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Abstract: Increasing consumption of energy calls for proper approximation of demand towards a
sustainable and cost-effective development. In this work, novel hybrid methodologies aim to predict
the annual thermal energy demand (ATED) by analyzing the characteristics of the building, such
as transmission coefficients of the elements, glazing, and air-change conditions. For this objective,
an adaptive neuro-fuzzy-inference system (ANFIS) was optimized with equilibrium optimization
(EO) and Harris hawks optimization (HHO) to provide a globally optimum training. Moreover,
these algorithms were compared to two benchmark techniques, namely grey wolf optimizer (GWO)
and slap swarm algorithm (SSA). The performance of the designed hybrids was evaluated using
different accuracy indicators, and based on the results, ANFIS-EO and ANFIS-HHO (with respective
RMSEs equal to 6.43 and 6.90 kWh·m−2·year−1 versus 9.01 kWh·m−2·year−1 for ANFIS-GWO and
11.80 kWh·m−2·year−1 for ANFIS-SSA) presented the most accurate analysis of the ATED. Hence,
these models are recommended for practical usages, i.e., the early estimations of ATED, leading to a
more efficient design of buildings.

Keywords: sustainability; building energy; thermal energy demand; ANFIS; Harris hawks optimization

1. Introduction

Enhancements in living standards has necessitated a significant increase in energy
consumption of buildings [1]. A large portion of energy is consumed for providing suitable
space cooling and heating. For instance, this contribution has been reported around 48% in
the U.S. and 65% in the European Union [2,3]. Therefore, preparing an efficient estimation
of heating load (HL) and cooling load (CL) based on the characteristics of the building is a
crucial task towards energy conservation and environmental protection [4].

From a more general perspective, the world of science and especially engineering
domains have experienced significant advances in different fields [5,6]. A wide variety
of methodologies and apparatuses have been developed with the aim of facilitating exist-
ing problems [7,8]. More particularly, for energy issues, many of these inventions have
been tried by energy experts to increase the efficiency of energy systems (e.g., recharging
and consumption systems [9,10]). Another objective has been achieving a reliable and
inexpensive estimation of energy demand in buildings with various usages (e.g., office,
residential, school, etc.) [11,12]. An increasingly popular approach in dealing with energy
performance simulations is machine learning. Machine learning models, owing to their
potential in understanding and reproducing complicated non-linear patterns, have been
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used for mapping the relationship between various engineering-based parameters and
the corresponding effective factors [13,14]. As for energy-related analysis, many scholars
have successfully applied intelligent models such as artificial neural networks (ANNs) [15],
regression-oriented approaches [16], support vector machine (SVM) [17], etc. Provided
with a valid dataset, these models aim to learn the pattern of energy parameters affected by
multiple changes in the influential parameters.

The adaptive neuro-fuzzy inference system (ANFIS) is known as one of the most
capable machine learning tool widely used for energy prediction works [18]. Bilgili et al. [19]
demonstrated the suitability of ANFIS for estimating renewable electricity generation.
Baetens et al. [20] used this model for evaluating the thermal performance of cooling
load systems. Gao et al. [21] could accurately analyze the performance of integrated
photovoltaic-thermal system. This model attained above 99% correlation between its
outputs and real-world values. Another successful application of ANFIS was reported
by Ekici and Aksoy [22] for building energy load-forecasting area. Alam and Ali [23]
employed ANFIS with a subtractive clustering method for estimation of building energy
consumption. Based on the findings from comparison with ANN, ANFIS can present more
accurate result. Further comparative studies among diverse machine learning can be found
in the literature [24,25].

In many cases, coupling a predictive model with other existing techniques results
in improving the efficiency of the model. Therefore, numerous studies have been ded-
icated to combining machine learning tools with sophisticated techniques. For exam-
ple, Nilashi et al. [26] used a combination of ANFIS with expectation maximization and
principal component analysis to appraise the CL and HL. The results professed great
promise for the applied model with reference to mean absolute errors (MAEs) of 0.52 and
0.16, respectively.

One of the most beneficial ideas for combining with machine learning methods is
the use of metaheuristic algorithms. These algorithms try to improve their performance
by overcoming computational deficiencies [27–29]. Several applications of these algo-
rithms can be mentioned for optimizing regular predictors for energy-prediction problems.
Kardani et al. [30] optimized the ANFIS using biogeography-based optimization (BBO)
and improved particle swarm optimization (IPSO) for predicting HL and CL in residential
building. Achieving more than 83% concordance between the real and modeled values,
both hybrid models were introduced as promising predictors for this purpose. Alduailij,
Petri, Rana, Alduailij, and Aldawood [15] proposed a combination of SVM and imperialistic
competitive algorithm (ICA) for predicting 24 h ahead of heat demand. The proposed
methodology could achieve more promising results compared to typical SVM and im-
proved ANN models. Almutairi et al. [31] assessed four ANNs optimized with firefly
algorithm (FA), shuffled complex evolution (SCE), optics-inspired optimization (OIO), and
teaching–learning-based optimization (TLBO) and concluded that TLBO-ANN, with above
96% correlation, yields the most reliable results. Further research efforts that have been
devoted to conduct a comparison among the metaheuristic algorithms can be found in
earlier studies [32,33].

An eminent conclusion from the above literature is that utilizing metaheuristic algo-
rithms in combination with regular predictive models leads to novel methodologies that
perform better than single versions. According to similar studies, the reason behind this
improvement lies in the capability of metaheuristic optimizers in remedying the computa-
tional deficiencies associated with single regular models [34,35]. More particularly for the
ANFIS, however, training this model is susceptible to drawbacks such as local minima and
dimension danger, but the incorporation of metaheuristic algorithms can overcome these is-
sues through tuning the parameters of membership function (MFPs) [36,37]. Hence, in order
for ANFIS to achieve a reliable solution for complicated problems such as energy-demand
analysis, it is essential to be hybridized with appropriate optimization algorithms.

On the other hand, conventional types of metaheuristic algorithms have been suffi-
ciently investigated in different sectors. For example, PSO [38,39] and the genetic algo-
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rithm (GA) [40] are among the most popular optimizers served in optimizing ANFIS for
energy-demand predictions. Based on many recent research efforts, the new generation
of metaheuristic algorithms is introducing potential optimizers whose competency needs
to be evaluated and professed. Hereupon, this study aims to bridge the gap between the
latest artificial intelligence advances and convenient energy-demand analysis. In this sense,
two capable metaheuristic algorithms, namely equilibrium optimization (EO) and Harris
hawks optimization (HHO), are employed in combination with ANFIS for predicting the
annual thermal energy demand (ATED). The EO and HHO are well-tried algorithms for
optimization purposes in energy-related domains [41,42]. For instance, Zayed et al. [43]
declared the high capacity of EO-ANFIS for analyzing the energetic performance of a solar
dish collector. In addition, two well-known optimization techniques, namely grey wolf
optimizer (GWO) and slap swarm algorithm (SSA), are also employed as benchmarks to
comparatively validate the performance of the HHO and EO.

In the following, the paper is organized as follows: the used data and employed
algorithms are introduced in Section 2; the results (i.e., performance of the models) are
presented, compared, and discussed in Section 3; and the main findings are highlighted in
the conclusion, Section 4.

2. Materials and Methods
2.1. Used Dataset

To be able to predict the ATED, the hybrid models proposed in this work must analyze
a set of historical samples. The quality and validity of this data are important parameters
to be considered [44,45]. Taken from a previous study by Chegari et al. [46], the data of
this study are composed of twelve parameters comprising (a) eleven input parameters,
namely UM: transmission coefficient of the external walls (W·m−2·K−1), UT: transmission
coefficient of the roof (W·m−2·K−1), UP: transmission coefficient of the floor (W·m−2·K−1),
αM: solar radiation absorption coefficient of the exterior walls, αT: solar radiation absorp-
tion coefficient of the roof, Pt: linear coefficient of thermal bridges (W·m−1·K−1), ACH: air
change rate (v·h−1), Scw-N: shading coefficient of north-facing windows, Scw-S: shading
coefficient of south-facing windows, Scw-E: shading coefficient of east-facing windows,
and Glz: glazing; and (b) a target parameter called ATED (kWh·m−2·year−1). Noting
that, ATED here is considered as a combination of total heat demand for cooling (Qc) and
heating (Qh) with respect to total surface of conditioned zones (Ac), as expressed in the
below equation:

ATED =
(Qc + Qh)

Ac
(1)

Figure 1 shows the scatter charts illustrating the relationship between the ATED and
each input parameter. As is observed, the ATED has a similar trend with respect to all
inputs except Glz. All inputs are directly proportional to the ATED, while the general trend
of Glz falls with the increase of ATED.

The used dataset consists of 35 records. To attain the objective of the study, two sets of
data are required: one with 80% of records forming the training set and the other with 20%
of records forming the testing set. It is a well-established rule that for a prediction task, the
model should be first trained. In this regard, a predictive model analyzes the interrelated
relationship between the target parameter (here, ATED) and influential parameters (here,
UM, UT, UP, αM, αT, Pt, ACH, Scw-N, Scw-S, Scw-E, and Glz). Once the training is
accomplished, its quality is tested by considering testing data. In both stages, the prediction
products of the model are compared to real values, and the accuracy is calculated using
appropriate indicators.
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2.2. Employed Algorithms
2.2.1. ANFIS

ANFIS is a leading model in prediction tasks. This model was developed by Jang [47]
in 1993, and so far, it has served strongly in diverse, complex simulations, especially in
energy sectors [38]. As the name of this model indicates, two major parts that form the
ANFIS are the neural part that is taken from the self-learning ability of ANNs and fuzzy
part that represents the expression function of the fuzzy technique. The simulation using
ANFIS is started with creating if-then rules corresponding to MFs. By tweaking these rules
and MFs, the model shapes the relationship between target and input factors. Figure 2
shows the five-layered topology of the ANFIS.

Layer 1 contains the MFs used for the fuzzification applied to the inputs. Layer 2
contains multiplier rules and releases a strength from each node. Layer 3 deals with
the normalization process applied to the calculated strengths. Next, the output MFs is
presented in Layer 4 by its adaptive nodes. The global response is finally released by the
node in Layer 5, which sums up the previous outputs [48].
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2.2.2. Metaheuristic Algorithms

Four metaheuristic algorithms that are synthesized with ANFIS are EO, GWO, HHO,
and SSA. These algorithms are known as population-based techniques, meaning that a
pre-defined number of individuals search the space of the problem to discover the optimum
solution. In this process, each algorithm follows a specific strategy for updating the position
of the population within search space. These techniques are explained in the following.

The EO was designed by Faramarzi et al. [49]. In this algorithm, a control volume
is simulated, wherein the equation of mass balance expresses the concentration of com-
ponents. An equilibrium pool is formed by citing the concentration of three outstanding
particles along with an average of them, and updating these concentrations represents the
optimization process in the EO [50].

Unlike the EO, which is a physics-inspired technique, the idea of GWO, HHO, and SSA
is taken from the social behavior of grey wolves, Harris hawks, and salps. These algorithms
were, respectively, proposed by Mirjalili et al. [51], Heidari et al. [52], and Mirjalili et al. [53].
In the GWO, the herd is divided into four classes, namely alpha, beta, delta, and omega. As
is known, alpha and omega wolves are characterized with the highest power. The first three
classes are responsible for seeking prey, while the omega class plays the role of assistant.
The distance from the prey is considered as the fitness of the solution, and the algorithm
updates the wolves’ position to better approach the prey. The same happens in the HHO
to track and hunt. In general terms, the steps in which the target is sought and hunted
are called exploration and exploitation, respectively. Likewise, for the SSA, the chain of
salps is composed of a leader, i.e., the most powerful individual, that is followed by others
toward attaining a food source that is updated with more promising ones for fulfilling
the optimization.

Since the mathematical configuration of these algorithms is quite computer-science-
oriented and is out of the scope of this work, the readers may refer to the appropriate
literature (EO [54,55], GWO [56,57], HHO [58,59], and SSA [60,61]) for more detailed
information and latest updates regarding these algorithms.

3. Results and Discussion
3.1. Accuracy Equations

To validate and compare the prediction robustness of the suggested ANFIS-HHO
model, four accuracy indicators were applied to the results to express the error of prediction
(i.e., the difference between the real and estimated ATEDs) as well as their concordance (i.e.,
the correlation between the real and estimated ATEDs). The index that gives the correlation
is Pearson correlation index (RP) introduced in Equation (2), wherein ATEDiestimated and
ATEDireal represent the estimated and real values with averages given by ATED. Moreover,
SZ signifies the size of dataset. Similarly, the MAE and RMSE calculate the error in the
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absolute format based on Equations (3) and (4), while Equation (5) releases a relative form
of error called mean absolute percentage error (MAPE) [62,63].

RP =

SZ
∑

i=1
(ATEDiestimated − ATEDestimated)(ATEDireal − ATEDreal)√

SZ
∑

i=1
(ATEDiestimated − ATEDestimated)

2
√

SZ
∑

i=1
(ATEDireal − ATEDreal)

2
(2)

MAE =
1

SZ

SZ

∑
i=1

∣∣ATEDireal − ATEDiestimated

∣∣, (3)

RMSE =

√√√√ 1
SZ

SZ

∑
i=1

[(ATEDireal − ATEDiestimated)]

2

, (4)

MAPE =
1

SZ

SZ

∑
i=1
|
ATEDireal − ATEDiestimated

ATEDireal

| × 100, (5)

Needless to say, the model with a lower RMSE, MAE, and MAPE and higher RP
represents more consistent results. Thus, based on the combination of these indices, the
ranking of models can be developed.

3.2. Hybridization, Optimization, and Network Selection

The name ANFIS-HHO represents a hybrid methodology composed of ANFIS pre-
dictor and HHO optimization algorithm. It was earlier elucidated that the HHO aims
to optimize the MFPs existing in the ANFIS [64]. Constructing the hybrid model should
be performed by means of some middle measures (i.e., equations). On the other hand,
optimization by metaheuristic algorithms is done inchmeal over a certain number of
iterations [65,66]. Thus, an evaluation criterion is required to monitor the results of each
iteration. The RMSE indicator is defined as the cost function (i.e., objective function) to
show the accuracy of the optimized ANFIS. It will be shown that the assigned metaheuristic
algorithm is able to reduce the RMSE step by step, which indicates improving the training
of ANFIS [67].

There are two user-determined parameters, namely the number of iterations and
population size for the metaheuristic optimizers. Based on earlier studies and investigating
the behavior of algorithms, the EO, GWO, HHO, and SSA are executed with 1000 iterations
in this work [68,69]. Population size, in most metaheuristic algorithms developed so far,
denotes the number of active individuals that look for the optimum solution. Hence, it can
broadly affect the performance of the algorithms. Trial and error is a well-accepted approach
for finding a suitable population size for each application of metaheuristic algorithms [35].
Accordingly, for this study, trying five common populations (i.e., 100, 200, 300, 400, and 500)
resulted in widely different optimization results for the intended algorithms. The results
are shown in Table 1.

Table 1. RMSE results for five different population sizes.

Population Size
ANFIS-EO ANFIS-GWO ANFIS-HHO ANFIS-SSA

Train Test Train Test Train Test Train Test

100 5.672 6.432 12.031 11.395 5.880 6.905 11.716 11.801
200 3.477 11.721 11.369 9.011 2.249 7.814 4.070 33.542
300 3.535 13.168 25.504 73.984 3.497 32.289 11.178 12.099
400 2.606 13.227 11.144 11.294 4.479 7.698 2.667 19.422
500 4.943 6.848 11.367 9.042 3.221 12.461 11.051 12.129

Min. RMSE 2.606 6.432 11.144 9.011 2.249 6.905 2.667 11.801
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Based on Table 1, each model yielded the smallest RMSEs, i.e., the best accuracy,
for different populations. The ANFIS-EO, ANFIS-GWO, ANFIS-HHO, and ANFIS-SSA
with populations 400, 400, 200, and 400 gave the most accurate training, while the best
testing results were obtained for populations 100, 200, 100, and 100, respectively. Therefore,
the results of this models are presented and discussed in the following sections. Table 2
expresses the name of the models with reference to the selected population sizes.

Table 2. Nomenclature of the models based on population size.

Framework Metaheuristic Optimizer Population Size Final Name Phase

ANFIS EO 400 ANFIS-400-EO Train
ANFIS EO 100 ANFIS-100-EO Test
ANFIS GWO 400 ANFIS-400-GWO Train
ANFIS GWO 200 ANFIS-200-GWO Test
ANFIS HHO 200 ANFIS-200-HHO Train
ANFIS HHO 100 ANFIS-100-HHO Test
ANFIS SSA 400 ANFIS-400-SSA Train
ANFIS SSA 100 ANFIS-100-SSA Test

3.3. Accuracy Assessment

Once the models are determined, their performance is examined in this section. The
results are generally presented for (a) the training phase that shows the quality of ATED
pattern captured by each model and (b) the testing phase that shows the quality of ATED
prediction for stranger buildings. Table 3 collects the results of both phases in terms of
introduced accuracy indicators.

Table 3. Summarized accuracy assessment results.

Phase Model MAE RMSE RP MAPE

Train

ANFIS-400-EO 1.87 2.60 0.99 1.86
ANFIS-400-GWO 7.63 11.14 0.90 8.17
ANFIS-200-HHO 1.91 2.24 0.99 2.08
ANFIS-400-SSA 1.90 2.66 0.99 1.89

Test

ANFIS-100-EO 6.20 6.43 0.99 7.23
ANFIS-200-GWO 6.75 9.01 0.97 6.41
ANFIS-100-HHO 5.74 6.90 0.99 7.35
ANFIS-100-SSA 9.07 11.80 0.93 8.93

In terms of RMSE, the ANFIS-400-EO, ANFIS-400-GWO, ANFIS-200-HHO, and
ANFIS-400-SSA achieved an error of 2.60, 11.14, 2.24, and 2.66, respectively, in the training
phase. Likewise, the RMSE of ANFIS-100-EO, ANFIS-200-GWO, ANFIS-100-HHO, and
ANFIS-100-SSA yielded 6.43, 9.01, 6.90, and 11.80 in the testing phase. As for the MAE,
training values were 1.87, 7.63, 1.91, and 1.90, and testing values were 6.20, 6.75, 5.74,
and 9.07.

Figure 3 shows graphical comparisons between the patterns of real and estimated
ATEDs. As is seen, in both training and testing figures, the real pattern (i.e., target with
red line) is nicely followed by the estimated pattern (i.e., output with blue line) by all
four models. This consistency can also be deduced from the calculated MAPEs, which
are 1.86, 8.17, 2.08, and 1.89% in the training phase and 7.23, 6.41, 7.35, and 8.93% in the
testing phase.

Figure 4 illustrates above results in the form of correlation charts. According to these
charts, the RP of all models is above 90%, which indicates an excellent harmony between
the reality and the prediction of models. It is observed that for all models, the points
are favorably aggregated around the ideal line (i.e., x = y dashed line). It means that the
values on the x-axis (=target) are very close to the corresponding values on the y-axis
(=output), and therefore, it indicates high accuracy of prediction. However, there are some
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underestimations and overestimations evident in some charts. The next sections elaborate
on the comparison between prediction accuracies.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 15 
 

 

phase. Likewise, the RMSE of ANFIS-100-EO, ANFIS-200-GWO, ANFIS-100-HHO, and 
ANFIS-100-SSA yielded 6.43, 9.01, 6.90, and 11.80 in the testing phase. As for the MAE, 
training values were 1.87, 7.63, 1.91, and 1.90, and testing values were 6.20, 6.75, 5.74, and 
9.07. 

Figure 3 shows graphical comparisons between the patterns of real and estimated 
ATEDs. As is seen, in both training and testing figures, the real pattern (i.e., target with 
red line) is nicely followed by the estimated pattern (i.e., output with blue line) by all four 
models. This consistency can also be deduced from the calculated MAPEs, which are 1.86, 
8.17, 2.08, and 1.89% in the training phase and 7.23, 6.41, 7.35, and 8.93% in the testing 
phase. 

Figure 4 illustrates above results in the form of correlation charts. According to these 
charts, the RP of all models is above 90%, which indicates an excellent harmony between 
the reality and the prediction of models. It is observed that for all models, the points are 
favorably aggregated around the ideal line (i.e., x = y dashed line). It means that the values 
on the x-axis (= target) are very close to the corresponding values on the y-axis (= output), 
and therefore, it indicates high accuracy of prediction. However, there are some underes-
timations and overestimations evident in some charts. The next sections elaborate on the 
comparison between prediction accuracies. 

 
(a) ANFIS-400-EO 

 
(b) ANFIS-100-EO 

 
(c) ANFIS-400-GWO 

 
(d) ANFIS-200-GWO 

 
(e) ANFIS-200-HHO 

 
(f) ANFIS-100-HHO 

 
(g) ANFIS-400-SSA 

 
(h) ANFIS-100-SSA 

Figure 3. Pattern comparison in the training (a,c,e,g) and testing (b,d,f,h) phases. 

  

Va
lu

e

Va
lu

e

Va
lu

e

0 2 4 6 8
Sample Index

50

100

150

200

Va
lu

e

Test Data

Outputs
Targets

0 10 20 30
Sample Index

0

50

100

150

200

Va
lu

e

Train Data

Outputs
Targets

Va
lu

e

Va
lu

e

0 2 4 6 8
Sample Index

50

100

150

200
Test Data

Outputs
Targets

Figure 3. Pattern comparison in the training (a,c,e,g) and testing (b,d,f,h) phases.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

(a) ANFIS-400-EO (b) ANFIS-100-EO (c) ANFIS-400-GWO (d) ANFIS-200-GWO 

(e) ANFIS-200-HHO (f) ANFIS-100-HHO (g) ANFIS-400-SSA (h) ANFIS-100-SSA 

Figure 4. Correlation of results in the training (a,c,e,g) and testing (b,d,f,h) phases. 

3.4. Ranking and Comparison 
Although the performance of all hybrid models achieved a satisfying level of accu-

racy, there were some noticeable distinctions among them in the prediction of ATED val-
ues. Referring to the reported accuracy indicators (see Table 3), the EO-ANFIS was the 
best-trained hybrid based on the lowest MAE and MAPE obtained for this algorithm. Fur-
ther, with a slight difference, EO-ANFIS attained the smallest RMSE after the HHO-AN-
FIS. Hereupon, the EO can come up as the most reliable metaheuristic technique for train-
ing the ANFIS. Likewise, there is a close competition between the EO-ANFIS and HHO- 
ANFIS in the testing results. These models yielded the lowest RMSE and MAE, respec-
tively. Moreover, despite the equal RP values, the EO-ANFIS was the second-most-accu-
rate model in terms of MAE, RP, and MAPE. 

Figure 5 shows Taylor diagrams for training and testing results for a more compre-
hensive comparison among the models. This diagram illustrates the correlation, standard 
deviation, and range of RMSE (i.e., RMSD in the graph) at the same time [70]. According 
to part (a) that corresponds to the training data, a significant distinction can be observed 
between the GWO and three other metaheuristic algorithms. It is also deduced that alt-
hough the HHO slightly outperformed the SSA and EO with reference to correlation and 
RMSD values, the EO is characterized with a lower standard deviation. As for testing 
phase, part (b) demonstrates the absolute superiority of the EO owing to the tangible dif-
ferences in the error and correlation simultaneously. After that, HHO gave the best pre-
diction, followed by the GWO and SSA. 

O
ut

pu
t ~

= 
0.

99
*T

ar
ge

t +
 0

.9
5

O
ut

pu
t ~

= 
0.

91
*T

ar
ge

t +
 1

4

Figure 4. Correlation of results in the training (a,c,e,g) and testing (b,d,f,h) phases.

3.4. Ranking and Comparison

Although the performance of all hybrid models achieved a satisfying level of accuracy,
there were some noticeable distinctions among them in the prediction of ATED values.
Referring to the reported accuracy indicators (see Table 3), the EO-ANFIS was the best-
trained hybrid based on the lowest MAE and MAPE obtained for this algorithm. Further,
with a slight difference, EO-ANFIS attained the smallest RMSE after the HHO-ANFIS.
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Hereupon, the EO can come up as the most reliable metaheuristic technique for training
the ANFIS. Likewise, there is a close competition between the EO-ANFIS and HHO-ANFIS
in the testing results. These models yielded the lowest RMSE and MAE, respectively.
Moreover, despite the equal RP values, the EO-ANFIS was the second-most-accurate model
in terms of MAE, RP, and MAPE.

Figure 5 shows Taylor diagrams for training and testing results for a more compre-
hensive comparison among the models. This diagram illustrates the correlation, standard
deviation, and range of RMSE (i.e., RMSD in the graph) at the same time [70]. According to
part (a) that corresponds to the training data, a significant distinction can be observed be-
tween the GWO and three other metaheuristic algorithms. It is also deduced that although
the HHO slightly outperformed the SSA and EO with reference to correlation and RMSD
values, the EO is characterized with a lower standard deviation. As for testing phase,
part (b) demonstrates the absolute superiority of the EO owing to the tangible differences
in the error and correlation simultaneously. After that, HHO gave the best prediction,
followed by the GWO and SSA.
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Referring to the above assessment, a general ranking can be stated for the four used
models. While both ANFIS-EO and ANFIS-HHO presented a strong robustness, the EO-
ANFIS may deserve notation as the outstanding model of this study with respect to the
cumulative effect of all accuracy indicators in both capturing and generalizing the ATED
behavior. From the same reasoning, ANFIS-GWO and ANFIS-SSA had weaknesses in the
training and testing phases, respectively. Therefore, they may not be preferred over the
two other algorithms.

3.5. Additional Discussion

Prediction of thermal energy demand is essential for governments to formulate energy
policies and adjust future strategies [71,72]. In this work, four sophisticated machine
learning approaches were tested and validated for predicting the ATED by knowing eleven
characteristics, namely UM, UT, UP, αM, αT, Pt, ACH, Scw-N, Scw-S, Scw-E, and Glz.
The developed methodologies are generalizable owing to the high accuracy acquired in
testing phase.

In this sense, there could be important practical contribution of the offered models.
They can predict the ATED for new, unseen building conditions. For instance, assuming
an upcoming construction project, if the engineers have an approximation of the required
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thermal load in hand, it enables them to design/select the appropriate heating, ventilation,
and air conditioning (HVAC) systems. Since ATED is widely affected by the dimension and
characteristics of the building, another application could be modification of the building
plan, dimensions, etc., to attain an environmentally efficient design. To exemplify, in
Figure 6, the variation of the ATED is depicted versus the variation of two input parameters.
The general trend is clearly understandable, as the ATED rises with the increase of both UM
and Pt. In addition, observing the dashed lines in both figures shows that the used models
(especially the ANFIS-HHO and ANFIS-EO) can nicely follow and predict this trend. The
same can be created for other input parameters. Hence, performing such analysis on a large
scale can be helpful to move towards sustainable energy consumption.
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Although the performance of the models was generally acceptable, and desirable
results were obtained, there are some points that can be considered as the limitations of this
study. Moreover, some ideas can be suggested to address potential guidance for conducting
future research.

Considering the optimization approach taken by each metaheuristic algorithm,
Figure 7 depicts the path of RMSE reduction as explained in Section 3.2. As is seen,
each algorithm has a specific reduction rate with respect to the number of iterations. The
EO and HHO performed a major part of the task by around 700 iterations, during which
the error is reduced step by step. This is while the GWO reached the optimum solution in
approximately 100 iterations, and after that, its curve remained more or less fixed. However
the SSA curve has two major steps that occurred in the beginning, and the second step
starts before 500th iteration. We therefore raise the question of why the models are bounded
to 1000 iterations. The reasons lie in (a) the behavior of the algorithms, in which, according
to Figure 7, all models reach a steady level before 1000 iterations; (b) the general behavior
of the algorithms that have yielded a reasonable solution with 1000 iterations in similar
studies [73,74]; and (c) some limitations that exist regarding the time of calculations. As
is known, an iterative process like this may take considerable time. Therefore, we should
consider time as an important parameter in engineering works. For future works, utilizing
powerful systems to implement more iterations can be recommended. However, it does
not seem very likely to see a considerable improvement (see Figure 7).

This study only used ANFIS because it aimed at evaluating the effect of metaheuristic
algorithms in equal conditions. While ANFIS is among the most outstanding prediction
models, there are other capable tools such as ANN and SVM that may compete with ANFIS
in this way. Hence, another worthwhile investigation subject is applying one metaheuristic
algorithm to more basic models. As well as this, conducing comparative efforts among
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more metaheuristic optimizers is recommended towards updating the solution as new
algorithms are developed.
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4. Conclusions

Having a good estimation of building energy demand is beneficial from different
environmental and economical points of view. Therefore, developing reliable and cost-
effective methodologies is of great importance in sustainable development of building
energy systems. Although earlier literature has recommended the use of machine learning
for this purpose, traditional approaches meet some deficiencies that can be remedied
using new optimization algorithms. In this study, a fuzzy-based model called ANFIS
was successfully optimized by the EO, GWO, HHO, and SSA metaheuristic algorithms to
predict annual thermal energy demand. According to the results, the incorporation of these
four algorithms can make ANFIS an accurate tool for understanding the behavior of ATED
based on changes in the characteristics of the building and, subsequently, predicting the
pattern for new circumstances. In detail,

• With correlation values > 90% and relative errors < 9%, all models achieved a satisfying
accuracy in predicting the ATED.

• The performance of the ANFIS-EO and ANFIS-HHO were characterized with the
smallest error and largest concordance of the results. The RMSE of 6.43 and
6.90 kWh·m−2·year−1 were obtained for the ANFIS-EO and ANFIS-HHO versus 9.01
and 11.80 kWh·m−2·year−1 for ANFIS-GWO and ANFIS-SSA, respectively.

• Referring to these outcomes, ANFIS-EO and ANFIS-HHO can be practical evalua-
tors for tunning the performance of ongoing energy systems as well as designing
appropriate systems for renovation and construction projects.

• Last but not least, the proposed informational model can offer a data-driven predictive
tool with superior accuracy to enhance predictions and guide policy making for
energy-saving policies towards enhanced sustainability of the built environment.
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