antenna configuration [49]. Since
the Intel 5300 NIC already provides three antennas, in this research it is assumed that
there are two antennas installed in the WAP utilized.

After understanding the technical limitations and suggested ways of using CSI sensing
for construction safety, the research team then consulted with 12 construction safety experts
and asked the experts to assist in determining the most common indoor space size that
needs to be monitored in a typical construction site for this research. The experts also
helped determine how much time and money he or she is willing to spend to set up such
a CSI sensing approach. As indicated previously, it is impossible to use CSI sensing to
monitor an excessively large indoor space. If the experts can know the most common
indoor space size that needs to be monitored, including the number of restricted areas such
as floor openings, and the time and money that can be paid, these conditions should be
regarded as the development goal of the CSI sensing approach.
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The research team invited 12 construction safety experts with more than 20 years
of experience, some with MRT station building construction experience, and some with
military engineering experience. The research team first explained the research background
and methods, and then asked experts to select the most suitable option from each of the
following questions:

1. According to your experience, please select the most common one from the following
space size and number of restricted areas (such as floor openings). The proposed
approach will be deployed to monitor the position of construction workers to avoid
incidents such as falls. Please choose the smallest space with the least restricted area
which needs to be monitored, since larger spaces or more restricted areas can be
monitored by deploying more than two sets of the proposed approach:

• Approximate 10 m2 with 5 restricted areas;
• Approximate 50 m2 with 5 restricted areas;
• Approximate 50 m2 with 10 restricted areas;
• Approximate 100 m2 with 5 restricted areas;
• Approximate 100 m2 with 10 restricted areas;
• Approximate 100 m2 with 15 restricted areas.

2. Any system that can sense a construction worker’s location needs to be calibrated.
Assume that the CSI sensing approach proposed in this study can be calibrated only
once a day as long as the construction site does not change significantly. Based on
your experience, how much time are you or safety managers willing to spend each
day performing the setting up and calibrating work?

• Approximate 10 min;
• Approximate 15 min;
• Approximate 20 min;
• Approximate 30 min.

3. Based on your experience, how much are you or safety managers willing to spend to
install such a real-time construction worker location monitoring system?

• Approximate USD 500;
• Approximate USD 1000;
• As long as the price and performance are reasonable, since construction safety is

priceless, such purchases should be mandatory.

For the first question, 10 of the 12 experts chose the “Approximate 50 m2 with
5 restricted areas” option. The experts said that even if the space is small, there are
still safety risks; however, it does not seem to be of much significance to monitor the
whereabouts of construction workers for the 10 m2 space case. As for the 50 m2 space case,
there are usually less than five restricted areas. The research team told the experts that
fewer restricted areas should only affect the data collection and computer calculation time.
In theory, the deep learning model will become simpler due to this change, and the rest of
the system will behave as usual.

For the second question, half of the experts chose 10 min and the other half chose
15 min. The experts said they can understand that the computer system needs to be
calibrated, but since the schedule of a construction project is always quite tight, too much
set-up time may make the system less practical.

As for the third question, the research team told the experts that this system is esti-
mated to be approximately USD 1000, and if it is built in large quantities, it should be able
to reach below USD 500. However, all of the experts chose the third option. The experts
said that since this system is not expensive, as long as the system is useful, construction
safety is the most important goal to be fulfilled.

The experts also expressed that although it is riskier for construction workers to be
outdoors, as long as they strictly wear PPE and safety managers can frequently check,
field accidents can be avoided. From the perspective of the project duration, construction
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workers spend more than two-thirds of their time indoors. Thus, various accidents are
more likely to occur here, especially when the lighting condition is not good. Furthermore,
indoor construction sites have the potential to cause the fall type of accidents, which may
vary from day to day. This is due to the fact that the construction project schedule is always
tight, and there may be limited resources such as floor covers, so construction workers
only use temporary fences to protect themselves. However, when there is insufficient light
during construction in the evening or at night, accidents may occur. If the proposed system
can reset the latest restricted area every day, and can operate in a dark environment, it
should be more in line with the actual needs of construction safety management.

3.2. System Architecture and Data Collection

The goal of the proposed system is to apply CSI sensing to identification of construction
workers’ positions and to prevent them from entering the indoor restricted areas. According
to the previous experts’ suggestions, this system should be more suitable for an indoor
space with the size about 50 m2. If the space size is much less than 50 m2, use of CSI sensing
is not recommended. If the space size exceeds 100 m2, it is recommended to virtually cut
into several compartments with an area of about 50–100 m2, and then use the proposed
approach one by one. Additionally, only 10–15 min of system installation and deep learning
training time should be available every day for one construction site. If there is no major
change in the construction site within a day, when construction workers approach any of
the restricted area, the system should issue a warning to avoid accidents. Finally, the system
cost should be less than USD 1000 and use of CSI sensing should detect the position of a
construction worker at night. Nevertheless, since the final two requirements are already
met by the existing CSI technique, the other requirements will be discussed further in the
following paragraphs.

Figure 4 shows the architecture and plane view of the proposed system for an indoor
space, whose size can be about 50–100 m2. There is a WAP device at one end of the indoor
space, which is connected to two WAP antennas. The other end of the indoor space has three
antennas connected to the Intel 5300 NIC, which is linked to a computer program, called
CSI-DL Analyzer, for data collection and analysis work with TensorFlow 2.10 installed. The
optimal configuration of such a room is to virtually cut the space into five lanes, each with
a width of about 2 m with just one antenna in either end, as shown by the dotted, virtual
line in Figure 4. Additionally, there is at most one restricted area in each lane, but there can
be any other common objects on the entire indoor space. Indeed, the shape of the indoor
space is preferably a rectangle or a square. If it is an irregular shape, it is recommended to
virtually cut the space into several quadrilaterals, and then deploy the system one by one
to help detect the positions of construction workers.

Regarding the data collection or training data preparation work, CSI-DL Analyzer
is currently not connected to Internet to avoid processing unnecessary network packets.
CSI-DL Analyzer will transmit network packets to the WAP device by using the “ping”
command at a frequency of 50 times per second to 1 time per second, and the default is
2 times per second. Since the WAP will respond, CSI-DL Analyzer will receive the response
packets to create the CSI-CSV data file. The format of this CSV file is simple, and one
CSI tuple (one row in a CSV file) consists of 13 columns. The first 12 columns contain
12 floating point numbers, and the 13th column is the location label. It should be noted
that since one network packet corresponds to 30 subcarrier groups, the location labels
of the 30 CSI tuples are all the same. During the analysis, only one location label will
be matched with the 12 columns of the 30 CSI tuples. Also note that although the CSV
file does not have any timestamp column, each tuple is in fact recorded according to the
order in which the CSI network packet is sent. In addition, since one CSI tuple contains
twelve floating-point numbers, each group of two numbers can form a CSI record. The first
floating-point number of a CSI record represents the value of the real part of the CSI, and
the second floating-point number represents the value of the imaginary part of the CSI,
which can be inputted into Equations (4) and (5) to obtain the amplitude and phase value.
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Hence, at a specific time point one CSI tuple for a certain subcarrier group in fact contains
six CSI records. This is due to the fact that the system has two WAP-end antennas and
three NIC-end antennas, by arranging and combining all of the antennas data, there will
be six CSI records, each of which corresponds to the transmission of the network packet
between a certain WAP-end antenna and a certain NIC-end antenna.
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Moreover, it is the Intel 5300 NIC driver that generates such CSI-CSV data files. In the
data collection process, a construction worker will be asked to carefully detour around a
certain restricted area (assume its name is “A”) at his normal walking speed for one minute.
During the one-minute period, a label called “Restricted Area A” will be placed in the
13th location column of the CSV file. Then, repeat these steps until all of the restricted
areas have been visited and their location labels are generated. In addition, the same
construction worker will be asked to walk in any of the safe indoor places for two to five
minutes, which implies that they must stay away from all of the restricted areas. Finally,
the “safe” location label will be created to associate with the related CSI tuples. It should
be also noted that since a restricted area requires one minute of CSI walking data, it is
recommended to generate the same number of minutes of CSI walking data for the safe
location. Additionally, the total data collection time should be less than or equal to 10 min.
Therefore, if the data collection work is carried out in 10 min, and if two network packets
are received per second, there are 36,000 CSI tuples (10 × 60 × 2 × 30), with the CSV file
size about 4 MB.

3.3. Design of Deep Learning Model

First, after collecting the CSI-CSV file for one indoor space for 10 min, the file was
directly inputted into the deep learning convolutional neural networks (CNN) method.
The location label of each CSI network packet served as the class attribute, and the first
12 columns of each CSI tuple were converted into the amplitude and phase values, serving
as 360 independent variables (i.e., each CSI network packet involving 30 subcarrier groups),
each corresponding to one CSI tuple, each with 12 amplitude and phase values. Based on
this data set, the training process took about 4 min. However, although sometimes the
CNN accuracy was more than 80%, the model stability was not good. For example, if the
CSI-CSV file of another room with similar conditions was selected for training, or if the
positions of some existing objects of the same indoor space were changed, the accuracy of
the CNN model varied significantly.
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In addition, on construction sites, a construction worker is constantly on the move,
and when she/he approaches a restricted area, s/he is likely to be in a safe area one step
ahead and a restricted area next. Therefore, it may be necessary to consider two consecutive
CSI tuples on the time axis during analysis. In practice, two consecutive CSI tuples on the
CSV file are likely to be two data of different CSI subcarrier groups at the same time point.
Thus, starting from the first CSI tuple, each 60 tuples of CSI data will be used to form a new
group, which implies that all of the CSI data pertaining to the first two time points are in
the first new group. The 61st-120th CSI tuples of the original CSV file will be used to form
the second new group to represent the third and fourth time points, and so on.

In deep learning fields, recurrent neural network (RNN), long short-term memory
(LSTM), and gated recurrent unit (GRU) algorithms are particularly suitable for analyzing
data with sequential properties, such as time series data, and human language and speech.
RNN can be described as the first-generation sequential data analysis algorithm, but it
is less able to handle long-term patterns. LSTM can handle patterns for a long time or
across different time intervals, but the analysis speed is slow and the memory usage is large.
GRU can be described as the third-generation improved algorithm, which has gradually
gained attention. In fact, these algorithms are different from conventional approaches in the
sense that they do not use principle component analysis (PCA) or related ways to extract
important features and can analyze data sets directly to obtain interesting patterns [21].
Therefore, based on the data pre-processing steps mentioned in the previous paragraph,
since every 60 CSI tuples form a new group, each new group of data can be described as the
objects in the construction site presenting CSI data every second. The order between the new
groups can represent certain human activities or gestures. In addition, the CSI technique
inevitably still has problems such as noise and disconnection when network packets are not
received correctly. If GRU is selected as the main algorithm for detailed sequence analysis,
the Conv1D algorithm, similar to CNN, can be used as either the coarse classifier or the
filter for noise data removal before the GRU algorithm can process the remaining data
set. In this way, good results may be obtained, as shown in the yellow part on the left of
Figure 5, which is also a common strategy to combine CNN and RNN-like algorithms.

Nevertheless, if only the steps in the yellow part of Figure 5 are used, the actual
prediction results are still unsatisfactory, and the accuracy of the model is around 85%, but
the stability is much improved. The accuracy of the model prediction is not high, probably
since the positions of the five antennas are not carefully considered. As shown in Figure 4,
if the object in the construction site is on the left side of Figure 4, the signal received by the
two antennas on the left side should have a greater influence. If the object is on the right
side of Figure 4, the signal received by the three antennas on the right side should have a
greater influence. Therefore, in order to consider the pairing of these antennas, the research
team proposed a deep learning architecture as shown in Figures 5 and 6. Firstly, the input
data is duplicated into three parts. Each part is described as follows:

• The first part contains the original structure, that is, a CSI tuple contains six CSI
records, each CSI record representing a WAP and NIC antennas combination.

• In the second part, the input data is further divided into three partitions, each partition
corresponding to one antenna at the NIC side (totally three antennas), plus two
antennas at the WAP side. Thus, in each partition, a new CSI tuple contains two
CSI records.

• In the third part, the input data is further divided into two partitions, each partition
corresponding to one antenna at the WAP side (totally two antennas), plus three
antennas at the NIC side. Thus, in each partition, a new CSI tuple contains three
CSI records.
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As shown in Figure 6, after Conv1D, MaxPooling and Dropbox have been performed,
respectively, each part of the CSI data will supposedly contain preliminary classification
results without noise values. The Concatenate class is utilized to combine the three parts
into one part again. It is also worth mentioning that each CSI tuple in the three parts or
in the combined part actually represents the same time point if these parts come from the
same input data. Since algorithms such as CNN are not designed to deal with sequential
relationships, such relationships between different time points are left to be analyzed by
GRU. Finally, GRU will clarify the sequential relationships, and Dense will help determine
the position label for each CSI network packet received.

In the training and testing stages, the K-fold Cross-Validation method has been utilized.
First, the data set is divided into k equal parts. The k-1 parts are used for training and the
remaining one part is used for testing. Finally, the process is repeated k times, as shown in
Figure 7, and the error can be obtained using Equation (7) below:

Error =
1
5
(∑5

i=1 Errori) (7)
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4. Evaluation and Discussion
4.1. Verification of the Proposed Approach

In order to verify the developed system, the research team selected two construction
sites: one is at the basement floor of a 26-story building in a certain place in New Taipei
City, and the other is at the second floor of a train station renovation project in a certain
place in Taoyuan City. The area of each test site is about 70 m2 and 80 m2, respectively,
and the shapes are shown in Figure 8, with five restricted areas marked in red font. For
the New Taipei City site, the data collection work was performed during the day, and six
construction workers were performing various tasks on site. For the Taoyuan City site, the
data collection work was performed in the evening, and two construction workers were on
site to clean up.
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The research team spent approximately 20 min collecting CSI data at each test site,
spending one minute walking around each restricted area for the first five minutes. Next,
the same person walked around the safe area of the site for the next five minutes, and the
research team asked field construction workers not to approach the restricted areas during
the data collection periods. Thus, a total of 10 min of CSI data was used to form the first
data set. Then, the research team moved some objects at random to change the scene of
the site a little. Finally, the research team repeated all of the activities in the first 10 min to
create the second data set. Therefore, each test site had two data sets, each with 10 min of
CSI data. Certainly, the first data set of each test site was used for model training and the
second was used for model testing.

Figure 9 shows the training results of the deep learning model for the first indoor
test space. As the epoch parameter increases, the model accuracy can finally reach 96%.
Figure 10 shows that the model loss value for the first indoor space decreases as the epoch
parameter increases. It should be noted that for this test, the CSI-DL Analyzer was equipped
with an Intel i7-10870H CPU with 16G of memory. In addition, the research team prepared
another laptop with the same specifications, but with a NVIDIA RTX-3060 (6G) GPU. The
model training time was 421 s without GPU, and only 56 s with GPU.
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Figure 10. The decrease curve of loss value under different epochs.

Table 1 shows the testing results of the first test site using non-training data (i.e., the
second data set). Table 2 shows the testing results of the second test site using non-training
data (i.e., the second data set). The accuracy of both tests is above 94%. When a CSI network
packet is collected and predicted using CSI-DL Analyzer, the time required is less than
one second.

Table 1. The confusion matrix for the first test site using the second data set (accuracy = 95.7%).

Actual Label

Predicted Label
R.A.1 R.A.2 R.A.3 R.A.4 R.A.5 Safe

R.A.1 62 1 0 1 0 2

R.A.2 0 58 1 0 1 1

R.A.3 1 0 60 1 0 2

R.A.4 1 1 1 61 1 3

R.A.5 0 0 1 1 57 1

Safe 1 0 0 3 1 280

Note: R.A is the abbreviation of the restricted area.

Table 2. The confusion matrix for the second test site using the second data set (accuracy = 94.5%).

Actual Label

Predicted Label
R.A.1 R.A.2 R.A.3 R.A.4 R.A.5 Safe

R.A.1 66 1 0 1 1 2

R.A.2 0 55 1 1 0 1

R.A.3 0 0 50 2 1 2

R.A.4 1 1 1 61 1 3

R.A.5 1 0 1 3 65 1

Safe 2 3 1 1 1 290

Note: R.A is the abbreviation of the restricted area.
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4.2. Discussion and Future Work

The research team then explained the results of the two test sites to the 12 experts. Except
for the system deployment time, the experts agreed that the current system achieved the goal
set when the system was developed. Other suggestions were summarized as follows:

• Concerning the effectiveness of the system, the experts appreciated that the prediction
accuracy of the model can reach more than 94%, and less than one second of prediction
time is needed. The experts believed that construction workers will be warned once
they approach any of the restricted areas.

• Concerning the efficiency of the system, the experts indicated that currently it takes
about 12 min to set up CSI-DL Analyzer and the antennas as well as to collect required
CSI data. But with model training, it may take up to eight minutes. The research team
suggested four solutions to the reduction of such system deployment time: (1) the first
solution is to use GPU to accelerate the model training time. For example, in the first
test site the model training time can be less than one minute if GPU is employed, so
the entire system deployment time is only 13 min. However, this approach is costly
and requires the purchase of GPUs in each CSI-DL Analyzer; (2) the second solution is
to transmit the data to the cloud through the network, execute it in the cloud server
with GPU, and then transmit the trained model back, which is worthy of follow-up
research; (3) the third solution is to reduce the time of walking in the safe area, which
is equivalent to shortening the data collection time. However, the research team has
encountered fewer safe area labels, which increase the number of misjudgments, so it
is debatable whether to do so; and (4) the final solution is to apply the transfer learning
method to each new data set collected. Theoretically, compared to the original training
data set, only about 20% of the CSI data for the new site would be needed so that the
deep learning model based on the existing construction site can learn to recognize the
new scene, which is worthy of further research.

• Some of the experts worried that an indoor space on a construction site can be very
large and that multiple CSI-DL Analyzers must be deployed in order to monitor all
personnel movements, which will increase the project’s time and cost. The experts
also suggested that since such an indoor space may not have partition walls at the
beginning, as the construction progresses, multiple small spaces will suddenly form.
The experts hoped that the CSI-DL Analyzer can still detect any movements in each
of the small rooms through the partition walls. The research team responded that
currently omnidirectional antennas are used in the CSI-DL Analyzer, but considering
the actual needs, directional antennas should be used instead. The reason is that in an
omnidirectional antenna each signal can be transmitted to any point in the 3D space.
For such an antenna, not only its transmission distance is not long, but the ability
to penetrate a wall is not good. Nevertheless, since the omnidirectional antennas of
CSI-DL Analyzer are deployed on the edges of the walls at both ends of an indoor
space, these antennas do not need to send or receive the signals from the other side of
the two walls. Instead, they need to transmit or receive the signals wandering in the
indoor space, thus making directional antennas more suitable. In general, a directional
antenna signal has better ability to pass through walls and a longer transmission
distance. The research team will use directional antennas in the future to explore how
the CSI-DL Analyzer can be used in a large indoor space, which can include partition
walls for internal small spaces.

• Finally, the experts indicated that since the CSI-DL Analyzer can detect human activi-
ties, although it was originally set to detect falls, it should also be able to detect other
types of construction safety accidents. In indoor spaces, another common types of
accidents are electric shocks and construction machine failures. To avoid the electric
shock type of accidents, it is necessary to also establish a restricted area and prohibit
construction workers from entering. This should be similar to prevention of the fall
type of accidents, but there may be strong electromagnetic waves in the vicinity of an
electric shock accident, which may affect the capability of the CSI-DL Analyzer. As
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for the construction machine failure type of accidents, it may be necessary to establish
different failure modes to predict and avoid, depending on the machine types. The
research team stated that CSI sensing under strong interference of electromagnetic
waves, similar to CSI sensing in large indoor spaces, requires the enhanced version
of Wi-Fi device and antennas. The research team will study this topic in depth and
present it in the next version of CSI-Dl Analyzer. As for the type of construction ma-
chine failures, the research team believed that the key is to predict whether a machine
is about to have problems, which can be determined by the appearance or geometry
change of the machine, such as stackers. Hence, in the future, before using these
machines every day, the CSI-DL Analyzer will first detect whether the machines are
abnormal or check them regularly.

Overall, the experts appreciated the CSI-DL Analyzer’s centimeter-level detection
capabilities. The fact that construction workers do not need to carry any sensors to be
detected is novel. Thus, the experts believed that this is very suitable for the working
environment of construction sites. In addition, the CSI-DL Analyzer’s capability to operate
in dark environments is also a very interesting feature from the experts’ perspective. For
some important construction sites or facilities, the safety management and control issues
are important. The experts believed that the CSI-DL Analyzer may be used in these sites
and look forward to its next version. Finally, in the part of shortening the deployment
time of the CSI-DL Analyzer, whether using transfer learning or cloud computing, the
core technology may be use of advanced database technology to store and manage CSI
data. Since the building-related data such as spatial layout and materials information can
be extracted from BIM tools [56,57], further elaborations on BIM and advanced database
technology for CSI sensing may be highly needed.

5. Conclusions

Construction safety has always been an uncompromising goal. With the trend of
sustainable development, there have been more and more mega building construction
projects and large renovation projects for old buildings around the world. Construction
workers in these projects indeed spend most of their time performing various tasks in
the indoor environment. However, such a working environment usually does not have
adequate safety protection measures. Thus, the CSI-DL Analyzer proposed in this research
was designed to immediately alert a construction worker once he or she approaches any
of the restricted areas in an indoor space. CSI-DL Analyzer can be quickly deployed
in a designated space to collect data and to perform model training. Inside the CSI-DL
Analyzer, a customized deep learning model architecture was developed, and CNN and
GRU methods were mixed to accommodate CSI data. The data from two real-world
test sites were collected, and the prediction accuracy of the model can reach more than
94%. The experts indicated that since the CSI-DL Analyzer can monitor the personnel
mobility effectively, even in a dark environment, and since construction workers do not
need to carry any sensors, the CSI-DL Analyzer certainly can help avoid the occurrence of
falling accidents.

There are still several challenges that need to be addressed in future work of the CSI-Dl
Analyzer, such as the detection of other types of safety accidents and the development of a
planning tool for the CSI-DL Analyzer deployment. In fact, use of BIM tools for such spatial
planning can be regarded as a recent trend [58–60]. Another feasible suggestion is to reduce
the cost of the CSI-DL Analyzer or to shorten its deployment time, which can expand
the application scope of the CSI-DL Analyzer and reduce the number of construction
safety incidents.
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