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Abstract: High dispersion of rock mass strength causes significant difficulties in strength prediction.
This study aims to investigate experimentally the strength prediction model for brittle damaged rock
with multiscale initial damage based on P-wave velocity using regression analysis. Intact dolomitic
limestone was collected from a deep metal mine in Southern China. Rock specimens with different
initial damage degrees were prepared through the application of uniaxial compressive stress. Both
intact rock and damaged rock specimens were tested for P-wave velocity and uniaxial compressive
strength (UCS). The test results indicate that the method of prefabricating initial damage to the rock
mass through uniaxial compressive stress is feasible. The UCS values of the damaged rock specimens
were correlated with the square of the P-wave velocity (linearly positive) and the initial damage
(linearly negative). The parameters of the new strength prediction model have a physical significance,
and its results are within the upper and lower limits of the 95% confidence interval of the UCS. The
strength prediction model considering multiscale initial damage based on P-wave velocity could
reasonably predict the strengths of brittle rock masses.

Keywords: strength prediction; P-wave velocity; damaged rock; initial damage; uniaxial compression test

1. Introduction

Different degrees of initial fissures render discrete strength distributions in engineer-
ing rock masses. The conventional method for obtaining the strength of a rock mass is
to average the test results. However, the accuracy of the results depends on the sample
size [1,2]. For convenient engineering geology application, the methods for strength pre-
diction of rock masses, e.g., the constitutive model method [3–5], the nonlinear regression
method [6], and the multi-factor neural network prediction [7–10], have gained signifi-
cant attention. Previous studies have investigated the empirical formula method based
on P-wave velocity and rock strength [11–14]. Although the empirical formula method
has a simple operation procedure and low computational time when using intact rocks
during laboratory tests, it is unclear if the applicability of the method can be extrapolated
to engineering rock masses.

Typically, a rock is a nonlinear and heterogeneous material. Rock failure is a process
involving the occurrence and development of microcracks and formation of connected
macro fissures and failure surfaces. In this process, a rock where only microscopic damage
has occurred is considered an intact rock [15,16]. The initial damage to a fissured rock mass,
without a fractured surface, is assumed macroscopically continuous. Rock masses with
various fissure developments can be regarded as damaged rocks with multiscale initial
damage [17–20]. According to damage mechanics and elastic wave theory [21–23], it is
feasible to characterize the damage to a rock mass through P-wave velocity. Therefore,
identifying the impact of multiscale initial damage on the strength of a rock, based on the
P-wave velocity, is the key to strength estimation of rock masses.
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The conventional method for setting the initial damage to rocks is to prefabricate the
fractures. It is difficult to collect natural rock specimens with comparable and controllable
initial damages. However, prefabricated fissures with parallel open crack surfaces are
significantly different from real cracks and fissures in rock masses [24,25]. Considering the
process and occurrence conditions of rock failure in deep rock masses, the multiscale crack
propagation state of a rock during vertical compressive loading is consistent with the real
initial crack development in the rock masses.

This study aims to experimentally investigate the strength prediction model for brittle
damaged rock with multiscale initial damage based on P-wave velocity. Five groups of
dolomitic limestone rock specimens, which were collected from a deep metal mine in
southern China, were pre-damaged under different uniaxial compressive stresses. Both
intact and damaged rock specimens were tested for P-wave velocity. The damaged rock
specimens were prepared for uniaxial compressive strength (UCS) tests. A strength pre-
diction model for rock masses, with P-wave velocity and strength, was established and
verified with the results from previous studies.

2. Materials and Methods
2.1. Test Instruments and Intact Rock Specimens

UCS tests with a loading control mode were performed in an INSTRON-1346 universal
material testing machine, and the P-wave velocity tests were conducted on the ADLINK
acoustic wave sensor apparatus, as shown in Figure 1. The instruments were calibrated
according to the verification and calibration standard, and the tests were carried out after
calibration was qualified.

Sustainability 2022, 14, 14768 2 of 16 
 

with various fissure developments can be regarded as damaged rocks with multiscale in-
itial damage [17–20]. According to damage mechanics and elastic wave theory [21–23], it 
is feasible to characterize the damage to a rock mass through P-wave velocity. Therefore, 
identifying the impact of multiscale initial damage on the strength of a rock, based on the 
P-wave velocity, is the key to strength estimation of rock masses. 

The conventional method for setting the initial damage to rocks is to prefabricate the 
fractures. It is difficult to collect natural rock specimens with comparable and controllable 
initial damages. However, prefabricated fissures with parallel open crack surfaces are sig-
nificantly different from real cracks and fissures in rock masses [24–25]. Considering the 
process and occurrence conditions of rock failure in deep rock masses, the multiscale crack 
propagation state of a rock during vertical compressive loading is consistent with the real 
initial crack development in the rock masses. 

This study aims to experimentally investigate the strength prediction model for brit-
tle damaged rock with multiscale initial damage based on P-wave velocity. Five groups 
of dolomitic limestone rock specimens, which were collected from a deep metal mine in 
southern China, were pre-damaged under different uniaxial compressive stresses. Both 
intact and damaged rock specimens were tested for P-wave velocity. The damaged rock 
specimens were prepared for uniaxial compressive strength (UCS) tests. A strength pre-
diction model for rock masses, with P-wave velocity and strength, was established and 
verified with the results from previous studies. 

2. Materials and Methods 
2.1. Test Instruments and Intact Rock Specimens 

UCS tests with a loading control mode were performed in an INSTRON-1346 univer-
sal material testing machine, and the P-wave velocity tests were conducted on the 
ADLINK acoustic wave sensor apparatus, as shown in Figure 1. The instruments were 
calibrated according to the verification and calibration standard, and the tests were car-
ried out after calibration was qualified. 

 

Rock  
specimen 

Transducer 

 
Figure 1. Testing instruments: (a) INSTRON-1346 universal material testing machine; (b) ADLINK 
acoustic wave sensor apparatus. 

Intact rock specimens (dolomitic limestone) were collected from a deep metal mine 
in Southern China. The specimens were cylindrical with dimensions of ϕ50 × 100 mm, as 
shown in Figure 2. The density (ρ) was 2704 kg/m3, the P-wave velocity (vp) was 5737 m/s, 
the elastic modulus (E) was 33.701 GPa, the Poisson’s ratio (μ) was 0.253, and the UCS was 
88.139 MPa. 

Figure 1. Testing instruments: (a) INSTRON-1346 universal material testing machine; (b) ADLINK
acoustic wave sensor apparatus.

Intact rock specimens (dolomitic limestone) were collected from a deep metal mine in
Southern China. The specimens were cylindrical with dimensions of φ50 × 100 mm, as
shown in Figure 2. The density (ρ) was 2704 kg/m3, the P-wave velocity (vp) was 5737 m/s,
the elastic modulus (E) was 33.701 GPa, the Poisson’s ratio (µ) was 0.253, and the UCS was
88.139 MPa.
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Figure 3. Multiscale crack propagation states of the intact rock during the uniaxial compressive 
loading. Note that σ is the uniaxial compressive stress (MPa), σ0 is the uniaxial compressive peak 
strength of the intact rock (σ0 = UCS), and ε is the axial strain (%). 
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2.2. Test Procedure

Considering the multiscale crack propagation states of the intact rock during uniaxial
compressive loading [26], different uniaxial compressive stresses (0.25σ0, 0.40σ0, 0.50σ0,
0.65σ0, and 0.75σ0) were applied for initial damage to the damaged rock specimens, as
shown in Figure 3.

Sustainability 2022, 14, 14768 3 of 16 
 

 
Figure 2. Intact rock specimens. 

2.2. Test Procedure 
Considering the multiscale crack propagation states of the intact rock during uniaxial 

compressive loading [26], different uniaxial compressive stresses (0.25σ0, 0.40σ0, 0.50σ0, 
0.65σ0, and 0.75σ0) were applied for initial damage to the damaged rock specimens, as 
shown in Figure 3. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100
 Test data

U
ni

ax
ia

l c
om

pr
es

siv
e 

str
es

s, 
σ 

/M
Pa

Axial strain, ε /%

σ0=UCS

0.75σ0

0.65σ0

0.50σ0

0.40σ0

0.25σ0Crack closure

Micro-crack 
initiation

Crack growth

Accelerated crack
propagation

Crack penetration and
macro fissure appear

 
Figure 3. Multiscale crack propagation states of the intact rock during the uniaxial compressive 
loading. Note that σ is the uniaxial compressive stress (MPa), σ0 is the uniaxial compressive peak 
strength of the intact rock (σ0 = UCS), and ε is the axial strain (%). 

The brittle failure threshold of the rock is 0.75σ0. When the uniaxial compressive 
stress exceeds 0.75σ0, the rock specimen will quickly reach the uniaxial compressive peak 
strength and lose its bearing capacity [26]. 

When the uniaxial compressive stress exceeds 0.75σ0 (the brittle failure threshold of 
the rock), the rock specimen quickly reaches the uniaxial compressive peak strength and 
loses its bearing capacity [26]. 

For each group of damaged rock specimens with different multiscale initial damage 
degrees (0.25σ0, 0.40σ0, 0.50σ0, 0.65σ0, and 0.75σ0) and the intact rock, a series of UCS tests 
were conducted on sixty (ten for each group) specimens. The P-wave velocity tests were 
performed prior to the UCS tests. The test procedure is illustrated in Figure 4. 

Figure 3. Multiscale crack propagation states of the intact rock during the uniaxial compressive
loading. Note that σ is the uniaxial compressive stress (MPa), σ0 is the uniaxial compressive peak
strength of the intact rock (σ0 = UCS), and ε is the axial strain (%).

The brittle failure threshold of the rock is 0.75σ0. When the uniaxial compressive
stress exceeds 0.75σ0, the rock specimen will quickly reach the uniaxial compressive peak
strength and lose its bearing capacity [26].

When the uniaxial compressive stress exceeds 0.75σ0 (the brittle failure threshold of
the rock), the rock specimen quickly reaches the uniaxial compressive peak strength and
loses its bearing capacity [26].

For each group of damaged rock specimens with different multiscale initial damage
degrees (0.25σ0, 0.40σ0, 0.50σ0, 0.65σ0, and 0.75σ0) and the intact rock, a series of UCS tests
were conducted on sixty (ten for each group) specimens. The P-wave velocity tests were
performed prior to the UCS tests. The test procedure is illustrated in Figure 4.
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3. Results
3.1. Analysis of the Typical Stress–Strain Curves

Figure 5 shows the typical stress–strain curves of the intact and damaged rock specimens.
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Figure 5. Typical stress–strain curves of the rock specimens.

Figure 5 indicates that all the damaged rock specimens sustained brittle failure, which
is consistent with the failure mode of the intact rock. No post-peak strengths were detected.
As the degree of the initial damage increased, the peak stress (σp) decreased monotonically,
and the peak axial strain (εp) increased significantly. These results are consistent with the
results demonstrated by [27].

3.2. Multiscale Initial Damage Investigation

The damaged rock specimens with different initial damage degrees are shown
in Figure 6.
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Figure 6. Damaged rock specimens with different initial damage degrees: (a) 0.25σ0; (b) 0.40σ0;
(c) 0.50σ0; (d) 0.65σ0; (e) 0.75σ0. Note that the red circles represent small areas of macrodamage on
the end surfaces of the specimens.

Figure 6 shows that there were distinct macro breakages in the corners of the damaged
rock specimens with initial damage degrees of 0.40σ0, 0.50σ0, 0.65σ0, and 0.75σ0. The
greater the initial damage degree, the more small areas of macrodamage on the end surfaces
of the damaged rock specimens.

The microcracks inside the damaged rock specimens were observed through scanning
electron microscopy (SEM), as shown in Figure 7.
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Figure 7. SEM results of the rock specimens (1200 magnification). Note that the red lines with
different widths are the cracks identified through SEM.

Figure 7 shows that there were extremely few thin microcracks inside the intact rock
and the damaged rock specimens at an initial damage degree of 0.25σ0. Microcracks
started to develop from an initial damage degree of 0.40σ0, and the initial growth and
increase was observed at an initial damage degree of 0.50σ0. The open crack surfaces at the
initial damage degrees of 0.65σ0 and 0.75σ0 increased significantly. The multiscale crack
morphology is consistent with the findings for a real rock mass reported by [16].

Therefore, it is feasible to prepare the damaged rock specimens with multiscale ini-
tial cracks under various uniaxial compressive stresses. The multiscale initial damage
to the damaged rock specimens under different uniaxial compressive stresses included
microcracks (micron dimension), macro fissures, and small areas of outside breakage
(millimeter-scale).

3.3. Multiscale Initial Damage Characterization Based on P-Wave Velocity

According to the elastic wave theory [21], the P-wave velocity in a continuous
medium is:

vp =

√
E(1− µ)

ρ(1 + µ)(1− 2µ)
(1)

where vp is the P-wave velocity (m/s), E is the elastic modulus (GPa), ρ is density (kg/m3),
and µ is the Poisson’s ratio.

It was assumed that the multiscale crack propagation process in the rock (as shown
in Figure 3) was macroscopically continuous. Therefore, the multiscale initial damage to
the rock was macroscopically continuous. Here, multiscale referred to the macroscopic
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and microscopic physical dimensions. The principle diagram of the P-wave propagation is
shown in Figure 8.
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Theoretically, the E and µ of a rock change dynamically during loading, as shown in
Figure 3 [22]. Therefore, the vp, E, and µ of the damaged rock specimens with different
initial damage degrees were different from each other. It is theoretically feasible to pre-
damage an intact rock under a uniaxial compressive stress and then predict the strength
of the damaged rock specimens according to the P-wave velocity. The expected values
of vp and E of the intact rock and damaged rock specimens are listed in Table 1.

Table 1. Expected values of vp and E of the intact rock and damaged rock specimens.

P-Wave Velocity, vp/m·s−1 Elastic Modulus, E/GPa

Intact rock 5737.45 30.3390
0.25σ0 damaged rock 5730.97 30.0992
0.40σ0 damaged rock 5638.75 28.7756
0.50σ0 damaged rock 5458.41 26.6792
0.65σ0 damaged rock 5270.98 23.4593
0.75σ0 damaged rock 5166.67 22.5601

Table 1 shows that the vp and E of the damaged rock specimens with an initial damage
degree of 0.25σ0 approached the results of the intact rock. This is because an initial damage
degree of 0.25σ0 corresponded to the crack closure stage in an intact rock (Figure 3); the
damage has not yet occurred, and the E and µ of the rock have not changed substantially.

Rock damage was characterized with the P-wave velocity as follows [28]:

D0 = 1− E
E0

= 1−
v2

p

v2
0
= 1− (1− η)2 (2)

where D0 is the initial damage in the rock, E is the elastic modulus of the damaged rock
specimen, E0 is the elastic modulus of the intact rock, vp is the P-wave velocity of the
damaged rock specimen, v0 is the P-wave velocity of the intact rock, vp ≤ v0, and η is
the vp decay rate (%), 0 ≤ η ≤ 1.

Figure 9 shows the initial damage to the damaged rock specimens.
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damage degree of 0.25σ0 corresponded to the crack closure stage in an intact rock (Figure 
3); the damage has not yet occurred, and the E and μ of the rock have not changed sub-
stantially. 

Rock damage was characterized with the P-wave velocity as follows [28]: 
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As shown in Figure 9, the actual initial damage to the damaged rock specimens was
significantly less than the set initial damage degree values. Nonetheless, as the set initial
damage degree value increased, the initial rock damage D0 linearly increased, as did vp
and the decay rate η. Therefore, it is reasonable to characterize the rock damage by η.

3.4. UCS and the 95% Confidence Interval

It was assumed that the UCS test values of the rock specimens conformed to a normal
distribution. The sample size for each rock specimen group was 10. When the confidence
level (1 − α) was 95%, the result of the Student’s t test was tα/2(n − 1) = 2.262 [29]. The
UCS of the rock specimens and the 95% confidence intervals are listed in Table 2. Xi is the
test sample of UCS, i = 1, 2, 3, . . . , 10, X is the mean value of Xi, and s2 is the quadratic
mean deviation of Xi. The confidence interval is

[
X− s√

n tα/2(n− 1), X + s√
n tα/2(n− 1)

]
.

Table 2. UCS values of the rock specimens and the 95% confidence interval.

Label of Each Group of Specimens Intact Rock
0.25σ0

Damaged
Rock

0.40σ0
Damaged

Rock

0.50σ0
Damaged

Rock

0.65σ0
Damaged

Rock

0.75σ0
Damaged

Rock

No. 1 86.381 85.923 83.246 77.379 72.583 69.581
No. 2 87.284 86.354 83.579 77.726 72.943 69.670
No. 3 88.065 86.927 84.623 78.534 73.058 70.693
No. 4 88.268 87.026 84.865 79.142 73.267 70.761
No. 5 90.697 87.461 85.137 79.390 73.852 71.310
No. 6 89.165 86.239 83.824 77.768 72.583 70.015
No. 7 85.971 86.532 84.116 77.674 72.807 70.417
No. 8 87.029 86.903 84.261 78.033 72.941 70.176
No. 9 88.775 87.064 84.586 78.131 73.367 70.482

No. 10 90.782 87.348 85.116 78.377 73.619 70.906

X =
n
∑

i=1
Xi 88.242 86.778 84.335 78.214 73.102 70.4011

s2 =
n
∑

i=1

(
Xi − X

)2
/(n− 1) 2.740 0.248 0.417 0.427 0.178 0.301

[
X− s√

n tα/2(n− 1), X + s√
n tα/2(n− 1)

] [87.058,
89.426]

[86.421,
87.134]

[83.873,
84.797]

[77.748,
78.682]

[72.780,
73.404]

[70.009,
70.794]

Table 2 shows that X of the UCS values of the rock specimens is significantly negatively
correlated with the initial damage degree. Thus, it is feasible to predict the UCS of a rock
mass based on its initial damage.
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4. Strength Prediction Model
4.1. Model Fit and Parameter Analysis

The relationship between the UCS and D0 of the rock specimens is shown in Figure 10.
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Figure 10 demonstrates that the UCS values of the rock specimens is linearly negatively
correlated with D0, giving the fitted relationship as:

UCS = UCS0(1− δD0) (3)

where UCS0 is the theoretical UCS value of the intact rock (MPa), and δ is the correction
factor related to the material properties.

Based on Equation (2), the boundary condition of Equation (3) is 0 ≤ D0 ≤ 1.
As shown in Figure 10, the reference values of the strength prediction model parame-

ters of dolomitic limestone were UCS0 = 87.475 MPa and δ = 1.051. The fitted results from
Equation (3) were within the upper and lower limits of the 95% confidence interval of the
UCS. R2 was higher than 0.99, which means that Equation (3) is accurate.

Substituting Equation (2) into Equation (3) yields:

UCS = UCS0δ
v2

p

v2
0
+ UCS0(1− δ) (4)

Equation (4) shows the strength prediction model of the rock mass, considering the
multiscale initial damage based on the P-wave velocity, as shown in Figure 11.
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The relationship between the UCS and vp of the rock specimens with different initial
damage degrees is shown in Figure 12.
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degrees: (a) 0 (Intact rock); (b) 0.25σ0; (c) 0.40σ0; (d) 0.50σ0; (e) 0.65σ0; (f) 0.75σ0.

Figures 11 and 12 show that all the UCS values of the rock masses are linearly positively
correlated with the square of vp.

Figure 12 also indicates the following.

(1) Without considering the initial damage degree, the fitting curve slopes of the relation-
ships between UCS and vp are essentially the same, but the intercepts are different.
This means that the rock mass needs to be identified and classified in the field applica-
tions of engineering geology. The corresponding empirical formula can then be used
for strength estimation.

(2) The parameters of the empirical formulas, as shown in Figure 12, do not have any
physical significance. Different empirical formulas can lead to prediction results with
slightly different R2 values. It is particularly subjective and is similar to the direct
empirical fitting of the strength and vp obtained in previous studies [11–14].

Therefore, as shown in Figure 11, the strength prediction model of the rock mass consid-
ering multiscale initial damage based on P-wave velocity (Equation (4)) is more reasonable.

4.2. Adaptability Analysis of the Strength Prediction Model
4.2.1. Adaptability of the Prediction Model to Splitting Tensile Strength

Although rock masses are more damaged owing to compression loading in engineering
geology projects, the splitting tensile strength (TS) is an important index of rock mass
strength considering the impact of mining disturbances [30]. A series of splitting tensile
strength tests were carried out in an INSTRON-1346 universal material testing machine
(Figure 1) on damaged rock specimens with different initial damage degrees (Figure 6). The
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test procedure was the same as that of the UCS tests (Figure 4). The results of the splitting
tensile strength tests on the damaged rock specimens with different initial damage degrees
are shown in Figure 13.
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Figure 13. Results of the splitting tensile strength tests: (a) relationship between TS and D0;
(b) relationship between TS and vp.

As shown in Figure 13, the splitting tensile strength prediction model of the rock mass
considering multiscale initial damage based on the P-wave velocity can be expressed as

TS = TS0δ
v2

p

v2
0
+ TS0(1− δ) (5)

where TS0 is the theoretical TS value of the intact rock (MPa).
The reference values of the splitting tensile strength prediction model parameters for

the dolomitic limestone were TS0 = 4.392 MPa and δ = 1.462. Equations (5) and (4) have the
same form, and R2 in Equation (5) was higher than 0.97, indicating a good fit.

The strength prediction model of a rock mass considering multiscale initial damage
based on the P-wave velocity can predict both UCS and splitting tensile strength, which
can be rewritten as follows:

SR = S0δ
v2

p

v2
0
+ S0(1− δ) (6)

where SR denotes the strength of the rock mass (MPa) and S0 is the theoretical value of SR
of the intact rock (MPa).

4.2.2. Adaptability of the Prediction Model to Other Rocks

The strength prediction model (Equation (6)) was used to fit the relationships between
the SR and vp of different rock specimens, as demonstrated in previous studies [22,31–34],
as shown in Figures 14–16.
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Figures 14–16 indicate the following.

(1) The fitting lines of the strength prediction model were highly consistent with the
test data points of limestone, silty sandstone, fine sandstone, medium sandstone,
mudstone, material similar to limestone, and intermittent jointed rock mass. More
than 73% of the R2 values were greater than 0.80, indicating that the strength prediction
model could offer good adaptability to other rocks.

(2) Limited strength data for limestone and limestone rock masses were available in [31]
(Figure 14), and the influence of data discreteness cannot be ruled out. The strength
failure mode of mudstone in [34] was plastic failure, which differed from that of the
brittle rock masses (Figure 15). The R2 value of the intermittent jointed rock mass
reported by [22] was the lowest at 0.2655 (Figure 16). This is because Equation (6)
was established on the assumption that the initial damage to the rock mass was
macroscopically continuous. However, the initial damage to the intermittent jointed
rock mass was macroscopically discontinuous. Therefore, the strength of mudstone
and intermittently jointed rock mass cannot be predicted using the strength prediction
model for brittle rock masses (Equation (6)).

(3) Based on the comparability of the test results, only the three groups of rock specimens
(silty sandstone, fine sandstone, and medium sandstone) in Figure 14 are compared.
The larger the rock particle size, the smaller the correction parameter δ of the model
(Equation (6)).

Conclusively, the strength prediction model of the rock mass considering the multiscale
initial damage based on the P-wave velocity (Equation (6)) can be used to obtain the
strengths of brittle rock masses directly in engineering geology projects.

4.2.3. Comparison with Other Strength Prediction Models

Many previous studies have provided empirical formulas for the relationships between
the SR and vp of rock masses [11–14]. Comparisons between the theoretical results and test
data of the strength prediction model (Equation (6)) and other empirical formula models
are shown in Figure 17.
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Figure 17 shows that only the results by [11] are relatively close to the test data.
However, they did not consider the impact of the initial damage degree of the rock mass
on the prediction results. In addition, the fitting of the empirical formula requires a large
amount of rock strength data. All the coefficients of the empirical formula are fitting
parameters, which have no practical significance. The empirical formula used in previous
studies cannot be widely used in the strength estimation of other engineering rock masses.

Therefore, the strength prediction model for brittle rock masses considering the multi-
scale initial damage based on the P-wave velocity (Equation (6)) is more reasonable and
its application is more convenient. There is only one unknown parameter δ in the model
(Equation (6)), which is closely related to the material properties of rocks, considering the
initial damage characteristics.

5. Discussion

Theoretically, the strength of a rock mass with a fractured surface and joint structure
can be obtained using the new strength prediction model established in this study. However,
as shown in Figure 16, the R2 value of the intermittent jointed rock mass reported by [22]
was 0.2655, indicating a poor fit. This study limits the assumption that the initial damage to
the rock mass is regarded as macroscopically continuous. On the contrary, a rock mass with
a fractured surface has a greater variability in strength. A larger sample size is required
to obtain predictions that are more accurate. Conclusively, the data distribution of the
intermittent jointed rock mass, shown in Figure 16, exhibits a linear growth trend.

Simultaneously, the axial strain generated in the crack-closure stage was higher than
that in the intact rock (Figure 5). As the initial damage degree increased, the strain generated
in the crack-closure stage increased. This was because there were distinct fractures at the
corners of the damaged rock specimens (Figure 6). The interface of the axial actuator of the
apparatus (Figure 1) took a long time to fully contact the end faces of the damaged rock
specimens. The greater the initial damage degree, the more fractures on the damaged rock
specimens, and the larger the strains generated in the crack-closure stage.

In general, the strength prediction model for brittle rock masses established in this
study, considering the multiscale initial damage based on the P-wave velocity, is relatively
reliable, and its application is more convenient than that of previous models.
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6. Conclusions

Based on the results of the uniaxial compressive strength tests and P-wave velocity
tests, a new strength prediction model for brittle rock masses, considering multiscale
initial damage based on P-wave velocity, was established. The following conclusions can
be drawn:

(1) The strength prediction model for brittle rock masses considering multiscale initial
damage based on P-wave velocity was proved to be reasonably practical, and its
parameters had physical significance. The larger the rock particle size, the smaller the
correction parameter of the strength prediction model.

(2) The uniaxial compressive strength of the rock mass was linearly positively correlated
with the square of the P-wave velocity and linearly inversely correlated with the
initial damage. The line-fitted results were within the upper and lower limits of the
95% confidence interval of the UCS.

(3) As the initial damage degree increased, the initial rock damage increased linearly,
the P-wave velocity decay rate increased, the strength decreased monotonically, and
the peak axial strain increased significantly. It was proved to be feasible to prepare
damaged rock specimens with multiscale initial cracks under various uniaxial com-
pressive stresses.

(4) The strength prediction model, e.g., the uniaxial compressive strength prediction
model and the splitting tensile strength prediction model, could offer good adapt-
ability to other rocks, which can be used to obtain the strength of brittle rock masses
directly in engineering geology projects.
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