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Abstract: The driver scheduling problem at Chinese electric multiple-unit train depots becomes more
and more difficult in practice and is studied in very little research. This paper focuses on defining,
modeling, and solving the depot driver scheduling problem which can determine driver size and
driver schedule simultaneously. To solve this problem, we first construct a time-space network based
on which we formulate the problem as a minimum-cost multi-commodity network flow problem. We
then develop a Lagrangian relaxation heuristic to solve this network flow problem, where the upper
bound heuristic is a two-phase method consisting of a greedy heuristic and a local search method. We
conduct a computational study to test the effectiveness of our Lagrangian relaxation heuristic. The
computational results also report the significance of the ratio of driver size to task size in the depot.

Keywords: driver scheduling; electric multiple-unit (EMU) train depot; optimization; time-space
network; Lagrangian relaxation; local search

1. Introduction

In the Chinese high-speed railway system, electric multiple-unit (EMU) trains need
the maintenance to be executed at a specific level that is determined according to its
accumulated running time or mileage reaches which are at a predefined threshold. Typically,
there are five maintenance levels, in which the first-level maintenance (called operational
maintenance) for an EMU train takes place when this EMU’s accumulated running time
reaches 48 h or its accumulated running mileage reaches 4000 km [1]. Since operational
maintenance has the highest execution frequency, it becomes the main work for EMU train
depots. During the first-level maintenance in a depot, an EMU train may be first cleaned at
a cleaning track, then shunted to a repairing track for inspection tasks to be performed, and
lastly returned to a storing track to wait for departure. Practically, because of the limited
capacity of operation tracks, the task order mentioned above may be changed, and an EMU
train may be stored at a storing track between different tasks.

Given a determined train shunting plan of the first-level maintenance, depot drivers
are required to drive EMU trains from a storing track to a cleaning track, from a cleaning
track to a repair track and, so on, according to a depot driver schedule. The depot driver
scheduling problem aims to build a set of duties to cover driving tasks (including shunting
and cleaning tasks), where many practical requirements should be satisfied, e.g., each
duty can be picked up at most once by at most one driver, and the time between two
adjacent tasks in duty must be longer than the walk time for a driver. A well-planned depot
driver schedule is desired for the railway operator because it can reduce labor costs and
improve the maintenance capacity of a depot. Moreover, with the increased use of EMU
trains and the expansion of EMU depots, the scale of EMU maintenance work is expanding
quickly, and it is difficult to obtain optimal or even feasible depot driver schedules manually,
especially during important holidays, such as the Chinese Spring Festival.

In this paper, we design a time-space network for the considered depot driver schedul-
ing problem with first-level maintenance. We then present a network flow optimization
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model that determines the depot driver schedule, the assignment of schedule to depot
drivers, and the routes for the depot drivers. We develop a Lagrangian relaxation heuristic
to solve the formulated model and conduct a series of experiments to test the efficiency
and effectiveness of the proposed solution method.

2. Literature Review

In the literature, Heil et al. [2] present a comprehensive review of studies of railway
crew scheduling problems in the past twenty years, they mention that few papers study the
maintenance crews and depot shunting drivers scheduling. To the best of our knowledge,
two works related to depot crew scheduling in the literature can be found. Wang et al. [3]
study the depot shunting driver assignment problem with workload balance considerations,
and Pour et al. [4] study the signaling maintenance crew scheduling problem in the Danish
railway system.

The depot driver scheduling problem is one kind of crew scheduling problem (CSP)
since depot shunting drivers can be regarded as crew. The CSP can be described as
follows: “Given a set of tasks (trips, flights, etc.) with fixed starting and ending times
and locations, and given a set of rules and criteria, find the minimum cost set of duties
such that each task is included in a duty and all rules are satisfied”. A lot of studies
have been conducted on CSP in the past few years. Many researchers formulate the
problem as a set partitioning problem or a set covering problem that can be solved by
exact algorithms, see, e.g., Souza et al. and Gharaei et al. [5–9]. Some exact algorithms are
usually developed based on a column generation technique, see, e.g., J

..
utte et al., Nishi et al.,

and Liu et al. [10–12]. As the problem’s scale is usually too large to be solved using the
exact algorithm, researchers turn to developing a meta-heuristic to handle larger-scale crew
scheduling problems. For example, Guillermo and Josś [13] develop a hybrid approach
that combines tabu search and integer programming to solve a crew scheduling problem
in railways. Elizondo et al. [14] put forward an evolutionary approach to deal with a
CSP in underground passenger transport. Khmeleva et al. [15] presented a fuzzy-logic
controlled genetic algorithm designed for the solution of the crew-scheduling problem in
the rail-freight industry.

The crew planning problem is usually decomposed into two subproblems, including
the crew scheduling problem and the crew rostering problem. In this respect, the crew
scheduling problem forms anonymous duties covering all the trips for a defined period
of time, and the crew rostering problem combines the duties into sequences which are
subsequently assigned to individual crew members, see, e.g., Caprara et al. [16]. Many
exact algorithms and meta-heuristics are developed to solve scheduling problems, see,
e.g., Amjadian and Gharaei, Askari et al., and Taleizadeh et al. [17–19]. For example,
Chew et al. [20] designed an approach based on tabu search to solve the driver scheduling
problem in Singapore rapid transit. Practically, since the crew rostering problem is closely
related to the crew scheduling problem, in some papers, both the crew scheduling problem
and the crew rostering problem are taken into consideration, such as Amaya and Uribe,
Zhou et al., and Bornd

..
orfer et al. [21–23], who apply Lagrangian relaxation and Benders

decomposition to solve the integrated problem of duty scheduling and rostering.
The characteristic of the depot driver scheduling problem is that the time interval

between two consecutive tasks assigned to the same driver must be taken into consideration,
while this time interval should be determined according to the practical working places
rather than the types of these two consecutive tasks. A simple way to solve this problem
is to give a sufficient long walking time between different tasks. However, this method
may cause a lot of unnecessary waiting and walk for depot drivers which results in a waste
of human resources. In the worst case, the depot driver schedule would be infeasible if a
depot manager ignores the characteristics mentioned above. In this paper, the walking time
between different tasks is particularly taken into consideration, and the drivers are allowed
to return to the depot lounge several times if needed; thus, the decisions of waiting time
and waiting places for each crew need to be determined. As we consider a long practical
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planning horizon, we also consider the determination of crew rostering and the maximum
working time requirements for depot drivers. Our problem bears some similarities with
the problem of Wang et al. [3] as both of these two problems focus on assigning driving
tasks to depot drivers with given train shunting schedules. In Wang et al. [3], the objective
is to minimize the walking distance and the fairness of the depot driver schedule, while the
different required working time for different tasks and the waste of labor resources caused
by waiting are not taken into consideration, and they do not allow the depot drivers to
return to driver lounge more than once.

The contributions of this paper are as follows. First, we define an important practical
depot driver scheduling problem for Chinese high-speed railways, which is studied in very
little research. Second, we present an integrated optimization model for the considered
problem which can determine driver size and driver schedule simultaneously and develop
a network flow model-based Lagrangian relaxation heuristic. Our method is flexible in that
it can be easy to modify arc costs or types to model and solve the problem that contains
more practical constraints. Third, our computational results report the significance of the
ratio of driver size to task size in the depot, which can help railway planners to estimate
the driver size that is needed for these depots with different layouts and scales.

The rest of this paper is organized as follows. Section 3 gives a detailed description of
the considered depot driver scheduling problem. Section 4 presents a time-space network
and formulates a min-cost multi-commodity network flow model for the considered prob-
lem. Section 5 describes the development of a Lagrangian relaxation-based solution method.
Computational experiments are conducted to test the solution method and to assess the
benefits obtained by our solution approach, and the results are reported in Section 6. Lastly,
some conclusions are made in Section 7.

3. Problem Description

The studied problem, hereinafter referred to as the depot driver scheduling prob-
lem, aims to simultaneously assign driving tasks to drivers and determine the drivers’
detailed work schedules and walking routes while minimizing the operational cost. Some
important characteristics of our problem are as follows: (i) our problem considers both the
labor legislations (e.g., maximum working time requirement) and the depot regulations
(e.g., the specified time window for depot drivers to sign in); (ii) a maintenance service
may be canceled due to the limited driver scale, and a penalty is incurred when there is
a cancellation; (iii) the maintenance services are predetermined and cannot be changed
during planning horizon; and (iv) the planning horizon of each working day is discretized,
and the time units are integers for which each time unit is 1 min. To be more precise, we
offer the following definitions.

• Task: A task represents an operation a driver may execute, such as signing in, signing
out, and driving trains. Tasks can be divided into three categories: (i) driving tasks,
which are indicated in the EMU train shunting schedule, such as, shunting an EMU
from one track to another, and driving trains at cleaning tracks; (ii) shift tasks which
include sign-in and sign-out operations; and (iii) walking and waiting tasks. Practically,
the required time for driving tasks is fixed, while the timings for shift tasks is uncertain.
Moreover, the numbers and the required time of walking and waiting tasks need to be
determined when making solutions.

• Shunting schedule: A shunting schedule determines the arrival and departure time
of each train at each repairing track (optional), cleaning track, and shunting track it
may traverse in the depot, such that certain operational requirements, such as track
capacity, minimum headway constraints, and required maintenance procedures, etc.,
are taken into consideration. The shunting schedule is determined in the shunting
schedule planning phase, which is used as input data for the problem studied in this
paper.

• Duty: A duty is a chain of tasks that can be assigned to at most one depot driver. A
feasible duty must satisfy various labor laws and legislation.
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In this paper, we study the depot driver scheduling problem of EMU trains’ first-
level maintenance in the depot, which aims at assigning a set of predetermined driving
tasks to drivers such that certain labor laws and legislation (e.g., maximum working time
constraint) and the depot regulations (e.g., the specific time window for depot drivers to
sign in), should be satisfied. During the first-level maintenance, two maintenance processes,
including the inspection process and the cleaning process must be performed. Other
operations, such as shunting trains are auxiliary in the process. The order of these two
maintenance processes is unfixed which should be determined in when making a train
shunting schedule. Moreover, different processes should be executed on the corresponding
tracks with specific equipment, that is, the inspection process should be executed on the
inspection tracks that are equipped with fault inspection and correction equipment, while
the cleaning process should be executed on the cleaning tracks that are equipped with train
cleaning equipment (e.g., automatic train cleaner). It is obvious that without scheduling
these driving tasks, our problem can be reduced to a set covering problem, which has been
proven NP-hard.

Figure 1 shows a typical layout of EMU train depot in China, which contains a driver
lounge, a stabling yard, a cleaning area, a repairing shed, and several shunting tracks
connecting different operation tracks. The stabling yard can be used to store trains and
serve as the buffer between different maintenance operations or a temporary stop before
the train departs from the depot. For an EMU train, there are driver cabs at both ends of
this train, and it can move by itself in two directions without locomotives. A driver must
be in the cab corresponding to the running direction to drive the train. When a train stays
at an operating track, there are two positions of the track corresponding to the positions of
the train’s cabs for drivers to get on/off the train to start or end a driving task (which can
be seen in Figure 1). For the sake of description convenience, we call the position of a track
close to the entrance of the depot near working point (see, e.g., points numbered with odd
numbers) and the other position which is far from the entrance of the depot far working
point (see, e.g., points numbered with even numbers).
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Given a chart of the depot shunting schedule, we can derive all the driving tasks with
detailed information, such as the start and end time and the start and end working point.
Take the EMU-1 in Figure 2 as an example, the train arrives at the depot and stops before
the cleaning track C1 at time 30. Then, a driver in the depot takes over the train at once
and starts to perform the cleaning task of the train at the near working point of track C1,
i.e., working point 9. After finishing the cleaning task at time 65, the driver will get off the
train at the far working point of track C1, i.e., working point 10. Another driver will get on
the train at working point 9 at time 65 to shunt the train to track R4 to perform the repairing
task. During the period of the shunting task, the driver has to switch the cab once, the time
of switching cab has been included in the shunting task. After finishing the shunting task,
the driver will get off the train at the far working point of track R4, i.e., working point 8.
Finally, when the main driving tasks of EMU-1 have been finished, a driver will drive the
train from the operating track R4 to operating track S1, to be specific, shunting the train
from working point 7 at time 136 to working point 14 at time 148, then all the driving tasks
for EMU-1 have been finished and the train will wait on the track S1 for departure. In
a depot, there are usually several fixed hours for drivers to sign in at the driver lounge.
After signing in, drivers will receive the working schedule, then in order to perform tasks
in their duties, they have to walk to the working point corresponding to the tasks. If the
driver arrives at the working point before the task begins, he will wait until the task begins.
When the driver finishes the duty assigned to him, he will walk to the drivers’ lounge and
sign out.
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Before introducing the input data, we first state the assumptions of our study.

• All trains considered in the paper are homogenous and can be moved bidirectionally
on tracks.

• All drivers considered in the paper are homogenous and able to drive all trains.
• All repairing, cleaning, and stabling tracks are first-in-last-out tracks.
• Drivers are smart, they would find the shortest path to reposition themselves between

two points.

3.1. Input Data

Table 1 summarizes the input parameters of our problem, in which all time-related pa-
rameters are integer-valued. These parameters are described in detail as follows. The plan-
ning horizon [0,T] is discretized and the time units are expressed as integers (e.g., T = 960,
if the planning horizon is 16 h and each time unit is 1 min).
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Table 1. Summary of input parameters.

Type of Data Notation Description

Depot data N set of working points in the depot, including the driver lounge n0, N =
{

n0, n1, · · · , n|N|
}

No set of working points that could be used as origin points of driving tasks, No ⊂ N
E set of track segments i→ j in the depot, where i, j ∈ N
dij walking distance between working point ni and nj

Task data R set of driving tasks indicated in the shunting schedule
or origin working point of driving task r
dr destination working point of driving task r
pr start time of driving task r
qr completion time of driving task r
πr penalty for canceling driving task r

Driver data K set of depot drivers, K =
{

k1, k2, · · · , k|K|
}

Tsign set of time points for drivers to sign in, Tsign =
{

t1, t2, · · · , t|Tsign |
}

τ maximum allowed working time for drivers during the planning horizon
vk average walking speed of driver k
fk fixed cost for driver k if he/she is on-duty during the planning horizon
αk unit cost for driver k when he/she is walking
βk unit cost for driver k when he/she is waiting
γk unit cost for driver k to shunt trains in the depot
δk unit cost for driver k to drive trains at cleaning tracks

3.1.1. Depot Data

Let N be the set of nodes and E be the set of track segments in the depot, among
which n0 denoted the driver lounge and the other nodes n0, n1, · · · n|N| represent working
points along tracks. Each track segment i→ j ∈ E represents the segment from working
point i to working point j, with no intermediate working point in between. In nodes set
N some points may be the origin points of driving tasks, which are collected in node set
N0. Note that a working point may be both an origin working point of a driving task and
a destination working point of another driving task, e.g., in Figure 1, point 9 may be an
origin working point of the driving task of driving a train at cleaning track C1, and point 9
may also be a destination working point of shunting task. Obviously, driver lounge n0 is
not in set No. The distance between working point ni and nj is denoted by dij.

3.1.2. Task Data

Let R be the set of considered driving tasks. For each driving task r ∈ R, the input
data of each task r include: (i) the origin working point or ∈ N\{n0}; (ii) the destination
working point dr ∈ N\{n0}; (iii) the start time pr at its start working point or; (iv) the
completion time qr at its destination working point dr; and (v) a penalty πr that is incurred
if driving task r is canceled.

3.1.3. Driver Data

Let K be the set of considered drivers. For each driver k ∈ K, the input data include:
(i) the average walking speed vk; (ii) the operating cost αk per unit time for driver k when
he/she is walking; (iii) the operating cost βk per unit time for driver k when he/she is
waiting; (iv) the operating cost γk per unit time for driver k when he/she is executing
shunting tasks; (v) the operating cost δk per unit time for driver k when he/she is executing
cleaning tasks, i.e., driving a train at a cleaning track; and (vi) the fixed cost fk for driver k
if he/she is on duty, i.e., this driver works in the planning horizon, during the planning
horizon. Considering the practical concern that the cleaning task is more difficult and
fatiguing than the shunting task as the driver should control train speeds carefully, we
require that γk < δk < βk < αk. Moreover, according to the depot regulation and labor



Sustainability 2022, 14, 14431 7 of 19

legislations, drivers are required to sign in at the given time points in set Tsign, and each
driver can work at most τ time during the planning horizon.

3.2. Objective and Constraints

The considered problem is an integrated problem which simultaneously generates
duties to cover driving tasks and assign these obtained duties to depot drivers, such that the
total cost is minimized. The obtained solution for each on-duty driver indicates this driver’s
sign-in time, sign-out time, driving tasks, timings for having rests, and walking route, etc.,
in the depot. A feasible depot driver schedule must satisfy the following constraints:

• Driving task assignment constraints: Each driving task r ∈ R can be executed by a
driver at most once.

• Sign-in constraints: If a driver k ∈ K is on-duty, he/she must sign in at the specific
time points in Tsign in the driver lounge and finally signs out in the driver lounge.

• Walking time constraints: The time interval between executing two consecutive driving
tasks for the same driver should be no less than the walking time for the driver to
walk from the proceeding task’s destination working point to the succeeding task’s
origin working point.

• Maximum working time constraints: For each driver k ∈ K, the maximum duration of
duty cannot exceed a fixed value τ.

The total cost of a solution is the sum of (i) total operating cost of executing (un-
canceled) driving tasks, (ii) total cancellation cost of canceled driving tasks, (iii) total
auxiliary cost for on-duty drivers to sign in, sign out, wait somewhere, and walk in the
depot, and (iv) total fixed cost for on-duty drivers.

4. Time-Space Network Formulation

In this section we formulate the considered problem as a minimum-cost multi-commodity
network flow problem with several restrictions, in which each commodity represents
a depot driver, and the underlying network is an acyclic directed time-space network
G = (V, A). In what follows, we first introduce the construction of our time-space network
in Section 4.1. We then discuss the flow restrictions in Section 4.2. Lastly, we present the
minimum-cost multi-commodity network flow model in Section 4.3.

4.1. Time-Space Network Construction

The set of all possible time instants in the planning horizon [0, T] is {0, 1, · · · , T},
which forms the “time” dimension of our network G. The “space” dimension of G covers
all working points. Corresponding to each working point i ∈ No and each time instant t are
three vertices, including ρt

i , ρt
i and ρ̂t

i , while corresponding to each working point i ∈ N\No
and each time instant t are two vertices ρt

i and ρt
i . In these vertices, ρt

i represents that a crew
is staying at working point i and time t, ρt

i represents a crew’s departure for walking, and ρ̂t
i

represents a crew’s departure for executing driving tasks. Mathematically, the considered
possible states that covered by “space” dimension is given by

V = {o, d} ∪
{

ρt
i , ρt

i , ρ̂t
i
∣∣i ∈ No, t = 0, 1, · · · T

}
∪ {ρt

i , ρt
i
∣∣i ∈ N\No, t = 0, 1, · · · T} (1)

where vertices o and d are, respectively, the dummy source and sink for the muti-commodity flow.
The arc set A of G contains several types of arcs. The cost for driver k ∈ K to traverse

arc u→ v is denoted by ξk(u, v). In what follows, we present a detailed description of
different types of arcs considered in this paper.

• Starting arcs: For working point i = n0, i.e., the driver lounge, and each time instant
t ∈ Tsign, there exists a starting arc o → ρt

i ∈ Asign . A driver traverses this arc
represents that this driver signs in for the duty during the planning horizon, where a
fixed cost of ξk(o, ρt

i
)
= fk is incurred when driver k is on-duty.
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• Ending arcs: For working point i = n0, i.e., the driver lounge, and each time instant
t = 0, 1, 2 · · · T, there exists an ending arc ρt

i → d . For each driver k ∈ K, ξk(ρt
i , d
)
.

This arc allows drivers to complete its operation at time t.
• Transfer arcs: There are transfer arcs in network G which represents the situation

where a driver has finished dwelling at a working point and is about to leave current
working point. There are two types of transfer arcs depending on what the next
operation the driver will do. The first type of transfer arc is for the situation where
the driver will walk to leave current point. For each working point i ∈ N and
time instant t = 0, 1, 2 · · · T, there is a transfer arc ρt

i → ρt
i of this type. For each

k ∈ K, ξk(ρt
i , ρt

i
)
= 0. The second type of transfer arc is for the situation where the

driver will execute a driving task. For each working point i ∈ No and time instant
t = 0, 1, · · · T, there is a transfer arc ρt

i → ρ̂t
i of this type if there exists one driving task

r such that i = or and t = pr. For each k ∈ K, ξk(ρt
i , ρ̂t

i
)
= 0.

• Walking arcs: For each i→ j ∈ E and time instants t, t′ = 0, 1, 2 · · · T, there is a
walking arc ρt

i → ρt′
j if there exists at least one driver k ∈ K such that t′ − t equals

to the round walking time of dij/vk. For each k ∈ K, ξk
(

ρt
i , ρt′

j

)
= αk(t− t′). This arc

allows driver k to walk from working point i to working point j.
• Waiting arcs: For each working point i ∈ N and time instant t = 0, 1, 2 · · · T− 1, there

exists a waiting arc ρt
i → ρt+1

i . For each k ∈ K, ξk
(

ρt
i , ρt+1

i

)
= βk. This arc allows a

driver to wait at working point i when he/she is not working.
• Driving arcs: For each pair of working points i ∈ No and j ∈ Nd, and time in-

stants t, t′ = 0, 1, 2 · · · T, there is a driving arc ρt
i → ρt+1

i if there exists at least
one driving task r such that i = or, t = pr, j = dr and t′ = pr. For each k ∈
K, ξk

(
ρ̂t

i , ρt′
i

)
= γk(t′ − t)−πr if task r is a shunting task, and ξk

(
ρ̂t

i , ρt′
j

)
= δk(t′ − t)−

πr if task r is a driving task at a cleaning track. This arc allows driver k to shunt a
train from one track to another or drive a train at a cleaning track. The cost coefficient
ξk
(

ρ̂t
i , ρt′

j

)
includes not only the operating cost γk(t′ − t) but also a cost reduction of

πr since task r would not be canceled if task r is executed by driver k.
• Dummy arcs: For the working point that related to the driver lounge, there is a dummy

arc o → d . A driver k traverses the dummy arc means the driver has no work to do
during the planning horizon, we have ξk(o, d) = 0.

4.2. Constraints

A path from vertex o to vertex d in the time-space network G corresponds to a duty
for depot drivers. A duty is feasible for depot driver k ∈ K if all cost coefficients of driver
k along this path are finite. The objective of this problem is to find feasible paths for all
depot drivers such that the total cost is minimized. The path should satisfy the constraints
in Section 3.2. So, besides the standard network flow constraints such as flow conservation
constraints and supply/demand constraints, our multi-commodity flow model also has the
following constraints:

• Driving task operation requirements: For each r ∈ R, the driving task r is executed at
most once if it is uncanceled. Therefore, for each r ∈ R, we impose the constraint that
the depot driver k′s flow in the arc subset is at most one.

C1
r = A ∩

{
ρ̂

qr
or → ρ

qr
dr

∣∣∣r ∈ R
}

, (2)

• Maximum duty time requirements: For each k ∈ K, the duty time cannot exceed the
maximum allowed working time for drivers during the planning horizon if the driver
is on duty. For each arc w→ d ∈ A , we denote an arc subset as follows:

C2
o = {o → d}, (3)
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in case of w = o, and

C2
w = A ∩

{
o → ρt

n0

∣∣t = 0, 1, · · · T s.t.τ(w)− t ≤ τ
}

, (4)

in case of w 6= o, where τ(w) is the time component of vertex w. For convenience,
denote Vd = {o} ∪ {ρt

n0

∣∣t = 0, 1, · · · T} and C2 = {C2
w
∣∣w ∈ Vd} . For each k ∈ K, if

driver k traverses arc w→ d ∈ A , then this driver must traverse an arc in arc in C2
w

exactly once.

4.3. Time-Space Network Formulation

With the developed time-space network, we formulate the studied problem using a
network flow model, where for each driver k ∈ K and u→ v ∈ A , we use decision xk

uv to
indicate whether driver k traverses (xk

uv = 1) arc u→ v or not (xk
uv = 0). The minimum cost

multi-commodity network flow model for the considered problem is formulated as below:

P : min ∑
r∈R

πr + ∑
k∈K

∑
u→v∈A

ξk(u, v)xk
uv (5)

s.t. ∑
{v:o→v∈A}

xk
ov = 1, for all k ∈ K (6)

∑
{v:v→d∈A}

xk
vd = 1, for all k ∈ K (7)

∑
{u:u→v∈A}

xk
uv = ∑

{u:v→u∈A}
xk

vu, for all k ∈ K, v ∈ V\{o, d} (8)

∑
k∈K

∑
u→v∈C1

r

xk
uv ≤ 1, for all r ∈ R (9)

xk
wd ≤ ∑

u→v∈C2
w

xk
uv, for all k ∈ K, w ∈ Vd (10)

xk
uv ∈ {0, 1} , for all k ∈ K, u→ v ∈ A (11)

In the objective function (5), the constant term “∑r∈R πr” is the total cancellation
penalty of all driving tasks, and the term “∑k∈K ∑u→v∈A ξk(u, v)xk

uv” is the total cost of
the solution less the cancellation penalties saved by successfully completing driving tasks.
Then, objective function (5) represents the total cost of the solution. Constraints (6) are
the supply constraints which require the outflow of each driver at vertex o to be 1. Con-
straints (7) are the demand constraints which require the inflow of each driver at vertex
d to be 1. Constraints (8) are the flow conservation constraints for drivers at each ver-
tex. Constraints (9) guarantee that each task is performed at most once. Constrains (10)
required that the drivers must work no more than the specific time if he/she is on-duty.
Constraints (11) are the binary constraints of the decision variables.

5. Lagrangian Relaxation Heuristic

Lagrangian relaxation provides an efficient mean to find optimality bounds for large-
scale integer linear programs that permits us to decompose problems to exploit their special
structure. Lagrangian relaxation has been widely used to solve railway planning problems;
for example, see Dauzère-Pérès et al. and Xu et al. [24,25].

5.1. Lagrangian Relaxation

We relax constraints (9) and constraints (10) of problem P by Lagrangian way, and
bring them into the objective function with Lagrangian multipliers λr ≥ 0 for each r ∈ R
and µk

wd for each k ∈ K and w ∈ Vd. We obtain the following relaxed problem, where λ is
the vector of the λr values, and µ is the vector of the µk

wd values.
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P(λ, µ): min ∑
r∈R

πr + ∑
k∈K

∑
u→v∈A

ξk
uvxk

uv + ∑
r∈R

λr

∑
k∈K

∑
u→v∈C1

r

xk
uv − 1

+ ∑
k∈K

∑
w∈Vd

µk
wd

xk
wd − ∑

u→v∈C2
w

xk
uv

 (12)

s.t. ∑
{v:o→v∈A}

xk
ov = 1, for all k ∈ K (13)

∑
{v:v→d∈A}

xk
vd = 1, for all k ∈ K (14)

∑
{u:u→v∈A}

xk
uv = ∑

{u:v→u∈A}
xk

vu, for all k ∈ K, v ∈ V\{o, d} (15)

xk
uv ∈ {0, 1} , for all k ∈ K, u→ v ∈ A (16)

Furthermore, after removing the constant item “ ∑r∈R πr −∑r∈R λr”, the Lagrangian
relaxation problem can be decomposed into |K| independent problems. The subproblem
corresponding to each k ∈ K is given as follows

Pk(λ, µ): min ∑
u→v∈A

ξk
uvxk

uv + ∑
r∈R

∑
u→v∈C1

r

λrxk
uv + ∑

w∈Vd

µk
wd

xk
wd − ∑

u→v∈C2
w

xk
uv

 (17)

s.t. ∑
{v:o→v∈A}

xk
ov = 1 (18)

∑
{v:v→d∈A}

xk
vd = 1 (19)

∑
{u:u→v∈A}

xk
uv = ∑

{u:v→u∈A}
xk

vu, for all v ∈ V\{o, d} (20)

xk
uv ∈ {0, 1} , for all u→ v ∈ A (21)

Obviously, each subproblem Pk(λ, µ) is a standard shortest path problem with arc
length δk

uv = ξk(u, v)+∑{u→v∈C1
r :r∈R} λr +∑{w∈Vd :u=w,v=d} µk

wd−∑{w∈Vd :u→v∈C2
w} µk

wd.This
shortest path problem can be solved easily with a standard dynamic programming algo-
rithm. Given any vector λ of nonnegative λr values and vector µ of nonnegative µk

wd values,
a lower bound on the optimal objective value of problem P can be obtained by solving
the relaxed problem P(λ, µ). To provide a tight lower bound, we would need to solve
the following optimization problem max

λ,µ
P(λ, µ) which is referred to as the Lagrangian

multiplier problem associated with original optimization P. If drivers are heterogenous,
subproblems Pk(λ, µ) can be solved in parallel for different k ∈ K when they are solved by
a multi-core computer processor.

5.2. Upper Bound Heuristic

In this section we present an upper bound heuristic algorithm, which contains two
phases. In the first phase, we use a greedy algorithm to solve the problem P which can be
considered as a shortest path problem of resource constraints. We solve the shortest path
problem considering the maximum schedule duration time for each k ∈ K with revised
arc length δk

uv following the method used in Xu et al. [25]. For each k ∈ K, we first solve
the shortest path problem without considering maximum schedule duration constraints
using a dynamic programming whose computational complexity is O(n), where n is the
number of arcs in the time-space network. If the obtained assignment scheme for driver
k satisfies the maximum schedule duration constrain, we will set the cost of the tasks
assigned to the driver to infinite for avoiding this task will be covered by another driver. In
contrast, if the obtained assignment scheme for driver k violates the maximum schedule
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duration constrain, we temporarily block the tasks whose start time is less than the start
time of the first task or whose start time is no less than the start time of the last task in
the obtained assignment scheme. Then, we continue to solve the shortest path problem to
get an assignment scheme for driver k. If the re-obtained assignment scheme satisfies the
maximum duration constraint, we will release the tasks that are temporarily blocked and
then block the tasks which are assigned to the driver permanently. Otherwise, we repeat
the process above till find a feasible solution.

In the second phase, we try to use local search to improve the solution obtained in
the first phase. The computational complexity of local search is obvious O(n log n), as
there are exchange, swap, and insert operators, where n is the number of driver tasks. We
then added a sentence. The operation that local changing a solution s to a neighbor s′

in neighborhood N(s) of solution s is called move operator. In this paper, we defined the
following local search moves which are enlightened by Ma et al. [26]. It is worth noting
that the specific move operator can be conducted only when the time permits.

• Exchange operator: Given two drivers’ duties, choose one task in each duty of the
drivers, and exchange the task with the subsequent tasks of the two duties. The
procedure of this move is illustrated in Figure 3. The original duty 1 contains task A, B,
and C sequentially, and the original duty 2 contains task D, E, and F sequentially, see
Figure 3a. When conducting the “exchange” move, we exchange the tasks after task A
in duty 1 and the tasks after task D in duty 2. After the “exchange” operator, duty 1 will
contain task A, E, and F sequentially; duty 2 will contain task D, B, and C sequentially,
see Figure 3b.

• Insert operator: Given two drivers’ duties, choose one task and delete it in one of the
duties; insert the task into an appropriate position in the other duty. The procedure
of this move is shown in Figure 4. The original duty 1 contains task A, B, and C
sequentially; the original duty 2 contains task D and E sequentially. When conducting
the “insert” move, we delete task B in duty 1 and insert it into an appropriate position in
duty 2 (such as between task D and task E in duty 2). After the “insert” operator, duty 1
will contain task A and C sequentially; duty 2 will contain task D, B, and E sequentially.

• Swap operator: Given two drivers’ duties, choose one task and delete it in one of the
duties; insert the task into an appropriate position in the other duty. The procedure
of this move is illustrated in Figure 5. The original duty 1 contains task A, B and C
sequentially; the original duty 2 contains task D and E sequentially. When conduct the
“swap” move, we delete task B in duty 1 and insert it into an appropriate position in
duty 2 (such as between task D and task E in duty 2), delete task E in duty 2 and insert
it into an appropriate position in duty 1 (such as between task A and task C in duty 1).
After the “swap” operator, duty 1 will contain task A, E and C sequentially; duty 2 will
contain task D, B and F sequentially.
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We adopt some ideas of the paper of Hoogeboom et al. [27] when we use above moves
to generate new duties, it probably generates infeasible solutions. It is worth pointing out
that Hoogeboom allows the violation of constraints to exist by adding a penalty to the
infeasible solution to reach different areas of the solution space. In this paper, we do not
allow infeasible solutions to exist. Thus, before performing a move operation, we will check
the feasibility of the move. In the local search, we explore the three different neighborhoods
which are in increasing order of complexity. If an improved solution is identified, the search
will restart at the first neighbor of the new solution found. The local search will finish if
all neighbors are explored. The pseudocode for this local search is given in Algorithm 1.

Algorithm 1 Pseudocode for the local search: local_search(s)

Input: An initial solution s, move operators set M = {m1, m2, m3}, let Nm(s) denote the
neighborhood of solution s with move operator m
1: m← 1
2:while m ≤ |M| do
3: for all Nm(s) do
4: s′ ← Nm(s)
5: if s′ is better than s then
6: s = s′,
7: m = 0,
8: break
9: m← m + 1
Output: s

Because the local search method is time-consuming, we execute the second phase with
a certain probability after obtaining solutions in the first phase. The overall framework of
the upper bound heuristic algorithm is shown in the Algorithm 2.

Algorithm 2 Framework of the upper bound heuristic

Input: Driver set K, tasks set R, the probability of local search pL
1:use the greedy heuristic ub_greedy (K, R) to obtain solution s
2:randomly generate p from (0,1)
3:if p ≤ pL then
4: s← local_search(s)
Output: s

5.3. Subgradient Optimization Procedure

In this section, we present a subgradient optimization procedure which is used to
search the near-optimal value of λr and µk

wd. In the iteration of the subgradient procedure,
the value “∑k∈K ∑u→v∈C1

r
xk

uv − 1” for each r ∈ R and the value “xk
wd −∑u→v∈C2

w
xk

uv” for

each k ∈ K and w ∈ Vd form a subgradient vector η =
{

η1, · · · , η|R|, η|R|+1, · · · , η|R|+|Vd |

}
of the relaxed solution.Let ηl (respectively λl and µl) denote the η (respectively λ and
µ) vector in the lth iteration of the procedure let ηl

m be the mth component of ηl for
m = 1, 2, · · · , |R|+ |Vd|, let λl

m be the mth component of Lagrangian multiplier vector
µl for m = 1, 2, · · · , |Vd|. In the initial iteration, the components in η are all initialized as
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0, and the Lagrangian multipliers are all set to 0. In the following iterations (l > 1), we
update each multiplier according to the following formulas, e.g., see Xu et al. [25].

λl
m ←max

{
λl−1

m + θ·UB− LB(λ, µ)

‖ηl‖2 ·ηl
m, 0
}
(m = 1, 2, · · · , |R|), (22)

and

µl
m ←max

{
µl−1

m + θ·UB− LB(λ, µ)

‖ηl‖2 ·ηl
m+|R|, 0

}
(m = 1, 2, · · · , |Vd|) (23)

where θ > 0 is a prespecified step size parameter, UB is the best feasible solution of problem
P been found and LB(λ, µ) is the optimal objective value of P(λ, µ) corresponding to the
current multipliers λ and µ.

The procedure of each iteration of the subgradient optimization is described as fol-
lows: (i) obtain a relaxed solution of problem P by solving |K| shortest path problems
Pk(λ, µ); (ii) obtain a feasible solution of problem P using the upper bound heuristic pre-
sented in Section 4.2; (iii) identify constraints that violated by current relaxed solution;
(iv) update the subgradient vector; and (v) update the Lagrangian multipliers. Because
part (ii) is time-consuming, we may skip this part in some iterations to save computation
time. This subgradient optimization procedure is terminated when one of the following
situations occurs: (i) the gap between the upper bound and lower bound is below a pre-
specified threshold; (ii) the computational time reaches a prespecified limit; or (iii) the
number of iterations reaches a prespecified limit. See Section 5 for more details regarding
parameter settings.

6. Computational Study

In this section, we conduct computational experiments to test the method we presented
in this paper. In Section 5.1, we introduce the generation method of test instances and the
parameter setting. In Section 5.2, we conduct a computational study to evaluate our model
and method. All the test instances are compiled with C# Language using Visual Studio
2019 and run on a personal computer with a 3.70 GHz Intel Core i9-10900k processor and
32 GB of internal memory.

6.1. Generation of Test Instances

We adopt two different sizes of depot networks to design instances to test the ef-
fectiveness of the proposed method in this paper. Specifically, the first depot network,
namely Network 1, is originated from the network of Shanghai South Depot in China, see
Figure 1. Network 1’s track layout is of parallel-arrangement type. It has 4 repairing tracks,
2 cleaning tracks, and 9 storage tracks with 31 nodes (including a node that represents the
driver lounge). Considering the development of high-speed railway and the expansion of
the depots, we extend the current network of Shanghai South Depot. The extended depot
network, called Network 2, has 8 repairing tracks, 4 cleaning tracks, and 18 storage tracks
as well as 61 nodes (including a node that represents the driver lounge); for more details,
see Figure A1.

In our computational study, the input parameters are estimated based on the charac-
teristics of Shanghai South Depot in China. We first test a set of instances with the same
task size while different driver sizes in Network 2 to determine a proper ratio of task size
to driver size. We here consider one task size of |R| = 160 and five driver sizes of |K| = 8,
10, 12, 14, 16. For each combination of task size and driver size, we randomly generate 5
instances, which gives 25 test instances. After determining such ratio, we then consider
three task sizes with |R| = 40, 80, 120 for Network 1, and three task sizes with |R| = 160,
200, 240 for Network 2. Since there are four driving tasks, including three shunting tasks
and one cleaning task for each EMU train that is performed a level-one maintenance. We
then need to consider EMU train shunting schedules with three train sizes of 10, 20 and
30 for Network 1, and three train sizes of 40, 50 and 60 for Network 2. For each task
size, we generate 5 instances by randomly generating 5 EMU train shunting schedules,
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which gives another 30 instances. For each test instance with these two networks, we set
the length of the planning horizon to T = 960 min, e.g., from 16:00 of one day to 08:00 of
the next day, which contains two crew shifts. We consider two sign-in time windows for
drivers, including [0, 60] and [480, 540], i.e., Tsign = {0, 1, · · · , 60, 480, 481, · · · , 540}.
The maximum allowed working time τ for each driver is set to 480 min.

For each test instance, we generate train shunting and cleaning tasks as follows. Firstly,
for each considered EMU train ι the arrival time aι at the depot is randomly generated
from a discrete uniform distribution between 20 and T − 180, the departure time from the
depot is randomly generated from a discrete uniform distribution between aι + 180 and
T − 20. Here, the time of 20 min is the minimum required walking time for drivers and
the time of 180 min is the minimum required in-depot time for EMU trains. Secondly, the
time for shunting EMU train ι in the depot is randomly selected from the set {4,5,6}, where
the probability of each value being selected is 1/3. The time forcleaning EMU train ι in
the depot is randomly selected from the set {20,21,· · · ,30}, where the probability of each
value being selected is 1/11. The time for repairing EMU train ι is randomly generated
from a discrete uniform distribution between 80 and 100. Thirdly, with these parameters
mentioned above, we generate a train shunting schedule by using a greedy first-in-first-
served method. Finally, we can obtain task data on the basis of the generated train shunting
schedule, see Section 2.

For each driver k ∈ K, let c denote the unit cost for driver k to shunt trains in the
depot, i.e., γk = c, we set unit cleaning cost δk = (1.1)c, unit walking cost αk = (1.3)c, unit
waiting cost βk = (1.2)c and the fixed attendance cost αk = (10.0)c. Specifically, we set
the unit waiting cost in driver lounge as 0.3 times the unit waiting cost outside the driver
lounge because drivers can get a better rest in the lounge, and we encourage drivers to go
back to the lounge and wait. Moreover, the penalty of canceling driving task r is set equal
to (1.2)·[60·max(α, β) + cr·tr], where α = max

{
α1, · · · , α|K|

}
, β = max

{
β1, · · · , β|K|

}
,

cr = max
{

γ1, · · · , γ|K|

}
, if task r is a shunting task and cr = max

{
β1, · · · , β|K|

}
if task r is

a cleaning task, as well as tr is the duration of task r. For simplicity, the monetary unit is
scaled by setting c = 1.

In our implementation of the Lagrangian relaxation heuristic, we set the parameter θ to
2.0 which will be reduced by 5% if the best lower bound identified shows no improvement
for 15 consecutive iterations. If the optimality gap is less than 1.00%, the subgradient
optimization procedure is terminated. The prespecified CPU time is set to two hours, and
the prespecified maximum iterations is set to 1000. In addition, to save CPU time, for the
first 200 iterations of the subgradient optimization procedure, we execute the upper bound
heuristic and update UB at each iteration. After 200 iterations, we execute the upper bound
heuristic with probability 0.1 at each iteration. Moreover, since local search method is
also time-consuming, we execute local search method with probability 0.1 when the upper
bound heuristic is executed.

6.2. Computational Results

Table 2 summarizes the results of the first part of the computational study. The “UD”
column reports the number of drivers that do not work during the planning horizon. The
column “UT” reports the number of tasks that are not covered by drivers. The column
“Gap” reports the optimality gap between the lower boundand the upper bound, which is
defined as:

Gap =
UB− LB

LB
× 100%, (24)

where the UB is the objective value of the corresponding solution method, and LB is
obtained by the Lagrangian relaxation heuristic. The “Time (s)” column reports the CPU
time (in seconds) used in each test instance.
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Table 2. Computational results (Part 1).

Instance |K| |R| LB UB UD UT Gap Time (s)

1 4609.16 6168.60 0.00 21.00 33.83% 493.00
2 4811.90 7061.22 0.00 29.00 46.74% 504.00
3 8 160 4644.21 6304.68 0.00 21.00 35.75% 520.00
4 4778.32 5957.60 0.00 19.00 24.68% 517.00
5 4791.81 6291.20 0.00 20.00 31.29% 523.00

Average: 4727.08 6356.66 0.00 22.00 34.46% 511.40

6 4640.82 4932.12 0.00 4.00 6.28% 642.00
7 4856.78 5363.40 0.00 7.00 10.43% 577.00
8 10 160 4682.38 5220.34 0.00 7.00 11.49% 674.00
9 4787.06 5008.66 0.00 4.00 4.63% 657.00

10 4824.05 5444.64 0.00 7.00 12.86% 655.00
Average: 4758.22 5193.83 0.00 5.80 9.14% 641.00

11 4620.82 4795.22 1.00 1.00 3.78% 791.00
12 4850.18 5070.78 0.00 1.00 4.55% 713.00
13 12 160 4687.47 4954.82 0.00 1.00 5.70% 1019.00
14 4763.78 4908.48 1.00 3.00 3.04% 806.00
15 4821.67 5088.62 0.00 0.00 5.54% 850.00

Average: 4748.74 4963.58 0.40 1.20 4.52% 835.80

16 4623.38 4874.24 2.00 0.00 5.43% 857.00
17 4849.61 5034.34 2.00 1.00 3.81% 796.00
18 14 160 4685.95 5000.32 2.00 2.00 6.71% 1086.00
19 4752.28 4954.78 2.00 2.00 4.26% 836.00
20 4812.11 5081.06 2.00 0.00 5.59% 990.00

Average: 4744.67 4988.95 2.00 0.80 5.16% 913.00

21 4617.25 4894.12 4.00 0.00 6.00% 960.00
22 4845.50 5054.16 4.00 1.00 4.31% 910.00
23 16 160 4687.87 4950.14 5.00 2.00 5.59% 1242.00
24 4733.67 4935.52 4.00 2.00 4.26% 989.00
25 4809.03 5090.32 4.00 0.00 5.85% 1097.00

Average: 4738.66 4984.85 4.20 1.00 5.20% 1039.60

From Table 2, we can see that the number of drivers has an important impact on the
optimality gap. From the results of instances with 8 drivers we can see that the optimality
gap is approximately proportional to the number of tasks not performed, i.e., the more
tasks not performed, the higher the optimality gap. From the computational results of
instances with 8, 10, and 12 drivers, we can see that as the number of drivers increases, the
optimality gap fails rapidly. From the computational results of instances with 12, 14, and
16 drivers, we can obtain a managerial insight that driver size of 12 seems large enough for
160 tasks, since we cannot reduce the optimality gap by using more drivers. Therefore, we
set the ratio of the number of drivers to the number of driving tasks as 3:40 for the instances
tested in the second part of our computational study. From Table 2, we can also see that the
CPU time for each test instance tend to be larger as the driver size increases.

Table 3 summarizes the results of the second part of the computational study. In order
to evaluate the improvement of the local search to solutions, we conduct two kinds of
upper bound heuristics. One only uses the greedy algorithm to obtain feasible solutions,
while the other one further uses the local search method to improve the solutions obtained
by the greedy algorithm in the first phase. In Table 3, “NL” denotes the local search is not
used in the upper bound heuristic and “LS” denotes the upper bound heuristic used local
search. Table 3 shows that our approach is efficient tools that can help railway operators to
obtain high-quality schedules for depot drivers. That is, the proposed approaches can not
only relieve managers’ pressure of scheduling drivers, but also reduce the driver-related
cost as much as possible.
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Table 3. Computational results (Part 2).

NL LS

Instance |K| |R| LB UB UD UT Gap Time
(s) LB UB UD UT Gap Time

(s) Impv.

Network 1
1 1210.43 1319.28 0.00 3.00 8.99% 89.00 1210.43 1319.28 0.00 3.00 8.99% 81.00 0.00%
2 1547.27 1976.70 0.00 9.00 27.75% 93.00 1547.27 1976.70 0.00 9.00 27.75% 115.00 0.00%
3 3 40 1315.73 1619.36 0.00 6.00 23.08% 99.00 1315.73 1619.36 0.00 6.00 23.08% 143.00 0.00%
4 1240.58 1647.62 0.00 6.00 32.81% 84.00 1240.58 1647.62 0.00 6.00 32.81% 109.00 0.00%
5 1229.81 1374.58 0.00 3.00 11.77% 104.00 1229.81 1374.58 0.00 3.00 11.77% 149.00 0.00%

Average: 1308.76 1587.51 0.00 5.40 20.88% 93.80 1308.76 1587.51 0.00 5.40 20.88% 119.40 0.00%

6 1985.43 2039.56 0.00 0.00 2.73% 173.00 1984.89 2034.94 0.00 0.00 2.52% 257.00 0.23%
7 2122.64 2262.82 0.00 1.00 6.60% 176.00 2123.04 2259.22 0.00 1.00 6.41% 270.00 0.16%
8 6 80 2043.96 2186.74 0.00 0.00 6.99% 170.00 2044.46 2183.86 0.00 0.00 6.82% 250.00 0.13%
9 2066.76 2160.18 0.00 1.00 4.52% 163.00 2066.73 2158.78 0.00 1.00 4.45% 214.00 0.06%

10 2165.23 2230.88 0.00 1.00 3.03% 196.00 2164.10 2228.94 0.00 1.00 3.00% 211.00 0.09%
Average: 2076.80 2176.04 0.00 0.60 4.77% 175.60 2076.64 2173.15 0.00 0.60 4.64% 240.40 0.13%

11 2856.43 3029.94 1.00 0.00 6.07% 274.00 2860.75 3025.84 1.00 0.00 5.77% 377.00 0.14%
12 2834.61 3010.22 0.00 0.00 6.20% 236.00 2834.89 2991.98 0.00 0.00 5.54% 360.00 0.61%
13 9 120 2815.78 2989.74 1.00 0.00 6.18% 225.00 2815.61 2979.06 1.00 0.00 5.81% 337.00 0.36%
14 2754.48 2902.80 1.00 0.00 5.38% 223.00 2756.59 2897.64 1.00 0.00 5.12% 344.00 0.18%
15 2788.21 2938.80 1.00 0.00 5.40% 218.00 2788.21 2938.80 1.00 0.00 5.40% 347.00 0.00%

Average: 2809.90 2974.30 0.80 0.00 5.85% 235.20 2811.21 2966.66 0.80 0.00 5.53% 353.00 0.26%

Network 2
16 4625.77 4915.36 1.00 1.00 6.26% 747.00 4620.59 4795.22 1.00 1.00 3.78% 819.00 2.51%
17 4850.56 5132.46 0.00 1.00 5.81% 700.00 4850.18 5070.78 0.00 1.00 4.55% 781.00 1.22%
18 12 160 4686.25 5114.44 0.00 1.00 9.14% 716.00 4687.47 4954.82 0.00 1.00 5.70% 1018.00 3.22%
19 4765.90 5005.18 1.00 3.00 5.02% 682.00 4763.78 4908.48 1.00 3.00 3.04% 834.00 1.97%
20 4826.73 5199.06 0.00 0.00 7.71% 793.00 4822.72 5089.96 0.00 0.00 5.54% 896.00 2.14%

Average: 4751.04 5073.30 0.40 1.20 6.79% 727.60 4748.95 4963.85 0.40 1.20 4.52% 869.60 2.21%

21 5987.43 6390.68 1.00 1.00 6.74% 944.00 5981.75 6222.48 1.00 1.00 4.02% 1255.00 2.70%
22 5644.36 6178.52 0.00 1.00 9.46% 992.00 5641.55 5988.44 0.00 1.00 6.15% 1676.00 3.17%
23 15 200 5641.91 6059.82 1.00 0.00 7.41% 895.00 5641.61 5867.12 1.00 0.00 4.00% 1332.00 3.28%
24 5854.48 6404.70 0.00 1.00 9.40% 999.00 5854.78 6183.52 0.00 1.00 5.61% 1453.00 3.58%
25 5997.43 6507.26 0.00 0.00 8.50% 969.00 5996.43 6348.74 0.00 0.00 5.88% 1212.00 2.50%

Average: 5825.12 6308.20 0.40 0.60 8.30% 959.80 5823.22 6122.06 0.40 0.60 5.13% 1385.60 3.05%

26 7158.63 7701.54 2.00 3.00 7.58% 1088.00 7139.62 7401.90 2.00 3.00 3.67% 2461.00 4.05%
27 6944.08 7626.12 1.00 2.00 9.82% 1175.00 6938.38 7316.78 1.00 2.00 5.45% 2053.00 4.23%
28 18 240 6632.26 7229.12 2.00 0.00 9.00% 1119.00 6622.07 7042.46 2.00 0.00 6.35% 1970.00 2.65%
29 6716.87 7169.36 2.00 0.00 6.74% 1100.00 6715.53 7008.32 2.00 0.00 4.36% 2535.00 2.30%
30 6545.21 7026.84 2.00 0.00 7.36% 1102.00 6532.70 6759.46 2.00 0.00 3.47% 1605.00 3.96%

Average: 6799.41 7350.60 1.80 1.00 8.10% 1116.80 6789.66 7105.78 1.80 1.00 4.66% 2124.80 3.44%

From Table 3, it can also be observed that local search method can improve the
initial solution obtained by greedy heuristic algorithm, especially for those instances with
large depot network scale and intensive driving tasks. It shows that the optimality gap
improvements obtained by the local search method tend to be larger as the task size and
driver size increase with the underlying Network 2. In contrast, for those instances with
small depot network and less driving task, the optimality gap improvements are very little,
in which most gap improvements are less than 0.5% for the instances with the underlying
Network 1. It is probably because the solution space is small for the small-scale instances
and the greedy heuristic can obtain a good enough or even the best solution.

From UD and UT columns of Table 3, we can observe that the ratio of task size to
driver size is not fixed. Particularly, the ratio of task size to driver size for the small-scale
instances is bigger than that for large-scale instances. This coincides with our practice
experience. That is, for the small-scale instances where the driving tasks are less, the
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time duration between two tasks is long, which results in more driver idle time. For the
large-scale instances where the driving tasks are intensive, drivers can perform more tasks
on average. This result can help railways operators to determine the number of drivers
when build or extend EMU train depots. Specifically, from the managerial perspective,
drivers could be paid more in a busy depot where there are more driving tasks.

Moreover, we should mention that although the local search can improve the initial
solution, it takes a lot of time. Even though we run local search with a probability of 0.1, the
upper bound heuristic is still time consuming. Especially, the bigger the instance, the more
time local search takes. For the instances with the largest scale, e.g., instances 26–30, the
computation time of the algorithm with local search is twice that of the algorithm without
local search.

7. Conclusions

In this paper, we studied a practical depot driver scheduling problem in the rail-
way system that has been noticed by a few researchers. We formulate the problem as a
minimum-cost multi-commodity network flow model with integer flow restrictions in a
time-space network. We developed a Lagrangian relaxation heuristic for the proposed net-
work flow model and designed an upper bound heuristic with a local search method. We
conducted a computational study with a practical underlying railway depot in China. The
computational results demonstrate the effectiveness of our solution method. The obtained
results also show that our approach can help railway operators to find the preferred ratio
of the number of drivers to the number of driving tasks, and drivers could be paid more in
a busy depot.

It is worth mentioning that our research has several limitations. For example, though
the local search method can improve the initial solutions obtained by the greedy heuristic,
the CPU time it requires is long. Hence, one interesting future research topic would be to
design a fast and effective heuristic algorithm to solve the problem. Similarly, if the task
size is huge, the scale of the constructed time-space would be larger and the feasible path
for a driver would be long, which needs more CPU memory, and the computational burden
becomes heavy. Therefore, developing mathematical techniques to reduce the network size
is also an interesting future research topic. Moreover, in this paper, we do not consider the
workload balance of drivers and take the shunting schedule as known input data, so the
problem of driver scheduling with the equity consideration and the integrated optimization
to depot driver scheduling would also be one of the future research interests. In addition,
railway depot operations are vulnerable to unexpected disruptions. Once a disruption
occurs, we need to use efficient methods to reschedule drivers in the depot. So, another
interesting future research direction is to develop efficient driver rescheduling methods for
railway operators.
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Appendix A

The depot networks adopted in Section 6 are presented in Figure A1.
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