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Abstract: Quality control considerably affects road stability and operability and is directly linked
to the underlying ground compaction. The degree of compaction is largely determined by water
content, which is typically measured at the actual construction site. However, conventional methods
for measuring water content do not capture entire construction sites efficiently. Therefore, this study
aimed to apply remote sensing of hyperspectral information to efficiently measure the groundwater
content of large areas. A water content prediction equation was developed through an indoor
experiment. The experimental samples comprised 0–40% (10% increase) of fine contents added to
standard sand. As high water content is not required in road construction, 0–15% (1% increase) of
water content was added. The test results were normalized, the internal and external environments
were controlled for precise results, and a wavelength–reflection curve was derived for each test
case. Data variability analyses were performed, and the appropriate wavelength for water content
reflection, as well as reflectance, was determined and converted into a spectrum index. Finally,
various fitting models were applied to the corresponding spectrum index for water content prediction.
Reliable results were obtained with the reflectance corresponding to a wavelength of 720 nm applied
as the spectrum index.

Keywords: spectrum index; water content; hyperspectral information

1. Introduction

The term sustainability refers to the ability to maintain a function and survive over
time [1]. Several other definitions of the term have also been provided. For example,
Brown [2] defined sustainability as the ability to meet the needs of future generations
without reducing their opportunities, and the Brundtland Commission [3] defined it as
technology to meet present needs without compromising the resources of future generations.
In the field of engineering, especially geotechnical engineering, sustainability refers to the
use of resources at a low cost while appropriately controlling harmful emissions. The term
is divided into four concepts [4,5]: (1) robust design and construction, including social cost
and inconvenience caused by construction; (2) the minimized use of resources and energy
in the planning, design, construction, and maintenance of geotechnical facilities; (3) the use
of methods and materials with a low impact on ecology and the environment; and (4) the
reuse of geotechnical structures for minimizing waste.

The concepts of sustainability have been applied to the field of road construction,
which is a subfield of geotechnical engineering. Corriere and Rizzo [6] defined “sustainable
roads” as roads that can achieve basic design goals (compliance, safety, ease of mobility,
maintenance, energy efficiency, transport capacity, etc.) during the construction, mainte-
nance, and operation phases. Meanwhile, the sustainability of roads is mainly considered
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from the perspective of maintenance. Greenroads Foundation (USA) evaluated road sus-
tainability using scores obtained from four-year tests on more than 50 types of roads The
London Councils in the UK manages a “Highways Minor Works” toolkit to support the
procurement of highway services, such as recycling, reducing transport distances, reducing
overall lifetime costs, energy use, and CO2 emissions [7,8]. In South Korea, development
and research on smart roads are being actively conducted, which mainly requires au-
tomation equipment, datafication of information, and accurate quality control in a wide
area [9,10].

In addition to the maintenance aspect, the practical implementation of “sustainable
roads” is achieved through thorough, early-stage road excavation and pavement work. The
compaction performed to secure the road bearing capacity not only ensures the durability
of the asphalt or concrete road, but is also the determining process for road performance
and quality, including the drivability of vehicles [11]. In general, the goal of compaction is
90% or more, which is calculated as the ratio of the dry unit weight on-site to the maximum
dry unit weight. Furthermore, the water content used for the calculation is the ratio of soil
water to soil weight, which affects the long-term stability of the subgrade, the quality of
compaction, and the number of passes. It is essential to determine the groundwater content
prior to performing actual compaction [12–20].

Groundwater content measurement is performed by the traditional methods of com-
paring the weight of an on-site sample with the weight of the sample after drying, using a
scale; time domain reflectometry through the reverberation time of an electrical signal; and
ground penetrating radar (GPR) through the intermittent measurement of water volume
and dielectric constant [14–19]. However, the disadvantage of these methods is that they
are time-consuming and labor-intensive in determining the water content distributed over
the entire construction site by point measurement. Furthermore, the passive aspect of the
data measurement process may vary the measured values depending on the skill level of
the operator or increase the error range, which may cause reliability problems.

Accordingly, it is necessary to measure the water content in a range by a more reliable
method rather than by the existing point measurement method. For example, remote
hyperspectral sensing has been actively researched recently as a viable method. The field
of remote hyperspectral sensing is broadly divided into spectroscopy, radiative transfer,
imaging spectroscopy, and hyperspectral image processing, where spectral curves are
derived through radiative transfer. A spectrum is a function of wavelength and indicates
the distribution of reflectance; thus, the reflectance shown by the spectrum depends on the
characteristics of the object [20]. In the construction industry, remote hyperspectral sensing
usually involves the use of drones. Through this, orthographic images and hyperspectral
information of a wide area are acquired and mainly used to classify mineral types, sizes, and
qualities or to analyze vegetation distribution [21–27]. The photographed hyperspectral
information indicates only the reflectance based on wavelength and is expressed as a
spectrum index by substituting the equation corresponding to each property. The spectrum
index is a value obtained by converting the spectral information (wavelength–reflection
curve) obtained through a spectral experiment into a single value; this is equivalent to
normalizing the necessary information. Thus, secondary processing of hyperspectral
information is required to convert the photographed copy to suit the operator’s intention.

Measuring groundwater content in ranges requires a conversion of the measured
hyperspectral information into a spectrum index representing the water content. However,
studies on the spectrum index related to water content have mainly focused on factors
influencing water quality or moisture content in [25–29]. Through hyperspectral image
analysis, Prošek et al. [28] classified the local waters, and Guo et al. [29] analyzed only
the color change of the lake. On the other side, Ge et al. [30] verified the equation for
calculating the spectrum index of various water contents to confirm soil aggregate structure
and nutrient status. However, in general, many spectrum index models have a small
R2 value of calculated water content and measured water content. The most suitable
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spectrum index model still has a disadvantage: the target site does not reflect the low water
content of agricultural land (measured water content of 10–30%).

The ground targeted in this study was a road construction site. In such a ground,
compaction is usually carried out after filling, and the transported soil usually has a similar
water content. That is, the water content measured at the surface represents the water
content of the entire ground. In this ground, as work was performed on general sand, high
water content was not recorded, but low water content was considered. Therefore, the
application of the corresponding spectrum index model may show inappropriate results,
necessitating the development of a spectrum index to indicate new water content. Thus,
ground hyperspectral information was acquired from water content through a normal-
ized and thoroughly controlled indoor experiment in this study. A subsequent spectrum
index expressing water content through various combinations was obtained. The soil
used in the experiment was prepared from 0 to 30% of fine particles (10% increments;
particle size ≤ 0.075 mm) using standard sand, and it was used to simulate various types
of soil while increasing water content by 1%. As the spectrum index must be used during
image acquisition through drones, an indoor experimental system with the same measure-
ment method was created, in which hyperspectral information was acquired for spectrum
index calculation.

2. Methodology for Estimating Ground Water Content in Road Construction Site

The water content measurement process of this study is illustrated in Figure 1 and
detailed as follows; (1) A hyperspectral camera is mounted on a drone, which is an un-
manned aerial vehicle, and orthographic image and hyperspectral information of the
ground for which water content is to be determined are acquired. In this case, the hyper-
spectral information is the pixel unit of the measurement area, which can be freely adjusted;
(2) The acquired image is corrected through post-processing because there is shaking during
the drone shooting process using the push-broom method. (3) Hyperspectral information
existing in each pixel is converted into water content for a photographed copy where all pro-
cesses have been completed. Here, hyperspectral information is the relationship between
reflectance and wavelength; (4) A specific color is assigned to the water content converted
for each pixel, and this is displayed on the map. That is, it implements a color-coded
map (CCM).
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This study aims to present a spectrum index that converts hyperspectral information
into groundwater content at the fourth step illustrated in Figure 1. Thus, the spectrum
index would refer to the groundwater content, which is a function of reflectance according
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to wavelength, as expressed in Equation (1). Here, w refers to water content, Ri refers to
reflectance at a wavelength of i-nm, and i ranges from 400 nm to 1000 nm. Reflectance (R) is
the ratio of the reflected energy to the total energy incident on the body, and it is expressed
as a percentage. R is expressed through a complex process of reflection, absorption, and
transmission of energy; it varies with wavelength and enables features to be identified on
the body or surface to be measured [31].

Spectrum index = w = f unction(Ri) (1)

Overall, we aim to present hyperspectral information measured with a hyperspectral
camera as a function of Equation (1) (Figure 2), where, Ri in the function may represent
one, two, or more points. Corresponding combinations and analyses are described in a
later section.
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3. Laboratory Tests for Obtaining Hyperspectral Information
3.1. System for Obtaining Hyperspectral Information

An indoor experimental system (Figure 3a) was created to acquire hyperspectral infor-
mation for determining the water content of the soil. The system consists of a hyperspectral
camera (Micro HSI410shark, Coring, Seoul, Korea) capable of measuring wavelengths of
400–1000 nm at 2 nm intervals, a stage for push-broom scanning, and software to express
the reflectance by wavelength in row data and graphs.
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The shooting method of a spectral camera is typically divided into staring or spectral
scanning, which captures the entire scene in band-sequential format, and push-broom
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scanning, which generates a hyperspectral image in a line-by-line format [32]. The push-
broom scanning method is a reliable method [33–35] mostly used for aviation photography
using an unmanned aerial vehicle. The method also provides reasonable spatial resolution
and high spectral resolution [36].

In push-broom scanning, a spectral camera is mounted to have a slit perpendicular to
the moving direction of the drone (Figure 3b) to extract spectral information from a desig-
nated area of one pixel. The area of one pixel is determined by the sensing interval, focal
length, and flight altitude. The drone captures all pixels corresponding to the orthogonal
area while moving and then measures the frame of the line corresponding to the next pixel.
The captured information is spectral information, including orthographic images.

In the actual field, push-broom scanning is applied as the drone moves, but in the
indoor experiment, the movement of the sample located at the bottom was simulated.
The simulation was intended to reduce errors due to changes in focus resulting from the
camera movements and to omit the geometric correction step performed after actual on-site
image acquisition.

3.2. Laboratory Test of Soil Sample

The ground measured in this study was a construction site mainly comprising sand
composed of soil particles of various sizes, with differences in void ratio, compaction curve,
and optimal water content depending on the particle size distribution. As the ground was
composed of various sand types, differences were expected in the spectral information
measured according to the water content. Therefore, it was necessary to acquire spectral
information for various types of ground and convert it into water content. Thus, the derived
water content should be constant regardless of the type of ground.

Therefore, for basic normalization, the base soil was set as standard sand. Standard
sand is an aggregate used to improve the strength of cement, referring to poorly graded
sand, which is granular soil with a particle size of 0.075–2.00 mm in accordance with [37].
Various ground simulations were performed with the addition of 10%, 20%, and 30% fine
contents (particle size of 0.075 mm or less).

3.2.1. Sieve Test

The sieve test of standard sands with 0, 10, 20, and 30% fine contents was performed
according to [38], and the results were as presented in Figure 4 and Table 1. The fine
contents were added in relation to the total weight of the soil. As a result of the test,
D10 was not measured at 20% and 30% of fine contents, but the pass rate for fine contents did
not exceed 50%; D10 increased as it acted as a denominator in the coefficient of uniformity
and the coefficient of curvature. Therefore, all samples used as a result of classification
according to [39] could be classified as Poor Sand with uneven particle sizes.
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Table 1. Sieve analysis results of the used soil sample.

Fine Content
in Standard

Sand (%)

D10
1

(mm)
D30

2

(mm)
D60

3

(mm)
Coefficient of

Uniformity, Cu
4

Coefficient of
Curvature, Cc

5

Percentage
Passing No. 200

Sieve (%)

Soil
Classification

0 0.274 0.363 0.530 1.934 0.907 0.06 SP
10 0.150 0.329 0.505 3.367 1.429 9.15 SP
20 - 0.300 0.482 - - 16.72 SP
30 - 0.272 0.461 - - 23.13 SP

1 D10: Particle diameter in percent finer of the soil corresponding to 10%; 2 D30: Particle diameter in percent
finer of the soil corresponding to 30%; 3 D60: Particle diameter in percent finer of the soil corresponding to 60%;
4 Cu: Coefficient of uniformity that calculated by Cu = D60/D10; 5 Cc: Coefficient of curvature that calculated
by D30

2/(D10D60).

3.2.2. Standard Compaction Test

To produce soil samples with the same degree of compaction, it is necessary for us to
know the maximum dry unit weight of each sample. Accordingly, the sieve test of standard
sands with 0, 10, 20, and 30% fine contents was performed according to [40], and the results
are presented in Figure 5. As the amount of fine content increased, the voids for the volume
of the soil sample decreased, being filled with the fine content. Therefore, as shown in
Figure 5, the optimum water content increased while the dry unit weight decreased with
an increasing amount of fine content.
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3.2.3. Composition of Specimens

In general, the degree of compaction (ratio of on-site dry unit weight and maximum
dry unit weight obtained through indoor experiments) is 95% at road construction sites.
Thus, the soil sample specimens in this study were prepared with a compaction of 95%.
Following the compaction curve in Figure 5, each sample was prepared with water content
according to Figure 6a, followed by compaction as shown in Figure 6b. Here, the water
content was set to 0–15%, making a total of 16 levels. Finally, specimens (Figure 6c) were
obtained and placed on the specimen stage of the configured system (Figure 3a) to extract
hyperspectral information.

The water content was the weight ratio of soil to water, and water as much as the
water content set in this study was added to the weight of the sample. The volume of the
experimental can (diameter = 10 cm, height = 6 cm) used for making the specimens was
471 cm3, and the maximum weight of soil that the experimental can could contain was
914 g (standard sand), 870 g (standard sand + fine content 10%), 790 g (standard sand + fine
content 20%), and 742 g (standard sand + fine content 30%), according to the maximum dry
unit weights presented in Figure 5.
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Whenever the water content increased by 1%, 9.1 g, 8.7 g, 7.9 g, and 7.4 g of water was
added. The composition of specimens was processed precisely, and when the water content
was measured again after obtaining the spectral information, the water content was found
to be the same as in the initial state. Hence, the measured spectral information reflected the
water content of specific specimens accurately.

3.3. Hyperspectral Information of Soil Sample

Figure 7 illustrates the hyperspectral information (relationship between wavelength
and reflectance) of soil samples according to the water content measured through the system.
In all the indoor experimental results, the reflectance according to wavelength showed a
similar trend. The reflectance increased non-linearly as the wavelength increased, showing
a rapid increase at approximately 750 nm. The maximum reflectance was measured at
800 nm and gradually decreased to the vicinity of the wavelength of 920 nm. Subsequently,
the reflectance exhibited non-linear behavior; for example, it increased again. According to
the characteristics of each wavelength band, the reflectance increased in the visible-rays
region (400–800 nm), and then it decreased and increased non-linearly in the wavelength
band of infrared rays (800–1000 nm). In addition, as the water content increased, the
reflectance according to the wavelength decreased. This may have been due to absorption
occurring more than reflection as the amount of water increased.
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4. Estimation of the Spectrum Index for Water Content Prediction
4.1. Variability Analysis of Hyperspectral Information

For water content prediction, spectral information measured through experiments
should be converted into a single-value spectrum index, which should be inserted into
a water content prediction equation. Processing spectral information is time-consuming
as numerous row data are collected from the row data obtained with a hyperspectral
camera; this phenomenon is due to the relationship between wavelength and reflectance,
as shown in Figure 7. However, as water content measurement is performed on the day
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of construction in actual road construction sites, with frequent changes made according
to various conditions (rainfall, humidity, and temperature conditions), it is essential to
minimize the processing time. Accordingly, a significant point (reflectance at a specific
wavelength) should be extracted, which should be converted into a spectrum index.

The conditions under which a specific wavelength was selected are illustrated in
Figures 8 and 9. The hyperspectral information processed was the ratio of fine content
(0–30%, 10% increment) and water content (0–15%, 1% increment), and the wavelength–
reflection curves were 64 in total.
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The first wavelength selection condition is that the difference in reflectance at a specific
wavelength should be small regardless of the content of fine particles at a specific water
content amount. If the difference between reflectance is large according to the content of
fine particles, a different spectrum index and equation of water content prediction should be
selected according to each ground condition. However, this step is practically impossible as
it requires setting the ground conditions individually in a large construction site. Therefore,
it is necessary to calculate a specific wavelength band with little difference in reflectance
according to the change in fine content; this wavelength should show reflectance with
slight variability (Figure 8).

The second condition is that there should be a clear difference in reflectance among
water contents (Figure 9). If the difference in reflectance at a specific wavelength is not large,
there is a possibility that the difference in water content may change rapidly even with a
small change in reflectance. Hence, the error would be substantial, having a large impact
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on the final product, CCM. Therefore, it is necessary to determine a specific wavelength
band with a large difference in reflectance according to a change in water content, which is
equivalent to finding a point with a large variability.

Data variability can be evaluated by the coefficient of variation (COV), as in Equation (2).
Here, COV is the ratio of standard deviation (SD) to mean. In general, COV is excellent at less
than 10%, good from 10% to 20%, acceptable from 20–30%, and not acceptable beyond 30%.

COV(%) = (SD/Mean)× 100(%) (2)

4.1.1. Effects of Fine Contents

Figure 10 presents the COV (Dot in figure) of four points of fine content (0%, 10%, 20%,
and 30%) and the average (Red line in figure) of all data according to the wavelength at a
specific water content. In terms of average COV, the wavelength with the maximum COV
was 29.03% at 500 nm, and the wavelength with the minimum COV was 720 nm, which
was 10.23%. In the wavelength range of approximately 400–600 nm, the COV was high; in
the range of 600–880 nm, it showed a smooth parabolic shape with a value of 10.23–12.40%.
At wavelengths above 880 nm, the COV was approximately steady with slight fluctuations.
Regarding the first condition for selecting the wavelength to be applied to the spectrum
index, a wavelength with small fine content variability should be selected. For the optimal
condition, it is appropriate to use the reflection of a wavelength of 720 nm although it also
appears appropriate to use the reflectance of a wavelength of 600 nm or more, as the COV
difference from 600 nm to 880 nm was approximately 2%.
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Figure 10. Analysis of using COV to select an appropriate wavelength for minimizing fine
content effect.

4.1.2. Effects of Water Contents

Figure 11 illustrates the COV of reflectance by water content according to fine content
amount as well as the average according to wavelength. Regarding the second condition
for selecting the wavelength to be applied to the spectrum index, a wavelength with high
water content variability should be selected. Therefore, to maximize the water content effect
at the wavelength of 600–880 nm, a wavelength with a high COV was selected. Within that
range, a minimum COV of 24.31% at 810 nm was measured as well as a maximum COV of
27.60% at 600 nm.
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4.2. Spectrum Index Reflected by Selected Wavelength and Reflection

Following the variability analyses, a specific wavelength for spectrum index was
selected as illustrated in Figure 12: (1) 720 nm wavelength and (2) 600–880 nm wavelength.
The wavelength of 720 nm is the point with the least fine content effect. As water content
had a high variability, it is most appropriate to use the wavelength from a single perspec-
tive. In this case, the spectrum index refers to a reflectance at 720 nm. We express the
corresponding spectrum index as R720. The variability analysis showed that COV exhibited
a similar trend in the wavelength band of 600–880 nm. Therefore, all reflectance in the
wavelength band of 600–880 nm are considered, and the spectrum index is expressed as an
integral. In this paper, the integral is expressed as I600–820 (integral from 600 nm to 820 nm
of wavelength), and it refers to the area between the wavelength–reflectance curve and the
x-axis (range of 600–820 nm).
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4.3. Equation for Predicting Water Content Using Spectrum Index

Data fitting was performed, as shown in Figure 13, to determine the water content
prediction formula using the appropriate spectral index. The fine particle content was not
classified separately in all the data here; R720 and I600–880 were plotted on the x-axis against
water content on the y-axis. The total number of data was 64. Figure 13 shows that the
water content gradually decreased as the spectrum index increased, but the relationship
was nonlinear. Therefore, it is necessary to derive a non-linear equation for the relationship.
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Various fitting equations, including linear, polynomial, logarithmic, and exponen-
tial equations, were considered. Table 2 presents the equations and their corresponding
R2 values. After fitting, R2 was low for I600–880 (using the integral area) compared with
that of R720 (calculated as a single point). Therefore, it was appropriate to select R720 as
a spectrum index; an exponential fitting model with a high correlation coefficient was
selected as the equation for water content prediction.

Table 2. Results of the fitting.

Index Fitting Model Equation R2

R720

Linear w = −0.379R720 + 21.021 0.636

Polynomial w = −8.38 × 10−6R720
4 + 0.0012R720

3 − 0.0462R720
2 −

0.2631R720122(0 index + 33.7973)
0.687

Logarithm w = 25.767 − 7.004 ln(R720 − 19.738) 0.695
Exponential w = −1.172 + 79.648 exp(−0.0666R720) 0.697

I600–880

Linear w = −0.00883I600–880 + 14.658 0.579

Polynomial w = −5.37 × 10−12I600–880
4 + 2.159 × 10−8I600–880

3

−7.782 × 10−5I600–880
2 + 0.0479I600–880122(0 index + 10.0868)

0.637

Logarithm w = 48.239 − 6.432 ln(I600–880 − 144.708) 0.643
Exponential w = −0.2228 + 25.032 exp(−0.00167I600–880) 0.645
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4.4. Comparison of the Literature with Proposed Spectrum Index Method

To verify the suitability of the water content prediction equation proposed in this
study, a comparison with the existing theoretical equations was performed. Eleven of the
thirty high-R2 prediction equations investigated by Ge et al. [30] are presented in Table 3.
Because the existing equations target only the spectrum index, a separate fitting should
be performed for the water content prediction equation. According to [30], a linear fitting
was performed. Therefore, to obtain the equation for predicting water content, the spectral
information from this study was substituted into the spectrum index, and the equations
were obtained individually through linear fitting.

Table 3. Comparison of bias factors of each inflection point.

Spectrum Index
Equation for Water Content Prediction Ref.

Sort Equation

mNDVI705 (R750 − R705)/(R740 + R705 + 2R445) w = −105.01mNDVI705 + 13.40 [41]
NDVI (R800 − R680)/(R800 + R680) w = 161.11NDVI − 20.57 [42]
NDCI (R762 − R527)/(R762 + R527) w = 8.04NDCI + 1.44 [41]

NDVI705 (R750 − R705)/(R750 + R705) w = −120.54NDV705I + 14.53 [43]
RVI R800/R680 ω = 55.28RVI − 71.13 [43]

NDRE (R750 − R705)/(R750 + R705) w = −120.54NDRE + 14.53 [44]
GNDVI (R750 − R550)/(R750 + R550) w = 3.79GNDVI + 5.10 [45]
OSAVI [(1 + 0.16) (R800 − R670)]/(R800 + R670 + 0.16) w = 115.04OSAVI − 19.52 [42]
VOG1 R740/R720 w = −114.33VOG1 + 127.58 [46]
VOG2 (R734 − R747)/(R715 − R726) w = 2.71VOG2 + 5.66 [46]
VOG3 (R734 − R747)/(R715 + R720) w = 577.11VOG3 + 14.58 [46]

Figure 14 illustrates the results of the water content prediction equation proposed
in this study and the measured and predicted water contents according to the existing
theoretical formulas. Overall, in the existing equations, no significant change was observed
in the predicted water content as the measured water content increased. In other words,
the R2 value was distributed from 0.002 to 0.122, indicating an extremely low correlation.
Therefore, when the spectral information obtained in this study was substituted into the
existing spectrum index, a considerable error was obtained, demonstrating that the water
content prediction equation using the proposed R720 is appropriate.
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5. Conclusions

In this study, groundwater content was measured for determining road bearing capac-
ity and for road quality control during road earthworks and pavement construction toward
achieving “sustainable roads.” The existing water content measurement method is the point
measurement method; however, we aimed to acquire the water content of a wide area at
once, necessitating the use of hyperspectral information. Hence, hyperspectral information
was obtained through many indoor experiments, and a water content prediction formula
was proposed. The conclusions drawn from this study are as follows.

1. In this study, sophisticated specimens were created by adding fine contents to standard
sand, and hyperspectral information was obtained according to water content through
precise laboratory tests. For hyperspectral information, a spectrum index was selected
through various correlation analyses, and an equation to convert the spectrum index
to water content was proposed.

2. The suitable wavelength for calculating the spectrum index was 600–880 nm, as de-
termined through variability analysis based on the water content and fine contents.
The variability analysis results showed that no difference existed in the results of the
equation for water content prediction even when a single wavelength within the range
was selected. When the integral value of reflectance was used at 600–880 nm, R2 was
rather low. This phenomenon was the result of the overlapping variability of wavelength
and reflectance. Even when the R2 of the corresponding index was measured, it was not
appropriate as it increased the time for calculating the spectrum index.

3. The available equation for the prediction of the groundwater content is when the
reflectance at a wavelength of 720 nm is applied to the exponential model. As a
result of the linear regression analysis according to the measured and predicted water
content, R2 was measured to be the highest, which means that it is most suitable for
representing the water content in the ground. In terms of spectral range, 720 nm is
deep red light.

4. The correlation (R2: 0.009–0.122) when the existing spectrum index for water content
prediction was substituted into the hyperspectral information obtained in this study
was measured to be very low. Even when the existing equation was substituted into the
hyperspectral information obtained by Ge et al. [26], the R2 ranged from 0.052 to 0.398,
indicating that the reliability of the existing formula was low. Therefore, the R2 (0.7067)
of our proposed equation for water content prediction according to R720 was large and
reliable. This is because the existing method calculated the water content in a linear line
through a simple linear regression analysis of the spectrum index.

5. The disadvantage of this study is that the proposed equation was derived without
going through an actual field test. Thus, in the field, errors may occur depending
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on actual variables, such as weather, temperature, humidity, and the skill level of
the drone operator. Therefore, it is necessary to test the accuracy and reliability of
the equation derived from this study in the field, and the equation must be modified
through additional data acquisition.
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