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Abstract: All over the world, people widely use granites and ceramic tiles in their residential
establishments. Information concerning the radiological properties of such materials reveals how
to ensure the sustainability of their safe use in terms of these properties. In the present work, the
distribution of the terrestrial radioisotopes U-238 (Ra-226), Th-232, and K-40 for 23 different brands of
Egyptian commercial granites and ceramic tiles samples (widely used domestically and exported) was
determined using gamma radiation spectroscopy. This process pinpoints the possible radiological
health risks related to gamma ray exposure and radon gas resulting from the use of these materials
indoors. The concentration values of the aforementioned radioisotopes in the examined samples
were compared to the corresponding global average values (GAVs) of the UNSCEAR and to those
available in other countries. The overall average concentrations for U-238, Th-232, and K-40 in the
total samples were observed to be 46.17 ± 2.81 (less than its GAV), 51.65 ± 2.35 (slightly above
its GAV), and 701.62 ± 40.60 Bq/kg (1.4 times greater than the GAV), respectively. The related
radiological parameters and indices were calculated and compared to the prescribed limits set by
commissions and organizations concerned with radiation protection (the WHO, ICRP, UNSCEAR,
and EC) to ensure the safe use of the investigated granites and ceramic tiles. The assessed indices and
parameters fall within the recommended values and safety limits. In conclusion, there is no risk from
using the granites and ceramic tiles under investigation in residential facilities.

Keywords: natural radioactivity; gamma rays; radon gas; radiation exposure; building materials;
granites; ceramic

1. Introduction

For humans, exposure to natural ionizing radiation is unavoidable. Exposure arises
primarily from both terrestrial and cosmogenic radioisotopes. Terrestrial radioisotopes
(K-40, U-238, and Th-232) exist naturally in all different environmental media, including
air, water, food, soil, rock, building materials, etc. [1–3]. The existence of the abovemen-
tioned radioisotopes in building materials is responsible for delivering about 85% of the
radiation dosage to the world’s population [3,4]. Accordingly, providing information on
terrestrial radioisotope concentrations and distributions in building materials is essen-
tial and it is required to monitor contamination originating from their radioactivity in
residential environments.

The natural radioactivity level in building materials is confined in the terrestrial
radionuclide concentrations in the geological materials from which they are derived [4,5],
i.e., it varies according to the geological origin and geochemical characteristics of the
constituent materials. Additionally, the radiation dose received is controlled by several
factors, including residences places ventilation, and kinds [1].

In fact, gamma rays and radon gas (Rn-222 and Rn-220) are the most significant
products of the terrestrial radioisotopes’ radioactivity in building materials, in light of the
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radiological hazards to the population [6]. Gamma rays are responsible for the external
exposure of populations and their dose comes mainly from Tl-208 and Ac-228 of the Th-232
disintegration chain, from Pb-214 and Bi-214 derived from R-226 of the U-238 disintegration
chain, and from K-40. On the other hand, radon gas (specifically Rn-222) which originates
as a result of radium disintegration (Ra-226 of the U-238 chain), is responsible for the
internal exposure [7]. According to the UNSCEAR [6], the average yearly external exposure
indoors due to gamma rays was assessed as 0.41 mSv, while the internal exposure from
Rn-222 inhalation was about 1.15 mSv. It is worth mentioning that several epidemiologi-
cal investigations conducted in many countries have demonstrated substantial evidence
linking raised levels of radon exposure in houses to an increased risk of lung cancer [8–10].

Construction materials that typically come from the soil and rocks of the earth may be
categorized into three groups: structural materials, covering materials, and additive raw
materials. Structural materials such as cement, concrete, mortar, and clay bricks, etc., are
primarily used for building structures. The covering materials (granite, ceramic, marble,
etc.) are employed for ornamentation and insulation purposes, whereas fly ash, bauxite,
phosphogypsum, etc., are the additive raw materials used as optional components for
modifying certain properties of building materials [1]. In light of global recommenda-
tions, determining the natural radioactivity levels of construction materials is crucial for
assessing the radiological risks owing to radiation exposures as well as for developing
national standards and guidelines for these materials. Recently, as a result of rising social
concern, there has been a high worldwide interest in studying the natural radioactivity of
construction materials as well as investigating their impact on the public (e.g., [4,5,11–20]).
To the best of the authors’ knowledge, important international studies on natural radioac-
tivity measurements and radiological hazards evaluation for granites and ceramic tiles
were published in the Refs. [1,2,9,18,19,21–39], just to name a few. Nevertheless, although
granites and ceramic tiles of various brands are widely used in residences for interior and
exterior ornamentation and decoration purposes in Egypt, no detailed studies have been
conducted to determine the activity levels of terrestrial radioisotopes in these materials.

The present work investigates in depth the natural radioactivity of twenty-three well-
known Egyptian brands of commercial granites and ceramic tiles samples widely used in
Egypt and abroad, as well as the potential health risks associated with their use indoors.
Moreover, its overall goal is to complete a radiometric study on some sample Egyptian
commercial granites and ceramic tiles which have not been previously covered. Hopefully,
the findings of the present work and the accompanying assessments will establish baseline
data for monitoring radioactive pollution in residential environments and will provide
adequate public protection recommendations.

2. Experimental Arrangements
2.1. Sample Preparation

A total of 107 tile samples (42 granite samples plus 65 ceramic samples) from 23 dif-
ferent brands were purchased from Egyptian building materials markets and suppliers.
The commercial ceramics and granites studied are among the best widely used decorative
building materials brands in Egypt. Before transporting the samples to the lab, they were
properly catalogued, labeled, and named according to their popular names known in both
the global and domestic markets (Table 1). More detailed information, particularly for
granite, is available at (www.stonecontact.com, accessed on 19 June 2022). The samples
have been given identification numbers in brackets, which are (1 to 42) for granites, and
(43 to 107) for ceramic tiles. Then, each sample was individually ground to a powder, to
avoid contamination between samples, and sieved through a sieve (200 µm mesh). All
the samples were oven-dried for 5 h at 105 ◦C to remove the moisture content. These
prepared samples were subsequently weighed (between 600 g and 850 g) and sealed in
plastic cylindrical beakers (48 mm radius, 82 mm height, and 0.5 mm thickness) for more
than 4 weeks to guarantee access to the secular equilibrium between parent radioisotopes
and daughters in the natural disintegration series (232Th and 238U).

www.stonecontact.com
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Table 1. Granites and ceramic tiles of various brands used in Egypt.

Tiling Material Brand Name Brand ID Sample Size Sample Origin

Granite Bianco Halayeb GBiHa 3 Abu Ghusun, Red Sea, Egypt
Brown Hurgada GBrHu 3 Hurghada, Egypt

Imperial Red GIR 3 Aswan, South of Egypt
Karnak Grey GKG 3 Aswan, South of Egypt
Negro Aswan GNA 4 Aswan, South of Egypt

Rosa Aswan Dark GRAD 3 Aswan, South of Egypt
Rosa El Hody Light GRHL 3 Aswan, South of Egypt

Rosa Abu Simble GRAS 4 Wadi Halfa, Aswan, Egypt
Rosa Sardo Sinai GRSS 3 Sinai, Egypt

Red Aswan GRA 3 Aswan, South of Egypt
Red Nefertary GRN 4 Aswan, South of Egypt

Red Forsan GRF 3 Wadi Forsan, northeastern Egypt
Yellow Ghazal GYG 3 Sinai, Egypt

Ceramic Alfa CAL 7 6th of October City (2), Giza, Egypt
Art CAR 7 6th of October City (2), Giza, Egypt

Cleopatra CCL 5 10th of Ramadan City (1), Cairo, Egypt
Gemma (Al-Jawhara) CGE 7 El Sadat City Desert, Menoufia, Egypt

Gloria CGL 6 Nasr City, Cairo, Egypt
Labotie CLA 6 10th of Ramadan City, Sharqia, Egypt

Pharaohs (Alfaraeina) CPH 7 Al Azbakeya, Cairo, Egypt
Prima CPR 7 5th Industrial zone, Menoufia, Egypt
Royal CRO 6 Al Obour, Al Qalyubia, Egypt

Venezia CVE 7 6th of October City (2), Giza, Egypt

2.2. Gamma Spectrometric Analysis

To measure the activity concentrations of the radioisotopes (γ-emitters) in the sam-
ples, a low-background γ-rays spectroscopy system consisting of a semiconductor HPGe
(Hyper-Pure Germanium) detector (Model GR4020, Canberra, Meriden, CT, USA) with
a 40% relative efficiency and energy resolution (FWHM) of 2 keV at the 1332 keV γ-line
(Co-60) was used. In addition, the system contains a suitable lead shield (Model 747E, Can-
berra, USA) surrounding the detector to prevent more than 98% of the external background
radiation from reaching the detector during the analysis. The gamma spectrums were
acquired and analyzed utilizing the Genie-2000 software (Version 3.3, Canberra, USA) [40]
coupled with a multichannel analyzer (Model DAS-1000, Canberra, USA). For calibrat-
ing the detector’s energy and efficiency, the LabSOCS (Laboratory Sourceless Calibration
Software) designed using the features of geometry composer and gamma analysis within
the Genie-2000 software, was used. The Genie-2000 software also contains the detector’s
characterization files created based on the system manufacturer’s fundamental calibration
tests (Canberra). To authenticate the efficiency data provided by LabSOCS, measurements
were completed in our laboratory with a set of gamma calibration sources (Co-60, Cs-137,
Ba-133, Mn-54, Zn-65, and Na-22), which revealed a significant agreement (90%) between
empirical and mathematical peak efficiency.

Each prepared sample was put on the detector for a time period no less than 12 h in
order to obtain an accurate counting statistic for gamma lines (photo-peaks) of importance.
Additionally, the background level in the laboratory was measured using an empty beaker
in similar conditions. The K-40 radionuclide was determined directly by its own gamma
line intensity (1460.8 keV). As for U-238 (Ra-226), it was specified through its progeny
Bi-214 (1764.5, 1120.3, and 609.3 keV) and Pb-214 (351.9 and 295.2 keV). On the other
hand, Th-232 was identified via its daughters Ac-228 (968.9, 911.2, and 338.3 keV), Tl-208
(2614.5 and 583.2 keV), and Pb-212 (238.6 keV). The activity concentration (AC) and the
uncertainty in activity concentration (UAC) of the previously mentioned radionuclides
in each sample were calculated from their corresponding gamma line intensities taking
into account the sample mass, counting time, gamma decay transition probabilities, and
detector efficiencies [41–43].
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Activity Concentrations Estimation

The activity concentration (AC) in the granites and ceramic tiles samples under inves-
tigation was estimated as follows [41]:

AC[Bq/kg] =
Nc,E

Pγ,E·εE·Ms
(1)

where Nc,E is the net count rate resulting from subtracting the count rate of the peak at
energy E in the sample spectrum minus that of the background spectrum at the same
energy E, Pγ,E denotes the probability of emitting gamma radiation with energy E for
the radioisotope of interest, εE is the detector absolute efficiency at energy E, and Ms
refers to the sample mass. Moreover, using the equation below, the uncertainty in activity
concentration, UAC, was calculated based on uncertainties in Nc,E, Pγ,E, εE, and Ms [43]:

UAC = AC

√[UNc,E

Nc,E

]2

+

[UPγ,E

Pγ,E

]2

+

[
UεE

εE

]2
+

[
UMs

Ms

]2
(2)

3. Estimation of Radiological Risks

For understanding the effect of radiological hazards on human health when using the
investigated granites and ceramic tiles as tiling materials in buildings, several radiation
hazard indices were estimated. The radium equivalent activity (Raeq), gamma index (Iγ),
indoor absorbed gamma dose rate (Din), yearly effective gamma dose rate (Ein), and excess
lifetime cancer risk (ELCR) were used to investigate gamma radiation risks, while the alpha
index (Iα), radon exhalation rate (RX), radon concentration (CRn), and yearly effective dose
due to radon (ERn) were evaluated in order to investigate the potential radon risks.

3.1. Radium Equivalent Activity (Raeq)

The Raeq is one of the most effective radiological indices for determining gamma
radiation hazards due to the radioisotopes K-40, U-238 and Th-232 content in tiling ma-
terials, considering the non-uniform distribution of these radioisotopes in matter. As per
Beretka et al. [44], Raeq is described by the following equation:

Raeq

[
Bq kg−1

]
=

(
ACU

370
+

ACTh
259

+
ACK

4810

)
× 370 (3)

where ACU, ACTh, and ACK are the specific activity concentrations of the radioisotopes
U-238 (Ra-226), Th-232, and K-40, respectively. In fact, the Raeq reflects the weighted
total of the abovementioned three radioisotopes’ concentrations within materials under
the premise that gamma dose rates from 4810 Bq/kg of K-40, 259 Bq/kg of Th-232, and
370 Bq/kg of U-238 (Ra-226) are almost equal.

From a radiation protection perspective, the ceramic and granite tiles studied herein
are safe provided that their Raeq levels are not above 370 Bq/kg [44] (permissible limit)
corresponding to a yearly effective dosage of 1.5 mSv [41,45].

3.2. Gamma Index (Iγ)

The Iγ is taken into consideration as a monitoring tool specifying whether construction
materials are safe to use or not. Considering that the external exposure due to gamma
radiation from the tiling (superficial or covering) materials has a limit of 1 mSv/year, the
Iγ is adopted by the European Commission [46] to be estimated via the following equation:

Iγ =
ACU

300 Bq kg−1 +
ACTh

200 Bq kg−1 +
ACK

3000 Bq kg−1 (4)

According to the European Commission [46], for covering materials such as the
ceramic and granite tiles under investigation, if they have a Iγ ≤ 2, this leads to an increase
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in the annual gamma dose rate with an amount ≤ 0.3 mSv/y resulting from these materials.
In other words, these materials fall within the exemption level for building materials from
all limitations about their radioactivity. Furthermore, if materials achieve criteria 2 < Iγ ≤ 6,
they will contribute to the annual gamma dose rate with an amount ≤ 1 mSv/y and fall
within the recommended action level. Eventually, materials with Iγ > 6 are not suitable for
safe use in buildings [46].

3.3. Indoor Absorbed Gamma Dose Rate (Din) and Yearly Effective Dose (Ein)

Estimation of the indoor absorbed gamma dose rate (Din) and its associated yearly
effective dose (Ein) are significant mechanisms for determining the external exposure
caused by terrestrial radioisotopes (Th-232, U-238, and K-40). According to the European
Commission [46], Equations (5) and (6) can be used to estimate the Din and Ein in the air
within rooms as a result of using the investigated granites and ceramic tiles as superficial
construction materials:

Din

[
nGy h−1

]
= (12ACRa + 14ACTh + 0.96ACK)× 10 −2 (5)

Ein

[
mSvy−1

]
= Din

[
nGy h−1

]
× F1 × F2 × F3 × 10−6 (6)

where F1 (=0.7 Sv/Gy), F2 (=0.8), and F3 (=8766 h) represent the conversion factor from
the absorbed dose to the effective dose in the air, indoor residency factor, and hours of the
year, respectively.

3.4. Excess Lifetime Cancer Risk (ELCR)

The ELCR is an important quantity through which the incidence of cancer for an
individual exposed to a low gamma radiation dose over their lifetime (66-years) can be
figured out. Depending on the Ein incurred by individuals from the studied ceramic and
granite tiles (superficial building materials) when used in buildings, the ELCR can be
estimated as follows [4,41]:

ELCR = Ein[Sv/y]× C1 × C2 (7)

where C1(=66 y [47]) and C2 (=0.05 Sv−1 for the general population) stand for life expectancy
on average and fatal cancer risk, respectively [42,48].

3.5. Alpha Index (Iα)

The Iα given by the equation below [41] is used for estimating the risk of exposure to
internal alpha radiation owing to the inhalation of radon. The estimation of Iα is funda-
mentally dependent on the U-238 (Ra-226) activity concentration (ACRa) in construction
materials, considering that materials with a concentration of 226Ra < 200 Bq kg−1 cannot
emit an indoor radon concentration >200 Bq m−3, i.e., these materials come within the range
of the recommended action level of indoor radon exposure for buildings, as previously
agreed upon by the European Commission [46] and ICRP [49].

Iα =
ACRa

200Bq kg−1 ≤ 1 (8)

3.6. Radon Concentration (CRn) and Yearly Effective Dose Resulting Therefrom (ERn)

In this study, the parallelepiped room model (4 × 5 × 2.8 m) is taken into account
to assess the concentration of radon and the associated absorbed dose rate delivered to
residents, assuming the floor is made of the investigated ceramic or granite tiles. Thus,
Equation (9) is applied, according to the European Commission [46], to determine the



Sustainability 2022, 14, 14611 6 of 19

increase in indoor radon concentration (CRn) brought on by the radon exhalation rate (RX)
from the investigated ceramic or granite tiles used in buildings:

CRn

[
Bq m−3

]
=

RX·S
(λ + λo)·V

(9)

where RX [Bq m−2 h−1], λ (=0.0076 h−1), λo [h−1], S [m2], and V [m3] represent the radon
exhalation rate per unit area, Ra-226 decay constant, ventilation rate, tiled floor surface, and
volume of the room, respectively. Based on the determined Ra-226 concentration (ACRa),
Equation (10) can be applied to estimate the RX for the investigated tiles with thickness d
(=3 cm and 1 cm for granites and ceramic tiles, respectively), density ρ (=2600 kg/m3), and
emanation coefficient η (=0.45), as reported in Refs. [20,41,50]:

RX = ACRa·λ·ρ·η·d·0.5 (10)

It is worth noting that the room ventilation rate (λo) was chosen with 0.5 h−1 for
normal ventilation and 0.1 h−1 for poor ventilation. [9,41]. Furthermore, the (S/V) ratio
of the room surface tiled with the investigated ceramic and granite tiles was chosen to be
2 m−1 [41].

As per the UNSCEAR [6] report, the yearly effective dose (ERn) that dwellers obtain
from the indoor radon concentration (CRn) was estimated by the following formula:

ERn

[
mSv y−1

]
= CRn

[
Bq m−3

]
× C1 × 8766

[
h y−1

]
× C2 × C3 × 10−6 (11)

where C1 (=9 nSv per Bq m−3 h), C2 (=0.8), and C3 (=0.4) stand for the factors of dose
conversion, dwellers’ indoor residency, and equilibrium equivalent radon concentration
indoors, respectively [6,51].

4. Results and Discussion

4.1. Radioisotope (238U, 232Th, and 40K) Concentrations

Table 2 displays the ranges and averages, as well as standard errors, for the estimated
concentrations values of U-238 (Ra-226), Th-232, and K-40 in the granites and ceramic
tiles collected. Furthermore and by way of illustration, Figure 1 depicts the variations
of the abovementioned radioisotopes concentrations in the samples under examination.
Evidently, Figure 1 and Table 2 show that the concentrations of the considered radioisotopes
fluctuate from 8.40 ± 2.09 in GBiH (sample No. 3) to 196.01 ± 37.84 Bq kg−1 in GRSS
(sample No. 28), 11.62 ± 1.28 in GBiH (sample No. 3) to 140.32 ± 27.41 Bq kg−1 in GRSS
(sample No. 28), and 141.01 ± 12.83 in CAR (sample No. 52) to 1785.78 ± 125.00 Bq kg−1

in GRN (sample No. 35) for 238U, 232Th, and 40K, respectively. Conceivably, the observed
variations in radioisotopes’ concentrations could be attributed to the samples’ various
origins and compositions. Evidently, most of the ceramic samples (samples No. 43 to 107)
have lower concentrations of the three radioisotopes (U-238, Th-232, and K-40) than those
of the granite samples (samples No. 1 to 42). This materializes the granite’s naturally high
level of terrestrial radioisotopes [3].
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Table 2. Mean concentrations of 238U (226Ra), 232Th, and 40K (mean value ± standard error) in the
investigated samples of the considered granite and ceramic brands, compared to their global average
values (AGVs) in building materials.

Tiling
Material Brand ID Sample

Size

Activity Concentration [Bq kg−1]

Ra-226 Th-232 K-40

Range Mean ± SE Range Mean ± SE Range Mean ± SE

Granite GBiHa 3 8.40–25.37 16.95 ± 4.90 11.62–86.75 37.31 ± 24.73 207.21–1260.66 598.67 ± 332.83
GBrHu 3 75.12–101.20 88.90 ± 7.56 77.66–88.53 82.05 ± 3.31 1631.50–1760.39 1695.38 ± 37.21

GIR 3 27.20–47.05 35.93 ± 5.85 44.37–52.01 46.99 ± 2.51 1124.02–1500.22 1302.47 ± 109.03
GKG 3 48.81–69.49 56.98 ± 6.35 33.32–62.66 45.38 ± 8.86 516.76–678.58 612.54 ± 49.02
GNA 4 21.65–48.85 33.49 ± 5.88 39.69–99.06 62.28 ± 13.02 827.73–1391.41 1044.82 ± 125.30

GRAD 3 40.01–55.74 46.55 ± 4.73 57.57–86.32 73.44 ± 8.43 1045.65–1068.33 1060.42 ± 7.39
GRHL 3 35.98–67.08 50.06 ± 9.10 41.40–92.11 65.34 ± 14.71 771.84–1065.73 925.86 ± 85.13
GRAS 4 21.13–67.08 48.99 ± 10.19 18.67–86.71 51.89 ± 14.15 350.61–1073.63 817.88 ± 166.70
GRSS 3 157.24–196.01 174.55 ± 11.38 122.33–140.32 131.07 ± 5.20 1139.85–1411.17 1311.92 ± 86.37
GRA 3 15.31–28.13 22.46 ± 3.78 58.88–86.32 69.42 ± 8.54 1128.03–1380.24 1267.88 ± 74.09
GRN 4 87.24–126.01 100.37 ± 8.82 42.37–116.83 82.22 ± 19.52 1346.94–1785.78 1604.53 ± 94.24
GRF 3 35.03–64.76 48.78 ± 8.65 45.05–78.71 63.70 ± 9.89 962.71–1198.79 1067.69 ± 69.39
GYG 3 24.08–41.92 33.48 ± 5.17 17.74–79.20 44.09 ± 18.28 842.65–1291.41 1039.86 ± 132.37

Ceramic CAL 7 19.65–54.90 36.77 ± 4.18 22.25–49.10 36.59 ± 3.25 268.80–580.00 447.99 ± 37.90
CAR 7 27.67–72.44 47.97 ± 5.83 39.71–85.67 58.16 ± 6.75 141.01–967.61 553.36 ± 97.53
CCL 5 33.67–50.24 41.70 ± 3.32 31.00–62.56 41.93 ± 5.51 314.01–508.89 385.20 ± 36.68
CGE 7 33.25–58.88 46.13 ± 4.10 34.57–61.48 48.98 ± 3.59 332.64–667.11 515.68 ± 43.22
CGL 6 26.41–42.62 32.37 ± 2.60 31.18–51.31 38.88 ± 2.94 318.72–480.82 404.54 ± 28.08
CLA 6 28.05–41.58 33.26 ± 2.22 34.78–48.75 41.87 ± 2.34 407.88–719.45 535.22 ± 51.80
CPH 7 20.50–44.17 35.47 ± 3.06 27.04–49.82 38.96 ± 3.45 230.25–565.65 391.33 ± 45.91
CPR 7 23.11–46.87 34.64 ± 3.19 26.84–60.17 44.59 ± 4.38 354.45–606.42 506.75 ± 31.46
CRO 6 31.46–53.77 40.73 ± 3.64 32.94–54.47 41.58 ± 3.02 222.48–467.20 366.72 ± 35.20
CVE 7 26.40–39.61 33.09 ± 1.92 26.11–39.63 32.96 ± 1.94 206.35–317.18 269.36 ± 13.15
Total 107 8.40–196.01 46.17 ± 2.81 11.62–140.32 51.65 ± 2.35 141.01–1785.78 701.62 ± 40.60

GAV (Global Average Value)
UNSCEAR [52]) — 50 — 50 — 500
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Figure 1. U-238, Th-232 and K-40 concentrations in the investigated granites and ceramic tiles samples.

Regarding the mean values of the radioisotope concentrations inserted in Table 2 and
plotted in Figure 2, it is clear that CVE samples contain the lowest mean concentrations
of both K-40 and Th-238, with levels of 269.36 ± 13.15 and 32.96 ± 1.94 Bq/kg, respec-
tively, while GBiHa samples have the lowest mean concentration of U-238 with a level of
16.95 ± 4.90 Bq/kg. In contrast, GRSS samples appear to have the highest mean concen-
trations of both U-238 and Th-232, with levels of 174.55 ± 11.38 and 131.07 ± 5.20 Bq/kg,
respectively, whereas, GBrHu samples have the highest mean concentration of K-40, with a
level of 1695.38 ± 37.21 Bq/kg.
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ceramic and granites tiles to their corresponding GAVs in the building materials.

Figure 2 and Table 2 also display the mean values of the aforementioned radioisotope
concentrations in the materials under investigation against their corresponding global
average values (GAVs) in building materials as given by the UNSCEAR [52]. Notably,
the GAVs for U-238, Th-232, and K-40 in building materials are 50, 50, and 500 Bq/kg,
respectively, according to the UNSCEAR [52]. Apparently, the mean concentration of
U-238 in all granites and ceramic tiles samples herein, except for GBrHu, GKG, GRHL,
GRSS, and GRN samples, is lower than its GAV of 50 Bq/kg in building materials [52],
(Figure 2 and Table 2). Similarly, the average concentration of Th-232 in the investigated
samples, except for the GBrHu, GNA, GRAD, GRHL, GRAS, GRSS, GRA, GRN, GRF, and
CAR samples, is lower than its GAV in building materials of 50 Bq/kg [52]. However, the
average concentration of K-40 for all of the granite and ceramic brands, except for the CAL,
CCL, CGL, CPH, CRO, and CVE samples, is greater than the GAV (500 Bq/kg) of building
materials [52], (Figure 2 and Table 2).

The overall average concentrations for U-238, Th-232, and K-40 of the total samples
were observed to be 46.17 ± 2.81 (less than its GAV), 51.65 ± 2.35 (slightly above its GAV),
and 701.62 ± 40.60 Bq/kg (1.4 times greater than the GAV), respectively, as demonstrated in
Table 2 and Figure 2. Moreover, in all of the investigated brands’ samples (Figure 2), the K-
40 concentration is the greatest among the concentrations of the three studied radionuclides,
as the granites contain about 33% potash feldspar minerals [21]. Moreover, it was found that
the K-40 concentration is the largest contributor to the total concentration for all samples
(Figure 3). Both U-238 and Th-232 contribute roughly the same percentage (6%), to the
overall concentration of samples, while K-40 contributes a larger percentage (88%), as
shown in Figure 3.
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A comparison between the radioactivity levels in the studied samples and those in
other previous relevant studies on granites and ceramics used in Egypt and other countries
is illustrated in Table 3. From Table 3, one can deduce that many of the data from the relevant
literature are comparable to our findings. This can be confirmed using the dendrogram
(Figure 4) derived from the hierarchical cluster analysis (HCA) based on the three variables
(U-238, Th-232, and K-40 concentrations). In HCA, the cluster method between-groups
linkage is used coupled with the square Euclidean distance. Accordingly, the countries in
which the studies were accomplished have been divided into homogeneous groups based
on the similarity in concentrations of the three radionuclides (U-238, Th-232, and K-40)
(Figure 4). Figure 4a shows that the Egyptian granite tiles studied herein come close to
the granites used in Bangladesh [22] and Nigeria [2] in terms of the content of the three
aforementioned radionuclides, as they were grouped into a homogeneous group. However,
they are far from those used in Pakistan [25], as illustrated in Figure 4a. Likewise, Figure 4b
exhibits that the ceramic tiles examined herein are matched to the ceramics used in Italy [23]
and Egypt [30] but are very different to those used in Poland [37], Serbia [9], and Nigeria [2]
in terms of radionuclide content.

Table 3. The radioisotopes concentrations (present study) in comparison to other similar previous
international research.

Tiling
Materials

Countries’
Names

Concentrations [Bq/kg]
References

U-238 Th-232 K-40

Granite Turkey 45.40 82.30 931.60 [1]
Saudi Arabia 54.50 43.40 677.70 [21]

Nigeria 74 100 1098 [2]
China 355.9 317.9 1636.5 [19]

Bangladesh 49.51 75.50 1122.15 [22]
Italy 81.33 129 1065 [23]
Iran 38 47 917 [18]
USA 31 61 1210 [24]

Serbia 200 77 1280 [9]
Pakistan 659 598 1218 [25]
Jordan 41.52 58.42 897 [26]
India 82 112 1908 [27]
Brazil 31 73 1648 [28]
Spain 101 48 1293 [29]
Egypt 65 60 885 [30]
Egypt 137 82 1082 [31]
Egypt 15.25 15.35 399.39 [38]
Egypt 58.46 65.76 1107.55 Current study

Ceramic Turkey 43.5 37.9 310.9 [1]
Saudi Arabia 47.18 80.70 590.2 [21]

Nigeria 85 77 877 [2]
China 172.35 135.5 351.4 [19]

Algeria 55 41 410 [32]
Italy 52 42.5 450 [23]
Iran 32 27 292 [18]

India 17.52 38.93 298.59 [33]
Malaysia 92 68 673 [34]

Serbia 67 61 828 [9]
Yemen 131.88 83.55 400.7 [35]
Jordan 33.86 28.82 411 [26]
Japan 82.7 63.9 527 [36]

Poland 50 50 963 [37]
Egypt 52 33 450 [30]
Egypt 38.23 42.54 439.33 Current study
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Evidently, in many of the investigated granite and ceramic samples, the radioisotopes’
displayed concentrations were more elevated than the GAVs (Figure 2). For instance, in
granites of “Rosa Sardo Sinai” (GRSS) samples, concentrations of uranium, thorium, and
potassium exceed their corresponding GAVs by about three times, confirming the previous
study on the granite of the Sinai area by Fares [39]. Therefore, it was crucial to assess the
likely radiological risks to peoples’ health owing to the use of these materials in buildings.

4.2. Gamma Radiation Impact Estimation

Table 4 displays some of the evaluated radiological variables for the granite and
ceramic samples under consideration. Through the estimated Req, Iγ, Din, Ein, and ELCR
(Table 4), the gamma ray hazards posed by the materials under investigation when used
as tiling in buildings can be judged. It was found that all Raeq values in the samples of
ceramic tiles fell within ranges below the threshold standard of 370 Bq/kg [44]. Similarly,
the Raeq values for all the samples of the investigated granite tiles were in ranges lower
than the criterion limitation of 370 Bq/kg, with the exception of three samples (No. 27 to
29) of GRSS and two samples (No. 33 and 35) from GRN samples. Furthermore, the mean
Raeq values varied between 100.96 Bq/kg in the CVE samples and 463 Bq/kg in the GRSS
samples, with an overall mean of 174.06 Bq/kg. Accordingly, the granites and ceramic
tiles of the different brands herein don’t constitute any considerable radiological risks for
individuals when used as tiling materials, except for the GRSS samples which may be a
cause for concern due to the mean value of Raeq going beyond 370 Bq/kg (recommended
value) (Figure 5a).
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Table 4. Ranges and mean values of the radiological parameters showing the gamma impact of the
studied granite and ceramic brands.

Tiling
Material Brand ID Sample

Size

Parameters Showing Gamma Impact

Raeq [Bq/kg] Iγ Din [nGy/h] Ein [mSv/y] ELCR/103

Granite GBiHa 3 (40.97–246.48)
116.39

(0.16–0.94)
0.44

(4.62–27.29)
13.00

(0.02–0.13)
0.06

(0.07–0.44)
0.21

GBrHu 3 (315.09–352.52)
336.77

(1.19–1.33)
1.27

(35.87–40.14)
38.43

(0.18–0.20)
0.19

(0.58–0.65)
0.62

GIR 3 (177.53–223.44)
203.42

(0.69–0.87)
0.79

(20.30–25.71)
23.39

(0.10–0.13)
0.11

(0.33–0.42)
0.38

GKG 3 (146.02–211.34)
169.04

(0.54–0.77)
0.62

(16.44–23.63)
19.07

(0.08–0.12)
0.09

(0.27–0.38)
0.31

GNA 4 (167.45–297.64)
202.99

(0.64–1.12)
0.77

(18.86–33.09)
22.77

(0.09–0.16)
0.11

(0.31–0.54)
0.37

GRAD 3 (208.47–261.36)
233.22

(0.79–0.97)
0.88

(23.58–29.02)
26.05

(0.12–0.14)
0.13

(0.38–0.47)
0.42

GRHL 3 (185.71–249.75)
214.78

(0.69–0.94)
0.80

(21.25–27.44)
24.04

(0.10–0.12)
0.12

(0.34–0.44)
0.39

GRAS 4 (100.68–271.20)
186.17

(0.37–1.00)
0.70

(11.62–30.18)
20.99

(0.06–0.15)
0.10

(0.19–0.49)
0.34

GRSS 3 (419.94–503.29)
463.00

(1.52–1.82)
1.67

(46.94–56.46)
51.89

(0.23–0.28)
0.25

(0.76–0.91)
0.84

GRA 3 (205.78–238.43)
219.35

(0.81–0.90)
0.84

(23.33–26.29)
24.59

(0.11–0.13)
0.12

(0.38–0.43)
0.40

GRN 4 (254.79–391.81)
341.48

(0.96–1.47)
1.28

(29.72–44.00)
38.96

(0.15–0.22)
0.19

(0.48–0.71)
0.63

GRF 3 (173.58–257.52)
222.08

(0.66–0.96)
0.84

(19.75–28.79)
25.02

(0.10–0.14)
0.12

(0.32–0.47)
0.41

GYG 3 (132.17–247.14)
176.59

(0.51–0.94)
0.68

(15.60–27.62)
20.17

(0.08–0.14)
0.10

(0.25–0.45)
0.33

Ceramic CAL 7 (72.17–169.77)
123.58

(0.27–0.62)
0.45

(8.05–19.03)
13.83

(0.04–0.09)
0.07

(0.13–0.31)
0.22

CAR 7 (117.76–269.45)
173.75

(0.43–0.99)
0.64

(12.99–29.98)
19.21

(0.06–0.15)
0.09

(0.21–0.49)
0.31

CCL 5 (102.18–177.47)
131.31

(0.37–0.65)
0.48

(11.39–19.50)
14.57

(0.06–0.1)
0.07

(0.18–0.32)
0.24

CGE 7 (108.30–190.11)
155.88

(0.39–0.69)
0.57

(12.02–21.07)
17.34

(0.06–0.1)
0.09

(0.19–0.34)
0.28

CGL 6 (101.24–153.02)
119.11

(0.37–0.56)
0.44

(11.18–16.91)
13.21

(0.05–0.08)
0.06

(0.18–0.27)
0.21

CLA 6 (114.95–166.65)
134.34

(0.42–0.62)
0.50

(12.76–18.72)
14.99

(0.06–0.09)
0.07

(0.21–0.30)
0.24

CPH 7 (76.90–151.06)
121.31

(0.28–0.56)
0.44

(8.46–16.93)
13.47

(0.04–0.08)
0.07

(0.14–0.27)
0.22

CPR 7 (100.94–176.82)
137.43

(0.38–0.65)
0.51

(11.41–19.52)
15.27

(0.06–0.10)
0.07

(0.18–0.32)
0.25

CRO 6 (100.61–167.64)
128.42

(0.36–0.61)
0.47

(11.11–18.56)
14.23

(0.05–0.09)
0.07

(0.18–0.30)
0.23

CVE 7 (80.21–120.70)
100.96

(0.29–0.44)
0.36

(8.86–13.35)
11.17

(0.04–0.07)
0.05

(0.14–0.22)
0.18

Total 107 (40.97–503.29)
174.06

(0.16–1.82)
0.65

(4.62–56.46)
19.51

(0.02–0.28)
0.10

(0.07–0.91)
0.32

Allowable Value or GAV 370 a 2 b 84 a or 70 b 0.41 a or 1 b 1.16 c

a GAV given by the UNSCEAR [3]. b GAV reported by the European Commission [46]. c GAV indicated by
Sidique et al. [41] and Qureshi et al. [53].
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According to the calculated values of Iγ (Table 4), none of the values in the samples
under investigation go beyond the exemption limit of 2. This implies that the yearly
effective gamma dose resulting from the investigated materials herein when used as
covering or superficial building materials indoors is less than 0.3 mSv/y (exemption limit
indicated by the European Commission [46]). Thus, the granites and ceramic tiles of the
brands under investigation are suitable for use without any restrictions. Furthermore, and
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by way of illustration, Figure 5b displays the estimated mean values of Iγ for the granites
and ceramic tiles where they do not go beyond their allowable limit, indicating that all of
the investigated materials do not raise any cause for concern when used in buildings.

Considering the estimated Din and Ein values for the samples under investigation
(Table 4), neither the granites nor the ceramic samples of the various brands examined
herein had Din and Ein values going beyond their corresponding worldwide average
values of 84 nGy/h and 0.41 mSv/y [3] and of 70 nGy/h and 1 mSv/y [46]. Notably, the
mean values of Din and Ein for the studied granites and ceramic tiles compared with the
corresponding global average values (GAVs) are illustrated in Figs. 5c and 5d, where they
are below the adopted limits, reflecting their safe use.

The indoor ELCR values based on Ein, as well as their mean values in the granites and
ceramics under investigation, are shown in Table 4 and plotted in Figure 5e. Evidently, all
the ELCR values are within the range of 0.07 to 0.91, with an overall mean of 0.32. Namely,
the mean ELCR values in all the brands of tiling materials are less than their corresponding
GAV of 1.16 indicated by Sidique et al. [41] and Qureshi et al. [53], as shown in Figure 5e.
Thus, in buildings where the materials under investigation are used, over a 66-year lifespan,
their residents are at a very insignificant risk of developing cancer resulting from exposure
to gamma rays emitted by these materials.

4.3. Radon Impact Assessment

The potential radon (Rn-222) risks posed by the studied materials when used as tiles in
buildings can be investigated through the estimated Iα, RX, CRn, and ERn. For the samples
of each brand, Table 5 displays ranges and averages of Iα, RX, CRn, and ERn values, while
Figure 6 compares averages of these parameters with their corresponding allowable limits.
Table 5 reveals that the Iα values oscillate between 0.04 and 0.98, with an overall mean
value of 0.23. Furthermore, no mean value of Iα for any of the brands’ samples under
investigation goes beyond the unity, as shown in Figure 6a. Thus, arguably, the materials
under consideration come under the range of the indoor radon safe exposure action level
for buildings, as indicated by the European Commission [46] and ICRP [49].
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Table 5. Ranges and mean values of the radiological parameters showing the Rn impact of the studied
granite and ceramic brands.

Tiling
Material

Brand
ID

Sample
Size

Iα
RX

[Bq/m2 h]
Poor Ventilation Case Normal Ventilation Case

CRn [Bq/m3] ERn [mSv/y] CRn [Bq/m3] ERn [mSv/y]

Granite GBiHa 3 (0.04–0.13)
0.08

(1.12–3.38)
2.26

(20.81–62.88)
42.01

(0.53–1.59)
1.06

(4.41–13.33)
8.91

(0.11–0.34)
0.22

GBrHu 3 (0.38–0.51)
0.44

(10.02–13.50)
11.86

(186.24–250.89)
220.39

(4.70–6.33)
5.56

(39.48–53.18)
46.72

(1.00–1.34)
1.18

GIR 3 (0.14–0.24)
0.18

(3.63–6.28)
4.79

(67.43–116.65)
89.09

(1.70–2.94)
2.25

(14.29–24.73)
18.88

(0.36–0.62)
0.48

GKG 3 (0.24–0.35)
0.28

(6.51–9.27)
7.60

(121.01–172.28)
141.27

(3.05–4.35)
3.57

(25.65–36.52)
29.95

(0.65–0.92)
0.76

GNA 4 (0.11–0.24)
0.17

(2.89–6.52)
4.47

(53.67–121.11)
83.02

(1.36–3.06)
2.10

(11.38–25.67)
17.60

(0.29–0.65)
0.44

GRAD 3 (0.20–0.28)
0.23

(5.34–7.43)
6.21

(99.19–138.19)
115.39

(2.50–3.49)
2.91

(21.03–29.29)
24.46

(0.53–0.74)
0.62

GRHL 3 (0.18–0.34)
0.25

(4.80–8.95)
6.68

(89.20–166.29)
124.10

(2.25–4.20)
3.13

(18.91–35.25)
26.31

(0.48–0.89)
0.66

GRAS 4 (0.11–0.34)
0.24

(2.82–8.95)
6.53

(52.38–166.29)
121.45

(1.32–4.20)
3.07

(11.10–35.25)
25.75

(0.28–0.89)
0.65

GRSS 3 (0.79–0.98)
0.87

(20.97–26.14)
23.28

(389.83–485.94)
432.75

(9.84–12.27)
10.93

(82.63–103.01)
91.73

(2.09–2.60)
2.32

GRA 3 (0.08–0.14)
0.11

(2.04–3.75)
3.00

(37.94–69.74)
55.67

(0.96–1.76)
1.41

(8.04–14.78)
11.80

(0.20–0.37)
0.30

GRN 4 (0.44–0.63)
0.50

(11.64–16.81)
13.39

(216.28–312.40)
248.83

(5.46–7.89)
6.28

(45.85–66.22)
52.75

(1.16–1.67)
1.34

GRF 3 (0.18–0.32)
0.24

(4.67–8.64)
6.51

(86.85–160.55)
120.93

(2.19–4.05)
3.05

(18.41–34.03)
25.63

(0.46–0.86)
0.65

GYG 3 (0.12–0.21)
0.17

(3.21–5.59)
4.47

(59.69–103.91)
83.00

(1.51–2.62)
2.10

(12.65–22.03)
17.59

(0.32–0.56)
0.44

Ceramic CAL 7 (0.10–0.27)
0.18

(0.87–2.44)
1.63

(16.24–45.37)
30.38

(0.41–1.15)
0.77

(3.44–9.62)
6.44

(0.09–0.24)
0.16

CAR 7 (0.14–0.36)
0.24

(1.23–3.22)
2.13

(22.87–59.86)
39.64

(0.58–1.51)
1.00

(4.85–12.69)
8.40

(0.12–0.32)
0.21

CCL 5 (0.17–0.25)
0.21

(1.50–2.23)
1.85

(27.82–41.52)
34.46

(0.70–1.05)
0.87

(5.90–8.80)
7.30

(0.15–0.22)
0.18

CGE 7 (0.17–0.29)
0.23

(1.48–2.62)
2.05

(27.48–48.66)
38.12

(0.69–1.23)
0.96

(5.82–10.31)
8.08

(0.15–0.26)
0.20

CGL 6 (0.13–0.21)
0.16

(1.17–1.89)
1.44

(21.83–35.22)
26.75

(0.55–0.89)
0.68

(4.63–7.47)
5.67

(0.12–0.19)
0.14

CLA 6 (0.14–0.21)
0.17

(1.25–1.85)
1.48

(23.18–34.36)
27.48

(0.59–0.87)
0.69

(4.91–7.28)
5.83

(0.12–0.18)
0.15

CPH 7 (0.10–0.22)
0.18

(0.91–1.96)
1.58

(16.94–36.50)
29.31

(0.43–0.92)
0.74

(3.59–7.74)
6.21

(0.09–0.20)
0.16

CPR 7 (0.12–0.23)
0.17

(1.03–2.08)
1.54

(19.10–38.73)
28.63

(0.48–0.98)
0.72

(4.05–8.21)
6.07

(0.10–0.21)
0.15

CRO 6 (0.16–0.27)
0.20

(1.4–2.39)
1.81

(26.00–44.44)
33.66

(0.66–1.12)
0.85

(5.51–9.42)
7.13

(0.14–0.24)
0.18

CVE 7 (0.13–0.20)
0.17

(1.17–1.76)
1.47

(21.82–32.73)
27.35

(0.55–0.83)
0.69

(4.62–6.94)
5.80

(0.12–0.18)
0.15

Total 107 (0.04–0.98)
0.23

(0.87–26.14)
4.09

(16.24–485.94)
76.08

(0.41–12.27)
1.92

(3.44–103.01)
16.13

(0.09–2.60)
0.41

Allowable Value or GAV 1 a 57.6 b (100–300) c (3–10) a (100–300) c (3–10) a

a GAV reported by the ICRP [49]. b GAV declared by the UNSCEAR [3]. c GAV recommended by the WHO
(World Health Organization) [8].

Regarding the mean values of the radon exhalation rate (RX) for the samples under
investigation (Table 5 and Figure 6b), they stretch between 1.44 Bq/m2 h in the CGL samples
and 23.28 Bq/m2 h in the GRSS samples, with an overall mean value of 4.09 Bq/m2 h.
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Moreover, no mean value of RX for samples of any brand of ceramic or granite exceeds
the global average value (GAV) of 57.6 Bq/m2 h (0.016 Bq/m2 s) as declared by the
UNSCEAR [3], as shown in Figure 6b. It is therefore expected that the materials under
investigation do not constitute any health risks to dwellers.

Based on the RX values, the indoor radon concentration (CRn) was assessed from the
indirect mathematical model of a typical residence room tiled by the studied ceramics and
granites in both poor and normal ventilation cases as per Equation (9). Accordingly, for
the room model with normal ventilation, the mean values of CRn of granites and ceramics
from the different brands under investigation fluctuate between 5.67 Bq/m3 in the CGL
samples to 91.73 Bq/m3 in the GRSS samples, with an overall mean value of 16.13 Bq/m3

(Table 5 and Figure 6c). Consequently, for the normal ventilation case, none of the mean
values of CRn in the studied brands of granites and ceramic tiles, as shown in Figure 6c,
go beyond the acceptable range (100–300 Bq/m3) declared by the WHO (World Health
Organization) [8]. On the other hand, for the room model with poor ventilation, the mean
values of the CRn of granites and ceramics from the brands under examination oscillate
between 26.75 Bq/m3 in the CGL samples and 432.75 Bq/m3 in the GRSS samples, with an
overall mean value of 76.08 Bq/m3 (Table 5 and Figure 6c). Thus, for the poor ventilation
case, none of the mean values of CRn in the studied brands of ceramics and granites, as
shown in Figure 6c, exceed the acceptable range (100–300 Bq/m3) declared by the WHO [8],
except for GRSS which as a result is not recommended for poorly ventilated buildings.

Regarding the yearly effective dose rate (ERn) due to radon concentration (Table 5
and Figure 6d), the mean values span a range from 0.14 mSv/y in the CGL samples to
2.32 mSv/y in the GRSS samples, with an overall mean value of 0.41 mSv/y in the case
of normal ventilation. Moreover, all of these values fluctuated below the acceptable range
of 3–10 mSv/y documented by ICRP [49], (Figure 6d). On the other hand, for the poor
ventilation case, the mean values of ERn for the granites and ceramics from the different
brands under investigation stretch between 0.68 mSv/y in the CGL samples to 10.93 mSv/y
in the GRSS samples, with an overall mean value of 1.92 mSv/y. Furthermore, as shown in
Figure 6d for poor ventilation, the granite from the brand GRSS is the only one that has a
mean value of CRn going beyond the recommended range of 3–10 mSv/y [49]. Therefore, it
is not recommended for poorly ventilated rooms.

The hierarchical cluster analysis (HCA) coupled with the Pearson correlation method
was performed to effectively prove the relationship among all considered radiological
variables. The dendrogram obtained from the HCA shows the relationship between the
radionuclide concentrations and the relevant radiological parameters (Figure 7). Depend-
ing on the similarities in existence, all considered variables are gathered into two principal
clusters. Cluster I comprised U-238 and Th-232 concentrations as well as all radiologi-
cal parameters with a highly similar correlation (Figure 7). This reflects that the slight
radioactivity level arising in both of the examined granites or ceramic tiles is ascribable
to U-238 and Th-232 concentrations. On the other hand, cluster II is only comprised K-40,
reflecting the weak relationship of K-40 with the radiological parameters, i.e., despite the
high concentration of K-40 in the examined granites and ceramic tiles, K-40 contributes
very little to the radioactivity level.
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5. Conclusions

A radiological evaluation for 23 well-known brands of Egyptian commercial gran-
ites and ceramic tile samples was performed for hazard and dose estimations. A total
of 107 samples representative of the materials under investigation were analyzed using
a HPGe detector. The terrestrial radionuclides (U-238 (Ra-226), Th-232, and K-40) con-
centrations in the investigated samples together with their radiological indices (Raeq, Iγ,
Din, Ein, ELCR, Iα, CRn, ERn) were determined. It was found that the concentrations of
the aforementioned radioisotopes were higher in most of the granite samples than in the
ceramic samples. Furthermore, the concentration values of the terrestrial radionuclides
indicated significant differences in the granite and ceramic tile samples collected from the
different brands. This is significant in differentiating between the considered brands. K-40
concentration was found to be the biggest contributor to the total concentration for all sam-
ples, followed by Th-232 and U-238. Generally, the terrestrial radioisotope concentrations
in the materials under investigation are comparable to many of those from the relevant
literature and come within the worldwide range. Although the average concentration
values for K-40 and Th-232 were higher than their GAVs, the obtained results for the
majority of the radiological parameters showed that the studied granites and ceramic tiles
are safe to use indoors except “Rosa Sardo Sinai” granite (GRSS). The GRSS samples go
beyond the recommended values in terms of their high radium equivalent (Raeq) mean
values, and indoor radon concentration (CRn), as well as their associated yearly effective
dose rate (ERn) in poorly ventilated buildings, which may be a cause for concern. Therefore,
it is not recommended for poorly ventilated buildings. In line with the HCA conducted
herein, it reflects the weak relationship of K-40 with all different radiological parameters
without exception. In other words, the insignificant risk levels originating from the use of
the concerned granites and ceramic tiles are principally due to Th-232 and U-238, with only
a weak contribution of K-40.

Our data herein are important for two reasons: firstly, they may raise awareness among
the general population of the natural radioactivity of the materials under investigation, and
secondly, they are required for developing the standards, rules, and management of tiling
materials used in Egypt and in any other country to which such materials are exported.
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