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Abstract: The Nile Delta is the most vital region of the desert-dominated country of Egypt. Due to
its prominent level of vulnerability to climate change’s negative impacts and its low capacity for
adaptation and mitigation, the current study aims to provide accurate quantification of temperature
change across the Nile Delta as an integral basis for sustainability and climate change impacts
assessment studies. This was achieved through monitoring urban dynamics and detecting LST trends
in 91 cities and their rural surroundings. The relevant local urban bias was discriminated from
regional/background changes present in diurnal/nocturnal temperature records. The temperature
records were then corrected/adjusted by removing this urban bias. Owing to the insufficiency of
ground-based meteorological observatories, the investigation utilized moderate resolution imaging
spectroradiometer (MODIS) land surface temperatures (LSTs) and Landsat-based datasets (2000–2021).
The widely used Mann–Kendall test (MKT) and Theil–Sen estimator (TSE) were employed to assess
trends in urban sprawl, LST time series, and the implied association. The analysis revealed that the
region has experienced dramatic urbanization, where the total urban expansion was greater than two-
thirds (69.1%) of the original urban area in 2000. This was accompanied by a notable warming trend
in the day/night and urban/rural LST records. The nocturnal LST exhibited a warming tendency
(0.072 ◦C year−1) larger than the diurnal equivalent (0.065 ◦C year−1). The urban dynamics were
positively correlated with LST trends, whereas the Mediterranean Sea appeared as a significant anti-
urbanization moderator, in addition to the Nile River and the prevailing northerly/northwesterly
winds. The urban–rural comparison approach disclosed that the urbanization process caused a
warming bias in the nighttime LST trend by 0.017 ◦C year−1 (21.8%) and a cooling bias in the daytime
by −0.002 ◦C year−1 (4.4%). All results were statistically significant at a confidence level of 99%. It is
recommended that studies of climate-related sustainability and climate change impact assessment in
the Nile Delta should apply a distinction of urban-induced local effect when quantifying the actual
regional temperature change.

Keywords: urban warming; urban bias; land surface temperature; MODIS; GAIA dataset;
Mann–Kendall test; Theil–Sen estimator

1. Introduction

It is incontrovertible that there is no other country in the world that is as reliant on
a mono-fluvial system, i.e., the Nile River, as Egypt. With a sizable population of more
than 100 million people and about 96% of desert lands, Egypt is one of the most densely
populated countries throughout the globe [1]. Although it constitutes just 2.4%, the Nile
Delta is the most vital region in Egypt. It supports 63% of the country’s arable land, yields
most crop production, and offers residence for nearly 50% of the population [2]. Under
these circumstances, the region’s resources are invaluable but, at the same time, scarce and
insufficient. Therefore, the studies concerning the environmental impact assessment and
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sustainable development are crucial to evaluate the overall region’s sensitivity to possible
hazards, notably impactful climate change.

Recent studies have been appraising possible impacts of past climate change and future
scenarios on the world environment [3–13]. Owing to their paramount importance, the low-
lying deltaic systems have broadly attracted special attention as land/sea interfaces and as
hotspots of climate change-related threats [8,9,14–17]. The Nile Delta was identified as one
of the most vulnerable regions to adverse influences related to climate change, including sea-
level rise and seawater intrusion [2,18,19], and accelerated coastal erosion [1], threatening
the agricultural and rural communities [20,21]. At the same time, the region’s adaptive
capacity and mitigative/adjustable capability with these implications are weak since its
marginal ecosystem can be described as fragile or highly susceptible to climate change.

Urban dynamics, on the other hand, are the most significant anthropogenic influence
on the atmospheric system after human-made climate change [22]. Realizing the long-term
dynamics of urbanization is increasingly significant for addressing the relevant environmen-
tal implications and sustainable development goals [23,24]. This issue has manifold critical
consequences on the environmental biophysical systems and the national socio-economic
sectors. In Egypt, the uncontrolled urban dynamics with high rates are complicated because
of the rapid population growth, accelerated national development, and scanty resources of
the arable lands [25,26]. So, the conversion of the Nile Delta’s cultivated lands to urban
LULC is one of the most irreversible negative human impacts. These urban dynamics over
the old deltaic lands severely damage the richest natural reservoir containing invaluable
agriculture-supporting resources and food-producing systems. In the current context, the
atmospheric system is not an exception, where diversified micro-scale modifications were
observed as a result of the urbanization process, including the conspicuous urban heat
island (UHI) [27,28]. It is a phenomenon that occurs when urban land uses/land covers
(LULC) replace the natural vegetation lands, causing a strong micro-scale overheating
within three layers of the cities, i.e., surface, canopy, and boundary layers, compared to
the surrounding environment [29]. The local effect of UHI can exacerbate the temperature
trend observed in the urban areas relative to that detected in the rural surroundings [30–32].

Considering the above-mentioned arguments, as accurate as possible quantification
of temporal temperature change can be counted as a fundamental ground for assessing
the expected environmental impacts of potential climate change on the Nile Delta’s water–
food–energy systems and the relevant concerns of sustainability. The accurate estimation of
temporal temperature changes requires unbiased temperature records. Many triggers are
well-recognized as contaminants that can introduce biases into the systematically observed
records of temperature [33–36], primarily the unavoidable processes of urban dynamics.

Early research works embarked on eliminating the systematic urban effect existing
in temperature records (e.g., [30,37–39]), where the city has been recognized long ago as
a serious contamination source of the climate signals [40]. This was originally triggered
and encouraged as an integral part of the wider scientific interest in the global climate
change issue. Correcting the urbanization effect should be conducted to provide bias-free
temperature records necessary for monitoring the actual long-term climate change, namely
“Macro and/or Large-scale and/or Background and/or Regional Component” of climate
change [41,42]. Advancements in the methodologies of urban bias removal can be divided
into the urban–rural comparison approach and the urban-based approach.

Kukla et al., (1986) demonstrated the early urban bias estimations by comparing
trends of air temperature datasets collected in urban environments and countryside sites
worldwide [37]. This technique was then mostly adopted in North America [37], the United
States [38], the Northern Hemisphere [39], Prague [43], and South Korea [44]. Jones et al.,
(1989) used linear regression between urban–rural temperature differences and population
growth to discover the urban effect in the United States and the Northern Hemisphere
temperature records [39]. The urban–rural distinction was initially based on population size,
population density, and census area categorization [45]. Later, satellite night-light metadata
was used for this purpose [46,47]. A new machine learning-based method was proposed
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by [48] to classify weather stations into rural/urban based on a satellite-based global LULC
product. They then estimated the urbanization contribution to the global/regional time
series of annual land mean/extreme temperature indices.

In case the reference rural stations are inadequate, another methodological approach
was invented based solely on the urban conditions. Some papers estimated urban bias
by utilizing the upper-air temperature records collected through atmospheric vertical
soundings, which are not sensitive to urbanization [22,49,50]. An innovative analysis drew
an analogy between air temperature trends in windy and calm weathers to extract the
net urban effect [51]. Yuan and Guo-Yu [52] developed a new method to adjust urban
bias in Beijing using linear correction between the accumulated urbanization effect and
surface air temperature. A similar work [53] connected trends of urban fraction around
weather stations to quantify the nexus between urban sprawl and urban warming in China.
Integration between remote sensing and weather observations was employed to assess
Brussels’ UHI effect on the summertime air temperature series of Uccle [54]. Bassett et al.,
created a statistical model to estimate the daily urban warming across Great Britain based
on the relationships between UHI intensity, urban fraction, and wind speed [55]. Recently,
Shi et al., (2021) corrected the urbanization bias at a typical station in the Yangtze River
Delta. The discussion suggested that the new satellite-based technology can be more
effective in correcting the urbanization effect around the station [32].

It has long been acknowledged that remote sensing is a robust system for monitoring
the Earth’s environmental conditions and ecological problems [56–60]. It consistently pro-
vides a long historical record of imagery acquired in diverse spatial/temporal resolutions,
which is essentially advantageous in the assessment of urban dynamics [61–63] and LULC
changes [64–66] over time. Satellites operating in thermal infrared (TIR) imaging have an
extraordinary prominence in terms of LSTs calculation and investigation [67,68], including
Landsat missions 4/5/7/8, the advanced space-borne thermal emission and reflection
radiometer (Terra ASTER), and Aqua/Terra MODIS. TIR satellites were designated to
supply thermal data in a high spatial sampling rather than any other data source. They are
specifically optimal for exploring and analyzing local-to-site thermal characteristics and
UHI effects [28,69–72]. Consequently, those systems overcome the rooted shortages that
devalue the ground-based observatory network of the atmospheric system, particularly
in developing countries’ regions, such as the Nile Delta, whose meteorological service
contains very few weather stations with limited capacity for micro-scale applications of
urban climate.

In addition, the localized nature of per-pixel LSTs makes TIR products remarkably
valid in separating the urban warming component from the regional atmospheric change.
On the contrary, in the case of ambient air temperature data measured systematically
by sparse, inadequate weather stations, the achievement of that local–regional thermal
separation is largely defective because of the well-mixed urban–rural air masses. This
air mixing prompts the urbanized contamination effect in meteorological stations located
within peri-urban and rural surroundings. This urban-induced corruption is mainly caused
by the horizontal outgrowth of the UHI effect beyond the city’s built-up zone, namely the
well-known phenomenon of the UHI footprint [73–77].

In this paper, we monitor the dynamics of the urban centers across the Nile Delta,
explore diurnal/nocturnal LST trends in both urban areas and rural surroundings, and an-
alyze the urbanization–warming nexus. Finally, the local-to-regional temperature changes
are discriminated using quantification of the urban bias. We utilized LST data products
acquired by Aqua/Terra MODIS sensors (2000–2021) and Landsat-based annual coverage
of urban settlements, namely the “Global Artificial Impervious Areas (GAIA)” dataset.

2. Materials and Methods
2.1. Study Area

The Nile Delta is a major physiographic division of Egypt. It is an inverted triangle-like
region situated in the northern territory of Egypt, as shown in Figure 1. Its southernmost
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tip is formed by the divergence of the Nile River’s main course into the eastern (namely
Damietta) and the western (namely Rosetta) distributaries. The northern arc-shaped edge
of the region stretched along the middle part of the Egyptian Mediterranean coastline.
The region spans latitudes between 30◦10′25.9”–31◦36′11.6” north and longitudes between
29◦22′35.7”–32◦33′15.8” east. Hence, it is located within the African subtropical zone, fully
influenced by Köppen’s hot desert climate BWh [78].
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Figure 1. Location map and geographical setting of the study area (the red box) using ESRI true-color
satellite images. The Nile Delta (the dark greenish cultivated surface) extends between the Western
and Eastern Desert surfaces (the yellowish surfaces). The urban system under consideration includes
91 urban centers symbolized using the natural breaks (Jenks) method into six categories according
to population size: small towns (37 centers), large towns (32 centers), small cities (12 centers),
medium cities (5 centers), large cities (4 centers), and megacities (single center). This method of
classification groups the original population data into similar natural classes of urban centers to
maximize the differences between classes. The limits of each population class were rounded for
generalization purposes.

The key aspect of the climatic conditions is the enormous evapotranspiration that
exceeds the rainfall amount, forming a vast arid zone as a part of the Northern African Sa-
hara, which is interrupted by the Nile River and its own Delta intrusion. Broadly speaking,
the region experiences warm-to-hot summers with mild winters. The westerlies dominate
the general wind system, acting as a temperature-moderating agent. Based on the spatial
average of climate data observed for the period 1976–2005 in 10 meteorological stations
within the Nile Delta, the annual maximum, minimum, and daily temperature normals
were 25.9 ◦C, 15.4 ◦C, and 20.4 ◦C, respectively. The summer maximum temperatures
frequently exceed 30 ◦C, while minimum temperatures in winters are usually above 5 ◦C.
The absolute maximum (highest) and minimum (lowest) temperature values observed
were 44.4 ◦C and 0.1 ◦C, respectively.

The region covers an onshore area of about 21,427.1 sq km, only 2.4% of Egypt’s
mainland [2]. The Nile Delta’s alluvial formation within a desert-dominated country makes
it the richest agricultural environment that offers a habitat for about 50% of the country’s
population. Considering the above-mentioned socio-economic impetus, the region has
been undergoing considerably intensified urban dynamics. The cultivated surface of the
Nile Delta plain is speckled with a wide variety of urban/non-urban settlements. The
urban system occupying the Nile Delta’s old lands includes 91 municipalities out of the
total 241 Egyptian urban settlements. Figure 1 illustrates their spatial distribution and
categories with respect to population size. The total population of the urban centers of
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interest is 14.2 million, with a considerable domain ranging between the smallest town of
Gamasa (3890 inhabitants) and the largest megacity of Alexandria (5,027,250 inhabitants).

2.2. Datasets Description and Analysis Procedure
2.2.1. Urban Dynamics Data and Mapping

Monitoring large-scale urban dynamics is crucial for numerous environmental ap-
plications on a changing globe. The practicality of big imagery data archives collected
by satellite remote sensing systems was frequently expanded to produce ready-to-use
long-term urban impervious surfaces and LULC products for mapping urban dynamics
worldwide [24,79–81]. The current study exploited the so-called GAIA dataset generated
by [81] to map and explore the urban dynamics across the Nile Delta in terms of urban
sprawl. It is a web-based repository that offers high-resolution (30 meters) raster layers of
the human urban/rural settlements’ footprints. The dataset has a planetary-scale spatial
extension, with temporal coverage spanning more than 30 years (1985–2018) at annual
intervals. Human settlements were extracted and mapped annually based on the full
image archive of Landsat satellite missions on the Google Earth engine platform. The
developers of GAIA reported that they evaluated the dataset using a five-year interval
sample, namely 1985, 1990, 1995, 2000, 2005, 2010, and 2015, and the overall accuracy was
+90%. The cross-comparison and temporal trend in GAIA agreed well with the similar
local, regional, and global datasets. The full dataset is freely downloadable and sharable
from http://data.ess.tsinghua.edu.cn (accessed on 5 January 2022).

After downloading, the preprocessing procedures involved clipping the dataset spatial
coverage by the Nile Delta’s boundary and transforming the layers from the geographic
coordinate system (GCS) of WGS 1984 to the commonly used projected coordinate system
(PCS) of Universal Transverse Mercator (UTM) Zone 36 N. Owing to its inclusion of
all settlement types, we masked GAIA raster layers to eliminate rural settlements. The
final outputs contained only the annual built-up footprints of the 91 urban centers under
investigation within the Nile Delta region. Because the GAIA dataset ends in 2018, the
yearly urban expansions up to 2021 were derived from 30-meter Landsat images using on-
screen digitizing. The area (sq km) of each urban settlement was computed on a year-to-year
basis during the study timeframe (2000–2021).

2.2.2. Vegetation Indices and Urban–Rural Distinction

The most straightforward approach of quantifying the urbanization effect is to compare
the urban areas with the neighboring rural environment that is considered free of the urban
influence. The current study adopted an urban–rural comparison approach for measuring
the local contribution of urbanization in the LST time series. So, it was necessary to
accurately distinguish the urbanized built-up zones and the rural vegetated surroundings.
Simply put, the Nile Delta’s urban built-up zones were extracted based on the GAIA
dataset [81] described before in Section 2.2.1.

As for the rural areas, since the standard height of the thermometer shelter is 1.5 m,
the maximum possible impact of the urbanized built-up area on the temperature data
under advection and turbulence conditions does not exceed 5 km [32,82,83]. Therefore, the
reference rural surroundings were delineated as well by creating a GIS Euclidean distance
analysis to determine the areas extending +5 km around each urban center. The rural
environments occupying the immediate vicinity (0–5 km) of the urban areas were neglected
so as to eliminate the well-recognized UHI footprint effect. Figure 2 shows an example of
the conceptual framework used to identify the urban center, the ignored ring buffer, and
the reference rural surroundings required for removing urban bias from the LST records.

http://data.ess.tsinghua.edu.cn
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Figure 2. (a) The conceptual framework adopted in the study to identify (1) the urban area whose
temperature record endures the UHI signals and needs to be corrected (the red border), (2) the ignored
0–5 km rural surrounding which is affected by the UHI footprint (inside the yellow border), and
(3) the reference +5 km rural surroundings utilized for urban bias removal (outside the yellow border).
(b) The reference +5 km rural surroundings were selected based on Terra MODIS NDVI values. As
indicated by the left panel (a), the region is highly urbanized and numerous villages spread across its
surface. We used GIS-based processing to exclude these unfavorable built-up areas from the rural
benchmark zone to avoid introducing uncertainty to the analysis results. The illustrative mapped
example is for the small town of Sidi Salem.

As a matter of fact, the LST values in rural areas are expected to be largely affected by
the interannual variations of vegetation greenery/extent expressed in NDVI values. This
situation can introduce much uncertainty when comparing urban/rural environments to
measure the effect of urban expansion on LST. We neutralized the vegetation-induced LST
variations in the reference rural locations by exclusively utilizing the highly vegetated pixels
in which NDVI ≥ 0.65 and no significant trend was observed in the 22-year time series of
the NDVI dataset. It should be noted that the web-based accessible (https://earthexplorer.
usgs.gov/ (accessed on 14 January 2022)) Terra MODIS product of MOD13A3 V6.1 was
manipulated to identify vegetated areas in the reference rural zone located +5 km from each
city. The product involves the vegetation indices of the normalized difference vegetation
index (NDVI) and the enhanced vegetation index (EVI) provided monthly at 1 km spatial
resolution. More improvements were applied to the reference rural surroundings by
eliminating the pixels containing high water content or small built-up settlements, which
may elevate the errors in the analysis results.

2.2.3. LST Time-Series Construction

In determining the local response of temperature to urban dynamics, nine LST time
series were imperative for analysis, i.e., diurnal, nocturnal, and daily collections for urban,
rural, and area averaged LST values. Moreover, per-city LST records were crucial to analyze
the dependency of temperature bias on the city size and rates of urban dynamics. The work
relied entirely on satellite data acquired by Aqua/Terra MODIS sensors available for use at

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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https://earthexplorer.usgs.gov (accessed on 9 January 2022). The imagery datasets cover a
continuous, relatively prolonged period of about 22 years (2000–2021). The Aqua/Terra
MODIS sensors detect four scenes a day for the study area, both in diurnal (≈10:00 AM and
02:00 PM) and nocturnal (≈10:00 PM and 02:00 AM) times. We drew Terra MODIS-derived
MOD11A2 and Aqua MODIS-derived MYD11A2 version 6.1 products, which provide an
average 8-day per-pixel LST and emissivity at 1 km spatial resolution.

Preprocessing for each imagery collection included sub-setting the study area, project-
ing the scene to PCS UTM Zone 36 N coordinate system, transforming the scene’s digital
numbers (DNs) to LSTs by the provided scale factor (0.02), and conducting emissivity
correction of LST using the supplied per-pixel emissivity values. Temporal and spatial
missing LST values were estimated using the inverse distance weight (IDW) interpolator
and forecasting function. Subsequently, the annual LST averages of daytime, nighttime, and
day imagery records were computed. Ultimately, the above-mentioned temporal daytime,
nighttime, and day LST records were spatially segmented using GIS zonal analysis to more
homogeneous urban, rural, and area-averaged composites.

2.2.4. Trend Analysis

Upward and downward trends are detectable in hydrometeorological time series using
different statistical parametric and nonparametric tests [84–88]. We applied the widely
used MKT [89,90] and TSE [91,92] to assess trends in urban sprawl and LST time series, and
the relevant intercorrelation. MKT is a rank-based, nonparametric test developed to detect
positive/negative monotonic trends in environmental impact assessments [93,94]. Unlike
the parametric methods, MKT is a distribution-independent test, i.e., it does not require the
data to be normally distributed, a presumption that is statistically rare in atmospheric data.
However, the dataset should have no serial correlation [95]. All LST trends were evaluated
at a statistical significance of 0.01 (confidence level of 99%).

The MKT statistic S is given by [94]:

S = ∑n−1
i=1 ∑n

j=i+1 sgn
(
Xj − Xi

)
(1)

where Xi and Xj are the values of sequence i, j; n is the length of the time series, and:

sgn (θ) =


+1 i f θ > 0

0 i f θ = θ

−1 i f θ < 0
(2)

The statistic S is approximately normally distributed when n ≥ 8, with mean and
variance as follows:

E(S) = 0 (3)

V (S) =
n (n− 1)(2n− 5)−∑m

i=1 Tii (i− 1)(2i + 5)
18

(4)

where Ti is the number of data points in the tied group and m is the number of groups of
tied ranks. The standardized test statistic Z is computed by:

Z =


S−1√
V(S)

S > 0

0 S = θ
S+1√
V(S)

S < 0
(5)

Although the MKT is robust, it does not provide a quantitative estimation of the trend
line’s slope, i.e., the magnitude of a positive or negative trend. For this purpose, trend
analysis utilized the TSE to compute the trend magnitude. The TSE was first outlined by
Theil (1950) and later expanded by Sen (1968). It is a nonparametric estimator and resistant

https://earthexplorer.usgs.gov
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to outlier data points. It uses medians to fit the trend line as an alternative to the parametric
mean-based method of least squares [96].

The TSE model for trend magnitude is conducted by calculating the slopes of all
possible combinations of data pairs as follows [97]:n

V
2

 =
n(n− 1)

2
(6)

The final slope β̂1 is then defined as the median of all slopes:

β̂1 = median {B̃}, B̃ =
{

bij
∣∣bij
}
=

yj − yi

xj − xi
, xi 6= xj, 1 ≤ i < j < n (7)

Because the TSE computes the trend line’s slope alone, the model “intercept β̂0” can
be given by:

β̂0 = Ymedian − β̂1 × Xmedian (8)

where Xmedian and Ymedian are the medians of the measurements and of the response vari-
ables, respectively.

2.2.5. Local–Regional Warmings Separation

The annual average of micro-scale urban bias expected to exist in the city’s LST record
was computed by comparing trends of LST datasets collected in both urban environments
against countryside locations. This was achieved based on the following simple formula:

LST Biasurban = LSTurban − LSTrural (9)

where LSTurban and LSTrural are the average LST values in both urban and rural environ-
ments, respectively. The urban bias trend was then obtained by conducting trend analysis
on the 22-year record of the annual average LST biases. Ultimately, this urban-induced bias
trend was utilized to correct the original LST time series. Adjustment of the annual LST
average for the annual average of UHI intensity/bias was derived from [45]:

LSTcorr−i = LSTi − (LSTurban − LSTrural) (10)

where LSTcorr−i is the corrected annual LST average of the year i and LSTi is the observed
annual average of LST of the year i. Correction of the annual LST average for the trend of
UHI intensity/bias was calculated from [45]:

LSTcorr−i = LSTi − (UHIslope × i− istart

)
(11)

where UHIslope is the trend TSE slope of the annual UHI intensity record and istart is the
start year of the time series under investigation, i.e., 2000. Equations (10) and (11) can be
aggregated in the following one:

LSTcorr−i = LSTi −
{

LSTurban − LSTrural + [UHIslope × i− istart

]
(12)

The urban-induced bias of LST time series was then linked to the urban dynamics
time series to disclose the possible nexus between urbanization and local urban warming.

3. Results and Discussion
3.1. Urban Dynamics in the Overall Nile Delta

This section is intended to provide a holistic view of the observed temporal tendency
in urban dynamics across the overall Nile Delta and per-city time series on a yearly basis.
Figure 3 shows a mapping of the 22-year period (2000–2021) of urban dynamics across the
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Nile Delta, basically in terms of urban ground coverage. The temporal growth and trend
line of the total urban area and built-up increments (sq km) using MKT and TSE analysis
are also visualized. Analysis revealed that the total urban footprint in the Nile Delta
consistently grew from 455.47 sq km in 2000 to 770.23 sq km in 2021, at an average growth
rate of 14.99 sq km year−1 and a standard deviation of 22.85 sq km. Figure 3 indicates that
there was a perfect positive monotonous linear trend in the total urban area as calculated
from MKT analysis, where Kendall’s tau value was 1. According to TSE, the magnitude
of the trend line slope was 9.8 with a confidence interval of 9.74–9.9. This means that the
annual increment of urban expansion was 9.8 sq km year−1. The results were statistically
significant at a confidence level of 99%, where the computed p-value of MKT was < 0.0001,
or less than the alpha threshold (α = 0.01). It was observed, as well, that the largest annual
growth rates in the urban built-up were 106.6, 42.2, 22.1, 18.8, and 16.9 sq km, which were
detected in the years 2020, 2015, 2001, 2021, and 2014, respectively. The measured annual
expansions during the remaining years were mostly less than 10 sq km.
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These findings suggested that the Nile Delta has experienced a dramatic urbanization
process, in terms of urban sprawl, during the period 2000–2021. The total built-up zone of
about 314.8 sq km was appended as an urbanized extension to the base-year urban area,
i.e., 455.5 sq km in 2000. This expansion was estimated to be greater than two-thirds (69.1%)
of the original urban area during a relatively short time span (22 years). The main motives
behind the rapid urbanization were the natural population growth at an annual rate of
2–3%, the immense rural-to-urban people migration, and the fast national development
through modernization, industrialization, and diversification of the economic structure [25].
The exponential pattern of the population growth in the region implied sharper increases
over time [26]. In addition, the urban dynamics in the Nile Delta were tremendously
complicated and usually exceeded the expected rates because the urban development was
mostly informal, unplanned, and uncontrolled [98]. Considering its alluvial formation
within the desert-dominated surfaces, the Nile Delta’s richest agricultural environment
supports 63% of the country’s farmland and offers habitat for about 50% of the country’s
population. So, the region has undergone a considerable intensified human-induced
pressure, predominately the urban dynamics.
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It should be noted that those dynamic expansions in urban built-up zones implicitly
involved LULC alterations across the Nile Delta, specifically the urban encroachment over
the old rural lands fully enveloping the cities, as shown in Figure 3. This pattern of urban
expansion should be accompanied by exacerbated urban warming and prompting urban
bias in the temperature records. Similar studies have been investigating the observed LULC
changes and the relevant urban sprawl over rural farmlands. Throughout the Nile Delta,
urban settlements have expanded mostly at the expense of the fluvial lands dedicated to
cultivation rather than the barren lands or desert fringes.

Analysis of Landsat MSS and TM datasets (1972–1990) showed that urban expansion
of about 58% in 18 years was endangering the region’s agricultural lands [99]. In the period
from 1984–2006, the change detection technique applied to Landsat TM and ETM+ images
disclosed that the total urban expansion amounted to 689.2 sq km [100]. The expansion
was mostly at the expense of the vegetated lands, while the urban encroachment over the
nonarable soils was very limited. Landsat-derived estimation of urban expansion in the
middle Nile Delta between 1997 and 2017 was approximately 21.19% (from 1192.56 sq km
to 1445.33 sq km). This expansion implicitly referred to a decrease in rural environments
enveloping the cities by about the same size [25]. Radwan et al. [26] monitored changes in
the Nile Delta’s LULC during a 24-year period (1992–2015) using a multi-sensor dataset. A
dramatic urban expansion of about 746 sq km was detected in the region, leading to a loss
of the old, cultivated land at a rate of 31.08 sq km year−1. In the same period, 2061 sq km
of bare desert surfaces were reclaimed to be new farmlands at a rate of 85.88 sq km year−1.
Landsat 5/7/8 data were used to assess modifications of LULC classes for the Nile Delta
from 1987 to 2015 [101]. There was a continuous increase in urban, agricultural, fish farms,
and natural vegetation classes, while continuous decreases were detected in both water
bodies and barren sandy areas. The urban area had the highest increase during 2000–2015
(979.408 sq km with a rate of 34.8%) compared to the period 1987–2000 (531.126 sq km
with a rate of 47.6%). Overall, the total growing rates of LULC classes during the period
1987–2015 were 99% in urban areas and 25.8% in cultivated lands. By the 1990s, the total
area of lagoons and wetlands occupying the northern Nile Delta has declined by about 45%
of its observed size in the 1950s [2].

Figure 4 shows the urban classes according to the total growth in the built-up area
of each urban center (2000–2021) and the total number of urban areas per class. It is
notable that the vast majority of the urban centers (66 urban settlements) are located
in the first category, in which the total per-city expansion was 2 sq km or less. The
smallest urban expansion of about 0.21 sq km was recorded by the town of Kafr Saad
in the Damietta Governorate. On the other hand, the megacity of Alexandria occupied
a unique and prominent stature regarding the urban growth, where it was enormously
expanded by approximately 129.7 sq km. The second largest urban growth within the
period 2000–2021 was 15 sq km, which was observed in the city of New Damietta located
along the Mediterranean coast in the Damietta Governorate.

3.2. Day/Night and Urban/Rural LST Trends and the Nexus with Urban Dynamics

For this section of the study, the analysis aims at examining the inter-annual trends of
LST time series within the urban area, rural surroundings, and across the overall Nile Delta
on three timescales, i.e., the daytime, nighttime, and daily datasets. Figure 5 exhibits the
inter-annual variability and Kendall trend analysis for these time series. The LST data were
calculated based on Terra and Aqua MODIS imagery acquired during the period 2000–2021.
The descriptive statistics and MKT and TSE outputs for the 22-year LST time series are
displayed in Table 1. As illustrated in Figure 5, the LST series have consistently risen since
2000 and their inter-annual variability had a general increasing tendency through time
with different magnitudes for all the series. The descriptive statistics provided in Table 1
indicate that the lowest LST values throughout the time series were always measured in
the first quarter of the period, i.e., the years 2000 and 2005, whereas the highest readings in
LSTs were observed in the last quarter of the period, specifically in the years 2018 and 2021.
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This is a strong indicator of the warming phenomenon in the Nile Delta region, including
its urban and rural environments, in the daytime and nighttime hours. Furthermore, the
LST values in all datasets were homogeneous in terms of the statistical dispersion, where
the standard deviation ranged in a noticeably short domain between 0.4 ◦C and 0.6 ◦C.
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Table 1. Basic analysis outputs of descriptive and Kendall trend statistics for the rural, urban, and
overall Nile Delta’s diurnal, nocturnal, and daily LST time series (◦C) calculated based on Terra and
Aqua MODIS imagery acquired during the period 2000–2021.

St
at

is
ti

cs Item
Rural

LST (◦C)
Urban

LST (◦C)
The Nile Delta

LST (◦C)

Day Night Daily Day Night Daily Day Night Daily

D
es

cr
ip

ti
ve

Obs. 22 22 22 22 22 22 22 22 22

Min. 27.9
(2005)

13.5
(2000/5)

20.7
(2005)

29.9
(2005)

16.7
(2000/5)

23.3
(2005)

28.6
(2005)

14.7
(2000/5)

21.6
(2005)

Max. 29.7
(2021)

15.3
(2018)

22.4
(2021)

31.6
(2021)

18.6
(2018)

25.0
(2018/21)

30.7
(2021)

16.5
(2018)

23.5
(2021)

Mean 28.6 14.4 21.5 30.7 17.6 24.1 29.4 15.5 22.5
Std. dev. 0.4 0.5 0.5 0.5 0.6 0.5 0.6 0.6 0.5

Tr
en

d

K. tau 0.51 0.57 0.60 0.43 0.70 0.62 0.51 0.68 0.62
S 116.0 131.0 139.0 99.0 161.0 143.0 117.0 157.0 143.0

Var(S) 1254.7 1255.7 1255.7 1257.7 1257.7 1257.7 1257.7 1257.7 1257.7
p-value 0.001 <0.001 <0.001 0.006 <0.001 <0.001 0.001 <0.001 <0.001
alpha 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Sen

Slope 0.050 0.067 0.050 0.045 0.078 0.062 0.065 0.072 0.063

Intercept −71.95 −119.64 −79.07 −59.92 −138.39 −99.85 −101.2 −130.0 −104.9

Regarding the overall Nile Delta’s LST datasets, the lowest and highest annual aver-
ages of LST were 21.6 ◦C (2005) and 23.5 ◦C (2021), respectively, with a period average of
22.5 ◦C and a standard deviation of 0.5 ◦C. It is clear that the Nile Delta’s daily record of LST
experienced substantial warming during the study period. Statistical analysis using MKT
discovered that daily LST had an upward trend, where Kendall’s tau value was 0.62, which
indicates the elevation of LSTs throughout the time, as shown in Table 1. TSE suggested
that the observed elevation rate in daily LSTs was 0.063 ◦C year−1, with a total warming
magnitude of 1.32 ◦C for the whole period. For the diurnal and nocturnal records, there
was an obvious tendency of LST amplification in both measures. The lowest LST values
were 28.6 ◦C in 2005 and 14.7 ◦C in 2000 for daytime and nighttime datasets, respectively,
whereas the highest readings in the daytime and nighttime LSTs were 30.7 ◦C in 2021 and
16.5 ◦C in 2018, respectively. The overall period means of diurnal and nocturnal LST were
29.4 ◦C and 15.5 ◦C, respectively, with a standard deviation of 0.6 ◦C for both measures.
According to TSE Analysis, Table 1 reports that diurnal and nocturnal datasets warmed
throughout the study period at rates of 0.065 ◦C year−1 and 0.072 ◦C year−1, respectively.
The total warming magnitudes in both measures were 1.36 ◦C and 1.51 ◦C, respectively.
The statistical analysis outputs were significant at a confidence level of more than 99%.
Table 1 specifies that p-values were <0.001 for all statistics.

It has become apparent that LST records collected during nighttime for the whole Nile
Delta exhibited a warming tendency slightly larger than the equivalent records derived
for the daytime. This aspect of the day/night LST trends was far greater observed in
both urban and rural environments, where the day/night warming rates in the urban
areas were 0.045 ◦C year−1 and 0.078 ◦C year−1, respectively, and in the rural areas were
0.050 ◦C year−1 and 0.067 ◦C year−1, respectively, as shown in Table 1. It is well-known
that a more apparent increasing trend can appear in the minimum temperature time
series than in the maximum temperature records. Similar studies in neighboring regions
have shown comparable findings with these results. In Kuwait [102], an investigation of
23-year air temperature data indicated that the minimum temperatures were rising at a
significant rate, while the maximum temperatures showed a decreasing trend. This contrast
supports a strong signal of the urban effect on temperature trends. Across the eastern
Middle East during the period 1983–2012, trends in temperature-related indices were
examined [103]. The results showed warming trends throughout the region. The nighttime
high-temperature extremes have risen at more than twice their corresponding daytime
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extremes. The minimum temperature indices exhibited a higher rate of warming than the
maximum ones in terms of intensity and frequency. However, unlike the previous studies,
Almazroui et al., (2013) [104] conducted a national-scale correlation analysis between
urbanization and atmospheric warming in Saudi Arabia by utilizing air temperature data
(1981–2010) for 24 weather stations and population census data. They reported that the
observed warming is not likely due to the urbanization process. The population increase
did not necessarily equate with the rising temperature trend. The largest population growth
was observed in two cities whose trends were not the highest. Large warming trends were
noticed in sites located near small cities with low population growth. In addition, in the
17 largest Mediterranean cities [105], the comparison between temporal trends of LST and
UHI, and urban population changes resulted in poor correlation (R = 0.28). The authors
reported that this result was expected because of differences in climatic conditions, city
structures, and human activities. We think that changes in population size are not a
reasonable indicator of urbanization in most cases.

On the urban/rural comparison basis, the Nile Delta’s urban areas constituted a
conspicuous positive UHI over the course of the day. The average annual nocturnal UHI
intensity was stronger (3.2 ◦C) than the diurnal one (2.1 ◦C), where the average annual LSTs
were 17.6 ◦C and 14.4 ◦C during the nighttime, and 30.7 ◦C and 28.6 ◦C during the daytime
for the urban and rural areas, respectively. In general, we found statistically significant (at
a +99% confidence level) positive trends in the inter-annual averages of daytime, nighttime,
and daily LST records within both urban environments and rural surroundings across the
Nile Delta. Based on the TSE, the LST upward trend was greater in the urban areas than
in the rural embracing outskirts of the nocturnal (0.078 ◦C year−1 and 0.067 ◦C year−1,
respectively) and the daily (0.062 ◦C year−1 and 0.05 ◦C year−1, respectively) scales. This
effect supports the role of urbanization in exacerbating the atmospheric warming in the
Nile Delta region, where it is more compatible with the fact that the UHI effect is a nocturnal
phenomenon. It is worth mentioning that the consistent LST pattern of the monotonous
upward trends within the diversified urban/rural environments emphasized the large-scale
nature of the regional atmospheric warming in the Nile Delta. However, the different trend
magnitudes for urban and rural LST series pointed out the local contribution of the urban
dynamics. So, the total detectable changes in the temperature records are a result of both
the background atmospheric factors and the microscale anthropogenic drivers, chiefly the
urbanization process.

Our findings concerning the nocturnal UHI and LST trend seem to be geographically
dominated in the wider near regions. For example, a unique work [105] analyzed MODIS
nighttime data (2001–2012) to investigate the characteristics and trends of the nighttime LST
and surface UHI in the 17 largest Mediterranean cities. In general, urban areas exhibited
higher LST values compared to non-urban surroundings, forming a UHI effect with an
average intensity of 1 ◦C. The strongest UHI intensities were 3.9 ◦C, 3.5 ◦C, and 2.8 ◦C in
Damascus, Alexandria, and Cairo, respectively. A warming trend was found for 82% of
the urban areas, while mixed positive and negative trends were detected in non-urban
surroundings. An overall increasing rate of a 0.1 ◦C decade−1 was detected in urban LST.
The higher positive trends appeared in the eastern Mediterranean cities, where the Nile
Delta extended.

On the other hand, the increasing trend of the diurnal LST records was slightly larger in
the rural fringes (0.05 ◦C year−1) than that found in the urban areas (0.045 ◦C year−1). This
unexpected urban-rural pattern in the diurnal LST trends was noticed in China [53] during
the period 1980–2009 using different datasets and methodology. The research used ERA-
interim reanalysis datasets of the average air maximum and minimum temperatures and
relied on an urban-derived approach to correlate the urban warming to the urban fraction
in 10 × 10 km around 753 weather stations. The urban growth enhanced the average
minimum temperature by +1.7 ± 0.3 ◦C, whereas the average maximum temperature
trend was slightly declined due to urbanization by −0.4 ± 0.2 ◦C. However, the study
provides no explanation for this situation. A recent study [106] discovered close results
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when employing similar datasets and procedures to the current study. It utilized two
decades (2001–2018) of Aqua/Terra MODIS imagery to investigate the day/night temporal
trends in LST and surface UHI for three diverse Indian cities (Lucknow, Kolkata, and Pune).
Positive trends of daytime (0.003 to 0.059 ◦C year−1) and nighttime (0.03 to 0.078 ◦C year−1)
LST records were observed in the cities, except in Pune City where urban cooling was
detected during the daytime. The increase in the aerosol concentration, the consequent
decrease in surface insolation and air temperature, and expanding the vegetative areas over
time were considered the primary reasons for the urban daytime cooling effect in Pune.

Despite the greater nighttime LST trend than the daytime opposite being a well-
documented feature of the urban centers, the same daytime/nighttime pattern of LST trend
was disclosed in the Nile Delta’s rural area as well. Table 1 shows that the detected trends
in the rural LST records were 0.05 ◦C and 0.067 ◦C during the day and night, respectively
(daily trend 0.059 ◦C). In fact, this discovery may be substantial proof indicating the
contamination of rural environments by the horizontal advection of the urban footprint
effect. This was noteworthy enough to make us skeptically reconsider the criteria by which
the rural surroundings were chosen as a reference thermal environment to which the urban
LST will be compared. For the purpose of verifying and validating our findings, we decided
to reiterate the analysis using remoter reference surroundings that are distant enough from
the potential contamination that may be caused by the Nile Delta’s urban system. An
idealized remote, human-activity-free barren area in the Western Desert was selected, as
shown in Figure 1. Interestingly, we almost found the same results where the day/night
trends of the desert LST records were 0.048 ◦C and 0.07 ◦C (daily average 0.059 ◦C), so
close to the rural reference trend magnitudes formerly reported. This referred to the high
trustworthiness of the methodology our research followed and the results we obtained.
Furthermore, this discovery distinctly indicated the fact that the greater nocturnal LST
trend than the diurnal one is not a rule confined to the urban areas.

Figure 6 presents a per-city assessment of the trend pattern observed in both day/night
LST records. It is clear that the first class, in which the nocturnal LST trend is greater
than the diurnal LST trend (Figure 6a), is the most common, where it included 68 urban
centers or three-quarters of the urban areas. The remaining quarter (23 urban centers)
was characterized by a nocturnal LST trend that is less than the diurnal one. All the
per-city LST series showed an increasing trend during the day and night. However,
just four urban centers had a decreasing trend in the diurnal LST series, including the
coastal cities of Gamasa (−0.042 ◦C), New Damietta (−0.041 ◦C), Idku (−0.026 ◦C), and
El-Borollos (−0.013 ◦C) (Figure 6a). It was noted that the results of the four cities were
statistically nonsignificant.

This finding demonstrates the significant role of the Mediterranean Sea in modulating
urban warming during the daytime. This role during the daytime can be proved as well by
the megacity of Alexandria. Among the 91 urban centers under investigation, Alexandria
City has the largest built-up area (roughly 285.1 sq. km), population size (more than
5 million inhabitants), and the greatest annual rate of urban growth (6.2 sq km year−1),
as shown in Figures 1 and 4. However, its annual trend slope of the diurnal LST was just
0.021 ◦C, making it one of the modest urban centers with an upward LST trend, as shown
in Figure 6a. This can be chiefly explained by its coastal location in the northwesternmost
point of the study area, where it immediately overlooks the sea. In the nighttime, Figure 6b
stressed the same effect of the Mediterranean Sea. It is clear that there was a remarkable
spatial pattern, in which the per-city annual magnitude (in terms of TSE slope) of the
nocturnal LST trend decreased in a generally south–north direction. This distribution
largely agrees with the maritime influence blowing from the north. Furthermore, this
role of the Mediterranean Sea is expected to be maximized because of the function of the
prevailing northwesterly and northerly winds in transferring the maritime effect into the
coastal urban areas.
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Evaluating the association between the maritime effects, in terms of the distance
between each city and the Mediterranean Sea coast, and the magnitudes of LST trends
using the Kendall correlation, unveiled a stronger positive connection between the two
variables during the nighttime (R = 0.67) than the daytime (R = 0.33). These significant
correlations (p-values < 0.0001) pointed out that the proximity to the maritime influences of
the Mediterranean Sea can explain 45% of the nighttime LST trend and 11% of the daytime
LST trend, as suggested by the coefficient of determination. Linear regression analysis of the
cities’ proximities to the Mediterranean Sea (independent variable) against their LST trends
(dependent variable) showed that the magnitude of the diurnal LST trends increased more
rapidly than the nocturnal LST trends with increasing the distance by which the city is far
from the sea. The increasing rates of LST trends were 0.005 ◦C per 10 km and 0.004 ◦C per
10 km in diurnal and nocturnal LST trends, respectively. Consequently, the Mediterranean
Sea and the related maritime leverage can be considered an anti-urbanization moderator
for the urban warming across the Nile Delta.

From the same perspective, the warming–limiting influence is expected to be found in
the urban centers located immediately beside or around the water surfaces of the Nile Delta
branches, i.e., the Rosetta and Damietta distributaries. It is worth noting that most of the
urban areas (16 out of 23) with a nocturnal LST trend less than the diurnal one are located
along the Rosetta and Damietta distributaries, as shown in Figure 6c. The concentrated
distribution pattern of such urban centers along the Nile River’s channels is consistent with
the above-mentioned discovery indicating that the water moderating effect is greater in
the nighttime than in the daytime. Since the riverine urban centers are subjected to double
water influence by the Mediterranean Sea and the Nile River, this is probably the reason for
reducing the nocturnal warming trend than the diurnal one in these centers. It should be
confirmed that the water influence of the Nile River is less noticeable than that produced
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by the Mediterranean Sea as suggested by the water body characteristics, e.g., surface area,
water depth, and salinity.

Regarding the urbanization–warming nexus, measuring the bivariate linear relation-
ship using the nonparametric Kendall rank correlation analysis, as shown in Figure 7,
unveiled a direct positive relationship between the annual urban expansion and urban LST
records. It was remarkable that the strength of association is stronger (the correlation coeffi-
cient R = 0.7) in the case of nighttime LST values, and weaker (R = 0.43) during the daytime,
with an average R of 0.62 in the daily LST dataset. The relevant coefficients of determination
(R2) were 0.49, 0.18, and 0.38 in the nighttime, daytime, and daily relationships, respectively.
All results were dependable in terms of the statistical significance at a confidence level of
99%, where the supplied p-values were <0.001 for all variables. This discovery emphasized
that the urbanization effect on temperature change throughout the region is a substantial
phenomenon. Interpretation of the coefficients of determination (R2) suggested that urban
dynamics have weak-to-moderate effects on the urban LST datasets, where these dynamics
can explain just 18%, 49%, and 38% of the inter-annual variations observed in the urban
LST records collected throughout the daytime, nighttime, and daily, respectively. This
non-strong relationship between annual urban sprawl and urban LST time series was
expected, where temporal changes in LST are caused not only by such urban expansion
but also by various biophysical and anthropogenic forcing factors. However, the stronger
connection between urbanization rates and nighttime LSTs than that in daytime ones can be
considered as hard evidence of the urbanization signals in the Nile Delta’s LST records. The
preponderance of evidence refers that man-made agents, particularly urban dynamics, are
mostly responsible for this warming. This is because the urbanization effect on temperature
and the relevant UHI pattern is fundamentally a nocturnal phenomenon [107–111] that
is attributable to the differential urban/rural cooling (rather than heating) rates, the high
thermal inertia of concrete and asphalt materials used in urban constructions, and the
anthropogenic heat emissions from transportation, residential and commercial buildings,
power plants, and industrial zones.

3.3. Urban Bias Estimation and Removal

The discovered findings in Sections 3.1 and 3.2 explicitly indicated that urban dy-
namics have had a profound impact on the Nile Delta temperature records over time.
The urbanization signals in the LST time series included a greater upward trend in the
nighttime than daytime LST records, larger urban warming than what existed in the sur-
rounding rural environments, and finally the statistically inferred urbanization–warming
nexus. Consequently, it is critical for studies concerning sustainability and climate change
impact assessment in the region to accurately provide basic quantification of the back-
ground temperature change over time through estimating and removing the local urban
bias contaminating the temperature time series. This removal has the ability of refining
temperature records from the possible overestimations of trend analysis resulting from the
urban influence.

Table 2 provides the observed day/night annual LST averages for the Nile Delta’s
urban/rural areas, the calculated year-to-year averages of UHI intensities, and the bias-free
LST record of the urban areas. Screening the annual averages of the observed LST values
suggested that urban LSTs were always greater than the rural ones, whether during the
day or night hours. Diurnally, the urban/rural LST averages ranged between 29/27.9 ◦C
and 31.6/29.7 ◦C, respectively. At nighttime, the lowest urban/rural LST averages were
16.7/13.6 ◦C, and the highest values were 18.6/15.3 ◦C, respectively. Accordingly, the Nile
Delta’s urban areas formed a positive UHI with average annual intensities between 1.7 ◦C
and 2.5 ◦C during the day, and 2.9 ◦C and 3.6 ◦C at night. This implicitly denoted that there
were annual urban-induced biases in the Nile Delta urban thermal environment by about
the same magnitudes of the above-mentioned UHI intensity. The average annual nocturnal
bias was stronger (3.2 ◦C) than the diurnal one (2.1 ◦C), where the average annual LSTs
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were 17.6 ◦C and 14.4 ◦C during the nighttime, and 30.7 ◦C and 28.6 ◦C during the daytime
for the urban and rural areas, respectively.
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With regard to the urban-derived bias observed in the temporal trend, the analysis
revealed that there have been significantly increasing trends in LST records measured
across the Nile Delta’s urban/rural areas during the study period (2000–2021). The greater
slope of the urban LST trend (0.078 ◦C year−1) than the rural LST trend (0.067 ◦C year−1)
throughout the nighttime indicated that there was a micro-scale bias in urban LST records
across the Nile Delta by about 0.011 ◦C year−1, which caused total additional warming in
the urban environment (overall warming 1.638 ◦C) compared to the rural surroundings
(overall warming 1.407 ◦C) by about 0.231 ◦C during the period 2000–2021. This spurious
urban-made warming trend constituted about 14.1% of the overall detectable warming in
the Nile Delta’s urban system. The urbanization influence on the nocturnal LST trend can
also be noticed from the increasing trend of the nocturnal UHI intensity (bias), estimated
by 0.017 ◦C year−1 (the total trend was 0.357 ◦C), as shown in Table 2 and Figure 8. Based
on the UHI intensity trend of 0.017 ◦C year−1, the urban bias in the nocturnal LST record
can be estimated to be 21.8% of the total observed warming in the Nile Delta.
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Table 2. The observed annual averages of the Terra/Aqua LST collected for the Nile Delta’s ur-
ban/rural areas during the daytime and nighttime. The table also contains the calculated year-to-year
averages of UHI intensities, and the bias-free LST record of the urban areas.

Year
Observed

Urban LST (◦C)

Observed
Rural LST

(◦C)

Calculated UHI
Intensity/Bias (◦C)

Corrected
LST (◦C)
for Trend

Corrected
LST (◦C) for
Trend/UHI

Day Night Day Night Day Night Day Night Day Night

2000 30.77 16.71 28.81 13.59 1.96 3.13 30.77 16.71 28.81 13.59
2001 30.78 17.07 28.56 14.09 2.22 2.99 30.78 17.06 28.56 14.07
2002 30.47 17.18 28.31 14.28 2.16 2.90 30.48 17.15 28.32 14.25
2003 29.96 16.93 28.25 14.05 1.71 2.88 29.97 16.88 28.26 14.00
2004 30.10 16.97 28.30 13.95 1.80 3.02 30.11 16.90 28.31 13.88
2005 29.94 16.69 27.85 13.55 2.09 3.14 29.95 16.61 27.86 13.47
2006 30.11 16.88 28.10 13.65 2.01 3.23 30.13 16.78 28.11 13.55
2007 30.29 17.25 28.20 14.15 2.09 3.10 30.31 17.13 28.22 14.03
2008 30.61 17.41 28.40 14.25 2.21 3.16 30.63 17.27 28.42 14.11
2009 30.70 17.42 28.50 14.20 2.20 3.22 30.72 17.27 28.52 14.05
2010 31.44 18.19 28.90 15.15 2.54 3.04 31.47 18.02 28.92 14.98
2011 30.15 17.11 27.95 13.90 2.20 3.21 30.17 16.93 27.98 13.71
2012 30.55 17.61 28.55 14.50 2.00 3.11 30.58 17.41 28.58 14.30
2013 30.60 17.61 28.65 14.30 1.95 3.31 30.63 17.39 28.68 14.08
2014 30.93 18.07 28.75 14.65 2.18 3.42 30.96 17.83 28.78 14.41
2015 30.62 17.88 28.55 14.65 2.07 3.23 30.65 17.63 28.59 14.40
2016 30.96 18.28 28.95 15.00 2.01 3.28 31.00 18.01 28.99 14.73
2017 30.98 17.74 28.90 14.15 2.08 3.59 31.02 17.45 28.94 13.86
2018 31.38 18.64 29.15 15.30 2.23 3.34 31.42 18.34 29.19 15.00
2019 30.53 17.91 28.80 14.60 1.73 3.31 30.58 17.59 28.85 14.28
2020 30.91 18.23 29.15 15.20 1.76 3.03 30.96 17.89 29.20 14.86
2021 31.65 18.34 29.65 15.20 2.00 3.14 31.70 17.99 29.70 14.85

Yearly
Trend 0.045 0.078 0.05 0.067 −0.002 0.017 — — — —

Total
Trend 0.945 1.638 1.05 1.407 −0.042 0.357 — — — —Sustainability 2022, 14, x FOR PEER REVIEW 20 of 26 
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Contrary to the nighttime record, the investigation discovered an unexpected cooling
bias in the daytime LST record of the Nile Delta, where the observed diurnal trends were
0.045 ◦C year−1 and 0.05 ◦C year−1 in the urban areas and rural outskirts, respectively.
This means that the urbanization process was responsible for diminishing the diurnal
LST trend in the urban areas by about −0.005 ◦C less than in the rural areas. Hence, the
overall warming trend in the urban areas of 0.945 ◦C throughout the study period was
underestimated by about 0.105 ◦C (11.1%) compared to the overall increasing trend of
1.05 ◦C in the rural surroundings. This was emphasized by the decreasing trend of the
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diurnal UHI intensity/bias by −0.002 ◦C year−1 (the total trend was −0.042 ◦C), Table 2
and Figure 8. Considering the UHI intensity trend of −0.002 ◦C year−1, the urban bias in
the diurnal LST record can be calculated to be just 4.4% of the total observed warming in
the Nile Delta.

In Table 2, estimations of the urban biases caused by both annual UHI intensity and
inter-annual UHI trend were calculated for each year, 2000–2021, using Equations (9)–(12).
The observed diurnal/nocturnal LSTs were then corrected with the aid of a bias-removal
adjustment process for each annual LST average. As mentioned earlier, all the yearly bias
estimates were always greater than zero and have grown since the year 2000. This process
of correcting the temperature records across the Nile Delta is highly recommended as an
initial preprocessing for studies of climate-related sustainability and climate change impact
assessment. After the correction procedure, the diurnal LST record of the urban areas has
increased to reverse the cooling urban effect during the daytime, whilst the nocturnal LST
record has decreased to remove the local urban warming.

Although the urban cooling effect in the daytime LST trend was tiny, it was also
completely unexpected. This was fundamentally because of the strong positive heat island
the urban areas formed in the Nile Delta region, as illustrated in Table 2. Within the diurnal
division of the day, it was clear that the urban settlements were always warmer than their
rural envelopes throughout the study period, in which the UHI intensity oscillated between
its minimum strength of 1.7 ◦C in 2003, and the maximum strength of 2.5 ◦C in 2010. This
conflict in urban effects among the positive intensities of annual UHI and the negative trend
of inter-annual UHI needs further research to be diagnosed and clarified. As a tentative
attribution of the diurnal urban cooling effect through time, we suggest the increasing
shading effect within the urban environment by buildings. Another possible cause is the
thermal inertia, i.e., the ability of urban material to absorb heat and store it subsurface
during the daytime, then release it later in the nighttime. This effect delays thermal
sensation and prevents overheating during daytime hours. In addition, the elevated levels
of the man-made pollutants and aerosols in the urban canopy and boundary layers can
increase the atmospheric albedo in the city rather than in the rural areas.

The same phenomenon was noticed in China [53] during the period 1980–2009 using
different datasets and methodology. The research used ERA-interim reanalysis datasets
of the average air maximum and minimum temperatures and relied on an urban-derived
approach to correlate the urban warming to the urban fraction in 10 × 10 km around
753 weather stations. The urban growth enhanced the average minimum temperature
by +1.7 ◦C ±0.3 ◦C, whereas the average maximum temperature trend declined slightly
because of urbanization by −0.4 ◦C ±0.2 ◦C. Based on this estimation, the local urban
warming represented about 9% of the overall regional warming trend in minimum temper-
ature and reduced the maximum temperature trend by 4%. However, the study provides
no explanation for this. A promising study [106] utilized two decades (2001–2018) of
Aqua/Terra MODIS imagery to investigate the day/night temporal trends in LST and
surface UHI for three diverse Indian cities (Lucknow, Kolkata, and Pune). Positive trends
in the inter-annual averages of daytime (0.003 to 0.059 ◦C/year) and nighttime (0.030 to
0.078 ◦C/year) LST records were observed in the cities, except in Pune City where urban
cooling was detected during the daytime. The increase in the aerosol concentration, the
consequent decrease in surface insolation and air temperature, and expanding the vegeta-
tive areas over time were considered as the primary reasons for the urban daytime cooling
effect in Pune. Nighttime UHI was positive for all cities (mean annual intensities ranged
from 1.34 ◦C to 2.07 ◦C). Statistically significant upward trends were observed in mean
annual UHI intensity (0.009 ◦C/year to 0.022 ◦C/year) for Kolkata and Pune. A downward
trend was observed over Lucknow.

The discoveries of this study were found to partially support the numerous investi-
gations adopting the significance of the urbanization process and the UHI effect on the
temperature records. For example, early studies assessed the significance of warming
produced by the local urbanization effect on large-scale mean temperature time series. The
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urban bias was identified by about just 0.1 ◦C in the Northern Hemispheric landmass’s
temperature datasets during 1904–1984 [39] and ranged between 0.15–0.26 ◦C/30 years
in China’s northern plains (1954–1983) using a statistical methodology of the rank-score
procedure [45]. In South Korea [44], estimations of urban trends were positive, indicating an
increasing trend in the urban bias over time. Warming trends oscillated from 0.039 ◦C/year
to 0.042 ◦C/year in the urban stations, while the rural areas had the minimum trend mag-
nitude (0.028 ◦C/year). Lately, in Great Britain, urbanization’s contribution to atmospheric
warming in the daily mean temperature was computed to be 0.02–0.06 ◦C (1961–2015) by
utilizing a statistical model linking the UHI intensity with urban fraction and wind speed.
More recently, 42 weather stations (2009–2018) in the western Yangtze River Delta were
selected to analyze the environmental factors dominating within a 5 km buffer around
the old and new station locations based on remote sensing technology [32]. The multiple
linear regression models between temperature data and the 17 environmental conditions
were efficient to correct the urbanization effect with an error range of 3.66–18.21%, and an
average error of 10.09%.

However, the upward LST trend of the Nile Delta’s urban areas at a smaller magnitude
than the nearby countryside in the daytime datasets minifies the urban contribution to the
climate change issue. The underestimation of the urban role in changing the temperature
record over time is a scientific thought that was suggested by some previous studies to the
degree that the urban effect can be fully neglected. This premise was reinforced by analysis
over the globe [51,112], world lands [113–116], global rural areas [117], and the contiguous
United States [46].

4. Conclusions

Under the circumstances of the paramount importance of the Nile Delta and its high
vulnerability to climate change and the relevant negative environmental impacts, and the
sharp insufficiency of the ground meteorological network, the main objectives of the study
were to employ the available satellite-based products of Aqua/Terra LSTs and Landsat
GAIA settlement coverage to detect and monitor urban dynamics across the Nile Delta,
explore the relevant changes in day/night and urban/rural temperature records, and
assess the possible local urban bias in those records. It was found that the region has been
subjected to an intensified LULC change because of the rapid urbanization resulting from
accelerated population growth. A dramatic increase in urban areas has taken place at the
expense of the rural fringes throughout the Nile Delta. The total urban expansion was
greater than two-thirds (69.1%) of the original urban area in 2000. This was accompanied
by a notable warming trend in the day/night and urban/rural LST records. The nocturnal
LST exhibited a warming tendency (0.072 ◦C year−1) larger than the diurnal equivalent
(0.065 ◦C year−1). The urban–rural comparison approach disclosed that the urbanization
process caused a warming bias in the nighttime LST trend by 0.017 ◦C year−1 (21.8%) and
a cooling bias in the daytime by −0.002 ◦C year−1 (4.4%). Correlation analysis detected a
positive nexus between the urban dynamics and LST trends. All the results were statistically
significant at a confidence level of 99%, where the p-value was always equal to 0.01 or less.

Based on these findings, the key research contribution was to provide accurate quan-
tification of the temperature change across the region. Identifying the local urban warm-
ing/cooling effect enables applying corrections to temperature records to estimate the
actual regional climate change. This separation of local and regional components of the
temperature change is of critical importance in the subsequent investigations concerning
the climate change impact assessment and sustainable development in the region. Con-
ducting the analysis in both daytime and nighttime scales enriched the research results and
widened its applicability. It should be noted that urban sprawl is a substantial factor caus-
ing temperature change over time and space. There are other driving factors controlling
such changes, such as sea–land interaction, the water body of the Nile River, micro-scale
aspects of climate, LULC types, building geometry, and anthropogenic heat emissions. The
current study’s scope focused on urban sprawl as a reliable measure of urban dynamics,
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in addition to some other mechanisms, including the maritime role, the Nile River effect,
and the prevailing winds. However, the concentrated domain of the study has no effect on
introducing uncertainty in the key research findings, i.e., the temperature trend analysis
and temperature record adjustments. The other driving factors of temporal temperature
change could be a topic for future research, particularly the LULC change. Promising
research works can integrate all measures of urban dynamics, e.g., intra-urban surface
configuration [118], population growth [104], and built-up sprawl, to provide a holistic
assessment of the urbanization–warming nexus.

The study concluded that the urban dynamic process, in terms of city sprawl, is a
dominant, substantial degradation mechanism of the urban thermal environments. It
can prompt a significant micro-scale bias in the temperature records of the Nile Delta
cities. Therefore, discriminating the local-to-regional components of these records is an
indispensable prior requirement to provide accurate quantification of the macro-scale
climate change acting as an integral basis for studies of sustainability and climate change
impacts assessment.
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