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Abstract: The melting process of paraffin wax placed in storage capsules of different shapes was
experimentally and numerically studied. The phase change material (PCM) was initially at 27 ◦C.
The effect of the mushy zone parameter (Amush) value on the melting process of the PCM was studied
with storage capsules of different shapes (circular, vertical oval, and horizontal oval). The results
of the numerical model were validated with the experimental results to obtain the optimum Amush

value for each shape of the latent heat storage unit. The results showed that the value of the Amush

has a great impact on the numerical results of the PCM melting process and changes with the shape
of the storage capsule. The rate of heat transfer, convection, and fluid velocity all decrease as the
Amush value rises. The experimental results of the circular, vertical oval, and horizontal oval capsules
match very well with the numerical model with Amush values equal to 2 × 106, 1 × 105, and 1 × 106,
respectively.

Keywords: natural convection; CFD; melting PCM; enthalpy-porosity method; mushy zone parameter

1. Introduction

Energy can be stored in several forms, such as sensible, latent, and thermochemical
heat storage. Phase change materials (PCMs) are used in latent heat energy storage (LHES)
systems, which have more desirable characteristics than conventional heat storage systems.
PCMs offer a number of beneficial characteristics, including the ability to be used as a heat
source at a constant temperature, with only slight temperature fluctuations through heat
recovery. They possess a low vapour pressure at operating temperature, chemical stability,
non-corrosion, and a high energy density with small storage space requirements [1]. Thus,
PCMs demonstrate one of the best techniques used in thermal energy storage applica-
tions [2,3]. They are used in several engineering applications, for example, the technology
of electronic cooling, waste heat recovery systems [4,5], solar cell systems [6], absorption
systems [7], ventilation, and air conditioning (HVAC) systems [8].

1.1. Numerical Techniques Limitations

The numerical modeling of thermal energy storage (TES) systems has recently received
a great deal of interest. Although the most appropriate numerical techniques can vary
greatly depending on the system, cost and time restrictions are virtually always the driving
forces behind their employment. Numerical models are now increasingly necessary to
accurately explain the behaviour of TES systems, enabling computational tools to assist in
the solution of governing equations. As a result, a significant portion of the research on
this topic shows the development of adequate numerical analysis [9]. The heat transfer
mechanism through the melting process is initially controlled by conduction; then, natural
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convection begins, and this process of natural convection has a great impact and cannot be
ignored [10,11].

Different modeling approaches for the solid–liquid phase change have been developed
in recent decades. The most widely used methodology for numerically simulating the phase
change phenomenon in several types of research is the enthalpy-porosity technique [12,13].
The other approaches to doing the same thing depend on varying the PCM’s specific heat
during the phase transition temperature [14]. The enthalpy-porosity approach can be
used in all forms of the melting process, whereas the other methods are more suited to
phase changes that are dominated by conduction [15]. The coupled convection–diffusion
phase transition was numerically studied using the enthalpy-porosity technique [16]. This
approach avoids directly following the solid–liquid contact. With appropriate momentum
sink factors added to momentum equations, the solid–liquid mushy zone is viewed as a
porous zone with a quantity denoted as a liquid fraction as its “porosity,” which is the
reason for the pressure reduction as the resulting solid material comes into existence.

1.2. Mushy Zone Effect

The thin mushy zone that divides the areas occupied by the solid and liquid PCMs
contains a parameter known as the mushy zone constant that measures the resistance to
the flow of liquid PCMs in this region. The literature demonstrates that the value of this
constant affects simulation outcomes [17–19], and that the best value for agreement with
experiments varies depending on the situation [18,20]. The cell porosity, which is calculated
using the cell enthalpy, is a non-linear function of this parameter. Thus, the parameter was
designed in such a way that it would be zero for entirely liquid cells and have no effect,
while it would be in the same order as the other transport terms for cells going through
a phase transition. The parameter’s value would be high enough for totally solid cells to
essentially push any velocity prediction to zero. The parameter also contains a constant
known as the mushy zone parameter, Amush, which captures the impact of the shape of the
mushy zone [15].

The mushy zone is considered to be a semi-solid that exists at the boundary between
the melted and un-melted portion of a PCM through the melting or freezing process. The
amplitude of the damping is measured by the mushy zone parameter Amush; the higher
this value, the steeper the transition of the velocity of the material to zero as it solidifies.
The predicted solution might oscillate at very high values of Amush [21]. The overall phase
transition process and the degree of phase interaction are both greatly influenced by the
value of Amush. However, the Amush value may vary depending on the substance. For
Rubitherm RT82, the value of Amush ranges from 1 × 105 [22] to 1.6 × 106 [23] whereas
for gallium it ranges from 1 × 105 to 1 × 1015 [24,25]. Several studies have found a
correlation between the value of Amush and the solid particle diameters within the mushy
zone constant [26,27]. Thus, the choice of mushy zone constant becomes very important as
the behaviour predicted using the enthalpy-porosity technique for the same material can
differ significantly at different values of Amush.

In previous studies, the Amush value was studied for different types of phase change
materials and it was observed that this value has a great impact on the melting process
results of the numerical model. In the present work, the effect of the Amush value on
the PCM melting process was studied with different shapes of storage capsules (circular,
horizontal oval, and vertical oval), which are filled with paraffin wax, which has not been
previously studied. The melting process of the PCM was experimentally and numerically
investigated in a circular, horizontal, and vertical oval storage units. The results that were
obtained from the numerical model were validated with the experimental results to obtain
the optimum value of Amush for each shape of the latent heat storage unit.

The effects of Amush through the storage units of circular, vertical oval, and horizontal
oval capsules have not been previously studied. However, it can be used in energy-saving
building applications.
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2. Experimental Setup and Procedures

An image of the test rig is shown in Figure 1, while the layout is shown in Figure 2. The
test rig consists of the water tank (10), which is made of galvanized sheet with a diameter
of 40 cm and a height of 40 cm. The tank is used to supply the test section with hot water
(11) at a constant temperature value. The tank is insulated with glass wool insulation to
decrease the heat lost from hot water in the tank. The tank is equipped with a 1 kW electric
heater (12) connected to the electrical main supply with a TROIDC type electric transformer
(13). The electric transformer provides a voltage variation from 0 to 220 V to adjust the
water temperature in the tank at a predefined temperature. The tank is equipped with a
small 100-Watt water pump (8) connected to the tank bottom via an inlet connection (4)
to supply the test section with the required hot water. The hot water is used to heat the
capsule at different velocities using a supply valve (5) which regulates the water discharge
rate to the test section (1). The valve (7) is used to bypass the excess water from the pump
to the tank via a bypass connection (6), to prevent the pump from overheating.
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The test section (1) is a rectangular cross-section channel of 8 cm by 10 cm, and 15 cm
in height. Hot water is brought to it via a 1

2 -inch diameter pipe (4) connected to the bottom
of the channel through the pump (8). To drain the water into the hot water tank, a hole of
1/2 inch diameter is used and a tube (9) of the same diameter is connected to one side near
the top of the channel to return the water to the hot water tank. The inlet water temperature
is measured using the thermometer (3). The capsule (2) filled with PCM is placed in a
horizontal position using a 1 mm diameter wire carrier.

Two Pyrex glass capsules are used, as seen in Figure 3; one has a circular cross-section
with a 4 cm diameter and 6 cm length. The second capsule has an elliptical cross-section,
the axes of which have dimensions of 6.2 and 2.6 cm. The two capsules are filled with the
molten paraffin, then left to cool and closed with the resulting solid paraffin. The PCM
thermophysical properties are represented in Table 1.
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Table 1. PCM thermophysical properties.

Thermophysical
Properties Paraffin Wax [11] Thermophysical

Properties Paraffin Wax [11]

Ks (W/m.K) 0.15 CPl (kJ/kg.K) 2.44
Kl (W/m.K) 0.15 Kinematic viscosity (m2/s) 8.31 × 10−5

ρs (kg/m3) 890 Melting point (◦C) 54.22/56.22
ρl (kg/m3) 712 Heat of fusion (kJ/kg) 278.8

CPs (kJ/kg. K) 2.384 Thermal exp. Coeff (l/k) 0.000714

To facilitate the viewing and imaging of the capsule, the test section was made from
Pyrex glass. In order to measure the average temperature of the water before interring the
channel, a thermometer (3) was fixed inside the channel (1). The rate of hot water passing
through the test section was measured by the amount of water collected at a given time
during the experiment.

Khot et al., [28] observed that the use of thermocouples inside the PCM capsule
restricted the solid PCM from sinking to the bottom of the spherical capsule. Therefore,
the unconstrained PCM melted faster than the constrained one. Based on the previous
study, the experimental investigation was made to validate the results obtained by the
Ansys Fluent software wherein there is no thermocouple embedded inside the capsules
to measure the temperature distribution inside it. The image processing technique for the
experimental liquid fraction photos was used to detect the value of the PCM liquid fraction.
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3. Experimental Measurements

First of all, we checked the system against leakage by turning on the pump and
monitoring the system connections. Then, we measured the flow rate of water and adjusted
the two valves (5 and 7) to reach the predetermined mean velocity of the water. After that,
we regulated the electric transformer to vary the voltage supplied to the electric heater
and let the system work, monitoring the reading of the thermometer until reaching the
wanted temperature of hot water interring the test section. After reaching the suggested
temperature, we turned the circular cross-section PCM capsule in place inside the channel,
into a horizontal position. We took photos of the capsule cross-section every five minutes
until the total melting of the PCM. Finally, we repeated the previous steps for the capsule
of the elliptical cross-section on its largest axes, vertical and horizontal, one at a time to
investigate the two radii ratios.
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The cross-section area of the elliptical cross-section can be calculated as:

Ac = π a b (1)

where a is half the smallest axis and b is half of the largest axis of the ellipse as shown in
Figure 4.
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The surface area of the elliptical cross-section capsule can be calculated as:

As = C l (2)

where l is the cylinder length and C is its perimeter.
The more accurate perimeter of the elliptical cross-section as a function of its axes using

the Ramanujan second approximation [29] can be calculated as shown in the following
equation:

C ≈ π(a + b)

1 +
3
(

a−b
a+b

)2

10 +

√
4− 3

(
a−b
a+b

)2

 (3)

Two positions of the elliptical cross-section are discussed. The first position is a vertical
oval with an axes ratio of Ar = 0.383, and the second position is a horizontal oval with an
axes ratio of Ar = 2.6.

4. Uncertainty Analysis

Calculation and measurement errors resulting from human and instrumental errors are
presented. Repeating measurements several times can help eliminate or reduce individual
errors. As demonstrated in Table 2, the instrumental errors are due to the accuracy of the
measuring devices. Based on the uncertainty of the primary measurements, the uncertainty
of the computation results was calculated.
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Table 2. Measurement device errors.

Measured Value Measured Value Error

Temperature +0.1 ◦C
Diameter +0.5 mm
Voltage +0.1 Volt

Resistance +0.1 Ohm

Error propagation is estimated by using the root sum square method. Given the
specific result Z, as follows:

Z = z (x1, x2, . . . , xn) (4)

where xi is independently measured quantity, the uncertainty ωi is the uncertainty of
independent variables, and the uncertainty ωz in the result, Z is assumed as follows:

ωz =

[(
∂Z
∂x1

.ω1

)2
+

(
∂Z
∂x2

.ω2

)2
+ . . . +

(
∂Z

∂xn−1
.ωn−1

)2
+

(
∂Z
∂xn

.ωn

)2
]0.5

(5)

5. Numerical Modeling

The Boussinesq approximation, which incorporates thermal buoyancy, represents the
liquid PCM density difference in the buoyancy term. As a result, the 2D transient laminar
flow containing buoyancy-driven conventional governing equations can be expressed by
the following equations [11]:

Continuity equation:

∂ρ

∂t
+

1
r

∂(rρVr)

∂r
+

1
r

∂(ρVθ)

∂θ
= 0 (6)

Momentum equations:
Momentum r:

ρ

(
∂(Vr)

∂t + Vr
∂(Vr)

∂r + Vθ
r

∂(Vr)
∂θ −

V2
θ
r

)
= − ∂P

∂r + µ
[

1
r

∂
∂r

(
r ∂(Vr)

∂r

)
− Vr

r2 + 1
r2

∂2(Vr)
∂θ2 − 2

r2
∂(Vθ)

∂θ

]
+ ρgβ(T− Tm) + S

(7)

Momentum θ:

ρ
(

∂(Vθ)
∂t + Vr

∂(Vθ)
∂r + Vθ

r
∂(Vθ)

∂θ + VrVθ
r

)
= − 1

r
∂P
∂θ + µ

[
1
r

∂
∂r

(
r ∂(Vθ)

∂r

)
− Vθ

r2 + 1
r2

∂2(Vθ)
∂θ2 − 2

r2
∂(Vr)

∂θ

]
+ S

(8)

The parameters s are Darcy’s law damping terms added to the momentum equation as
a convective phase change effect. These terms depend on both the existing constant Amush
and a liquid fraction (λ), which can be expressed as follows:

→
S =

(1− λ)2

(λ3 + γ)
Amush.

→
V

The minor number γ is used to avoid division by zero, and it is naturally about 10−3.
The mushy zone constant Amush explains how steeply its velocity is condensed to zero
when the material solidifies. Its value depends on the morphology of the medium. This
value is frequently high and typically runs from 104 to 108. The same occurred when
the local liquid fraction becomes high, and the velocity is reduced to zero. Numerous
academics advise taking into account the Amush value of 106 as the best value. This value
offers a good agreement between their experimental and numerical results [30]. In this
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study, Amush varies throughout the whole simulation, where it attains the best conformity
between the experimental and numerical results.

Energy equation:

∂h
∂t

+
∂H
∂t

+∇ ·
(→

Vh
)
= ∇ ·

(
k

ρcp
∇h
)

(9)

where H is the enthalpy of the PCM and is estimated as the summation of the sensible
enthalpy, h1, and the latent heat ∆H:

H = h1 + ∆H (10)

h1 = hre f +
∫ T

Tre f

Cp dT (11)

where hre f is the enthalpy reference at temperature reference Tre f and latent heat term can
be expressed in the form of the latent heat of the PCMs (L) as follows:

∆H = λ L (12)

where ∆H can vary from zero (solid) to L (liquid). Therefore, the liquid fraction λ can be
articulated as follows:

λ =


∆H

L = 0 T < Tm
∆H

L = T−Tsolidus
Tliqudus−Tsolidus

Tm < T < Tm + ∆ Tm
∆H

L = 1 T > Tm + ∆ Tm

(13)

where Tm is the PCM melting temperature, and ∆Tm is the range between liquid and solid
phase, which is expressed as the difference between liquidus temperature and solidus
temperature, as demonstrated in Equation (14):

∆ Tm = Tliquidus − Tsolidus (14)

The PCM density and thermal conductivity depend on the phase change process as
follows:

ρPCM =


ρs T < Tm

ρs +ρl
2 Tm < T < Tm + ∆ Tm
ρl T > Tm + ∆ Tm

(15)

kPCM =


ks T < Tm

ks +kl
2 Tm < T < Tm + ∆ Tm

kl T > Tm + ∆ Tm

(16)

5.1. Initial and Boundary Conditions

The previous governing equations were solved together with the following initial and
boundary conditions. Initially, the system was at the ambient temperature of 27 ◦C, and
the storage capsules were filled with solid paraffin wax, which was at a temperature lower
than the melting point. The outer side of the tank was insulated; in addition, the inlet of
the hot water was defined as the velocity inlet and the outlet of the hot water was defined
as the pressure outlet, as shown in Figure 5.
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Figure 5. Test section with boundary conditions.

5.2. Numerical Procedure and Validation

The numerical simulation was established using the ANSYS 2022 R2 program. The
Semi-Implicit Method for the Pressure-Linked Equations (SIMPLE) scheme was used to
calculate the pressure–velocity coupling equations in the PCM. A control volume approach
was used to explain the governing equations in conjunction with the boundary and initial
conditions. The diffusion and convection terms are described using the central difference
and QUICK techniques, respectively. The pressure–velocity coupling was handled using
the SIMPLER algorithm. By solving the governing equations at each time step, the liquid
fraction could be changed using Equation (13). After carefully evaluating the independence
of the results for high accuracy, the size of the grid and the time steps were selected. The
calculation process continued until a relative convergence criterion of 10−6 was satisfied by
all the present case variables.

To validate the numerical model of melting in the present finite volume computational
fluid dynamic (CFD) code, an initial run was established and compared to the experimental
results of Soliman et al. [10,11] for a vertical cylinder that was heated by a constant heat
flux, and Kamkari and Amlashi [31] for a vertical enclosure that was heated by a constant
wall temperature. The computational model and the experimental study were established
under the same operating conditions. Figure 6 displays the PCM temperature and liquid
fractions, with the melting time for the experimental results of [11,31], respectively, with
the present numerical results. As can be noted from the figure, the numerical results are in
good agreement with the experimental results.
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5.3. Mesh Dependency Study

Free triangular mesh has been adapted in the numerical model. In order to test the
dependency of numerical results on the mesh element size, a simulation was run with a
circular capsule of 4 cm in diameter and 6 cm in length. The capsule was initially at 300 K.
At any time, t > 0, the boundary of the capsule was at 340 K. The average temperature and
liquid fraction of the PCM for the circular capsule were compared for different numbers
of elements size (20,062, 32,634, 45,409, 68,312, and 87,472) as shown in Figure 7a,b. It is
observed from the figure that there is a slight difference between the number of elements
68,312 and 87,472. Therefore, the number of elements equal to 68,312 is selected for the
present study to save time. Similarly, a grid independency test has also been carried out for
other configurations. The time steps used in the analysis is 0.3 sec throughout all models.
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6. Results and Discussion

In this section, firstly, a comparison between the experimental results of different
shapes of storage capsules (circular, horizontal oval, and vertical oval) is established
with the theoretical results of the same shape and dimensions from the numerical model.
Tables 3–5 illustrate the variation of the liquid fraction contours of the PCM melting process
with the photos captured during the experiments.

Table 3. Comparison between liquid fraction contours and camera photos for circular cross-section
capsule.

Theoretical Exp. Theoretical Exp. Theoretical Exp.
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Table 4. Comparison between liquid fraction contours and camera photos for circular cross-section
capsule of Ar = 0.383.

Theoretical Exp. Theoretical Exp. Theoretical Exp.
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Table 5. Comparison between liquid fraction contours and camera photos for circular cross-section
capsule of Ar = 2.6.

Theoretical Exp. Theoretical Exp.
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Secondly, the effect of the mushy zone parameter on the PCM melting process is
studied and validated with the experimental results to obtain the optimum value of Amush
for each shape. Figures 8–10 illustrate the PCM liquid fraction with the melting time of
the experimental result and the numerical results with different values of the mushy zone
parameter.

Table 3 represents the comparison between the liquid fraction contours of a circular
capsule with the experimental photos. The circular cross-section capsule is 4 cm in diameter
(axes ratio of 1) and 6 cm in length for heat transfer fluid (HTF) initial temperature of 340 K
and a velocity of 0.003 m/s. Within the experimental photos, the white part is a solid
PCM and the transparent part is a liquid PCM. Within the numerical contours, the blue
color signifies the solid PCM and the red color denotes the liquid PCM. The solid PCM
sinks to the bottom of the capsule due to the force of gravity for both the numerical and
experimental results. The experimental total melting time is less than that of the theoretical
one by 2 min.

Table 4 represents the comparison between the liquid fraction contours of the elliptical
cross-section capsule with the experimental photos. The elliptical cross-section capsule is
in a vertical position with an axes ratio of 0.383 for the HTF initial temperature of 340 K
and a velocity of 0.003 m/s. The experimental total melting time is less than that of the
theoretical one by 1 min.

Table 5 represents the comparison between the liquid fraction contours of the elliptical
cross-section capsule with the experimental photos. The elliptical cross-section capsule is
in a horizontal position with an axes ratio of 2.6 for the HTF initial temperature of 340 K
and a velocity of 0.003 m/s. The experimental total melting time is less than that of the
theoretical one by 2 min.
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It is demonstrated in the figures that there is a fair agreement between the experimental
and theoretical results and the shape of molten and solid paraffin. The fair agreement
between experimental and theoretical results ensures the validity of the theoretical model
and the accuracy of the different thermal properties of the paraffin wax.
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The experimental investigation was made to validate the results obtained by the Ansys
Fluent software. Khot et al. [28] observed that using the thermocouples inside the PCM
throughout the melting process restricted the solid PCM from moving, which affected the
melting process. Therefore, there is no thermocouple embedded inside the circular and
oval capsules to measure the temperature distribution inside it. The experimental results of
the liquid fraction are calculated using the image processing method, which enables the
determination of the percentage of the solid “white color” and the liquid “gray color”.

Figure 8 shows the relation between liquid fraction and time for both experimental and
numerical results for a circular capsule at the HTF inlet temperature of 340 K and a velocity
of 0.003 m/s. The numerical results are obtained with different values of Amush (1 × 104,
1 × 105, 2 × 106, 5 × 106, 1 × 107). It is observed from the figure that the melting rate of
the numerical results is slow at Amush = 1 × 107, while at Amush = 1 × 104 the melting rate
of the numerical results increases, and its value is greater than the experimental results.

The previous phenomena are due to the great effect of Amush on the convection effect.
Increasing the Amush value leads to a reduction in the convection effect and the melting
rate. For the circular capsule, the experimental results have a good agreement with the
numerical results at the value of Amush equal to 2 × 106.

Figure 9 displays the relation between liquid fraction and time for both experimental
and numerical results for a vertical oval capsule at the HTF inlet temperature of 340 K and a
velocity of 0.003 m/s. The numerical results are obtained with different numbers of Amush
(1 × 104, 1 × 105, 1 × 106, 5 × 106). It can be observed from the figure that the melting rate
of the numerical results is slow at Amush = 5 × 106, while at Amush = 1 × 106, and 5 × 106

the melting rate of the numerical results is close to the experimental results. For the vertical
oval capsule, the experimental results have a good agreement with the numerical results at
the value of Amush equal to 1 × 105.

Figure 10 illustrates the relation between liquid fraction and time for both experimental
and numerical results for a horizontal oval capsule at HTF inlet temperature of 340 K and a
velocity of 0.003 m/s. The numerical results are obtained with different numbers of Amush
(1 × 104, 1 × 105, 1 × 106, 2 × 106).

It can be observed from Figure 10 that the melting rate of the numerical results
increases and its value is greater than the experimental results at Amush = 1 × 104, while
at Amush = 1 × 106 and 2 × 106, the melting rate of the numerical results is close to the
experimental results. For the horizontal oval capsule, the experimental results have a good
agreement with the numerical results at the value of Amush equal to 1 × 106.
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From the present study, it can be observed that the mushy zone parameter (Amush) has
a great impact on the numerical model results of the PCM melting process and changes
with the shape of the storage unit. The present study provides a range of the mushy zone
parameter for the numerical modeling of the melting process in the circular, horizontal
oval, and vertical oval capsules in future work to obtain more accurate results. Table 6
represents the optimum number of the mushy zone parameter for circular, vertical oval,
and horizontal oval capsules.

Table 6. Optimum number of the mushy zone parameter for circular, vertical oval, and horizontal
oval capsules.

Cases Shape Dimensions Amush Range Outcomes

Circular capsule
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Ar = 1

1 × 104

1 × 105

2 × 106

5 × 106

1 × 107

Good agreement with the
experimental results at Amush

equal to 2 × 106.
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1 × 105
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2 × 106
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7. Conclusions

The melting process of a phase change material (PCM) was experimentally and nu-
merically investigated in storage capsules of different shapes (circular, vertical oval, and
horizontal oval). The numerical model was established to study the effect of the Amush
(mushy zone parameter) on the thermal performance of the PCM melting process. The
model was validated with previous related work, and the results exhibited good agreement.
The results of the numerical model were validated with the experimental results to obtain
the optimum value of Amush for each shape of the latent heat storage unit. According to
the present experimental/numerical results of the PCM melting process inside different
capsules, the following conclusions can be drawn:

1. The value of Amush has a great impact on the numerical model results of the PCM
melting process and changes with the shape of the storage unit;

2. The rate of heat transfer, convection, and fluid velocity all decrease as the value of
Amush rises;

3. The experimental results of the circular, vertical oval, and horizontal oval capsules
match well with the numerical model at the value of Amush equal to 2 × 106, 1 × 105,
and 1 × 106, respectively.

The effect of nanoparticles on the mushy zone parameter should be taken into account
in future research due to their great effect upon the enhancement of the pelting process.
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