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Abstract: It is an inevitable trend of enterprise development to optimize the low-carbon machining
process and reduce the carbon emissions generated by this system. The traditional quality-based
manufacturing method is no longer suitable for today’s concept of sustainable development. There-
fore, a data-driven method based on uncertainty evaluation for low-carbon control in machining
processes is proposed. Firstly, the framework for the data-driven method was established, then the
data collection for the input and output in the machining process was carried out. Secondly, by
establishing the carbon emission data model and analyzing data with carbon emission uncertainty
evaluation indicators during processing, the carbon emission optimization strategy was proposed.
Finally, axle processing technology was applied to the experimental verification, exploring the uncer-
tainty of emissions finishing machining steps and other work sequences, while carrying out targeted
strategy optimization, which verifies the feasibility and effectiveness of the method. The results show
that the uncertainty of each process is reduced after optimization. This study provides theoretical
and methodological support for promoting low-carbon emissions for manufacturing enterprises.
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1. Introduction

With the continuous advancement of the industrialization process and rapid economic
development, coupled with the extensive use of fossil fuels such as coal and oil, the
concentration of carbon dioxide emitted by combustion has increased by 35% compared
with the past few million years. This increase heats up our planet through the greenhouse
effect [1,2], which causes much disruption to human life. As a rapidly developing country,
China has a higher proportion of carbon dioxide emissions from manufacturing [3], and low-
carbon transformation has become an effective way of achieving regional development [4].
Ensuring low carbon levels is a challenge of globalization [5], and how to realize low-carbon,
high-efficiency manufacturing, as well as a sustainable and green manufacturing system
have become the core aims for the future development of the industry, and we need to keep
researching and exploring [6,7]. Since 2003, the concept of a low-carbon economy has been
proposed, and it is proposed that economic development should adopt a strategy of low
energy consumption, low pollution and low emissions [8]. Reducing carbon emissions is
the key to achieving low-carbon manufacturing in the context of various manufacturing
systems [9].

In recent years, many experts and scholars have studied carbon emissions in man-
ufacturing enterprises and found a series of important results in theory and practice:
Gao et al. [10] developed a new mathematical model to predict carbon emissions in the
stamping process and achieve carbon reduction through process decomposition.
Xiao et al. [11] established a low-carbon and low-cost multi-objective optimization model
according to the processing characteristics of complex box-like blank parts and used a
particle swarm algorithm to solve the optimization model to meet the low-carbon demand.
Jeswiet et al. [12] proposed a quantitative model of carbon emissions for the manufacturing
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process. Hirohisa et al. [13] considered the environmental burden, manufacturing time
and total number of work piece setups and proposed the evaluation index of the process
“eco-efficiency” and operation plan. Zhang et al. [14] established the carbon flow model
of the iron making system based on the carbon balance theory, which can calculate the
carbon emission data in actual production and analyze the influencing factors of carbon
emission. Cai et al. [15,16] used energy benchmarking to improve the energy efficiency and
performance of the machining system.

Liu et al. [17] established a low-carbon optimization model of the machining process
route, and then applied it to the machining process of a machine tool motor, the correctness
and validity of the optimization model are verified. Li et al. [18] proposed a low-carbon
optimization model for the quantification of multi-source carbon emissions, manufacturing
process parameters, and process routes in the machining system, and carried out a practical
analysis to verify its feasibility. Zheng et al. [19] studied the sand casting process, modeled
carbon emissions in the process, and calculated the carbon emissions with the process
carbon source, and its feasibility is verified by an example. Deng et al. [20] established a
multi-objective machining process route optimization model based on a genetic algorithm
(GA), which takes the minimum machining time (high efficiency) and optimal carbon
efficiency (low carbon) as the optimization goals, and conducted an experimental case study
on the grinding box. Zhang et al. [21] studied the optimal control method of carbon footprint
based on dynamic programming in machining process by considering the constraints of
machining accuracy and time, achieving minimum carbon emissions.

Digital drive technology is gradually applied to advanced manufacturing,
di Capaci et al. [22] presented data-driven models for the description of the acid gas treat-
ment process by imposing generalized binary noise (GBN) sequences to the flow rate of
Ca(OH)2, which appears reliable and promising for control purposes. Leng et al. [23]
proposed a novel digital twin-driven approach for the rapid reconfiguration of auto-
mated manufacturing systems. Meanwhile, Leng et al. [24] applied digital-twin tech-
nology to production line debugging, making the commissioning of a new flow-type
smart manufacturing system more sustainable. Zhang et al. [25] proposed a digital-twin-
driven smart manufacturing workshop carbon emission prediction and low-carbon control
in order to achieve carbon emission reduction in intelligent manufacturing workshops.
Vaccari et al. [26] established a geothermal power generation simulation model to predict
and control pollutant emissions, and the predicted value is essentially consistent with the
actual measured value.

Many researchers have conducted successful studies on low-carbon processing, which
provide us with methods and references. However, in the specific process of manufacturing,
the quantification of the specific generated carbon emissions and the uncertainty evaluation
of these emissions are still missing. Therefore, how to quickly find the influencing process
in the manufacturing and propose a strategy optimization for the process is the target of
this paper. To achieve this goal, the research framework is as follows. Section 2 details
the method, which mainly introduces the framework of the processing system, the carbon
emission quantification model and the carbon emission uncertainty evaluation index.
Section 3 takes the axle machining system as an example to verify the effectiveness and
feasibility of the method, and Section 4 is the conclusion.

2. Method
2.1. Framework

In this paper, a data-driven method was devised to measure and assess the carbon
emission efficiency of processes. The framework consists of four parts, including data
collection, data modeling, data analysis, and innovation practice. Data collection primarily
consists of inputs and outputs emissions from processing systems, and then conversion
with carbon emissions. Data modeling is used to establish the carbon emission calculation
model of the processing process. Data analysis refers to the carbon emission uncertainty
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evaluation index during the processing system. Innovation practice proposes effective
strategy optimization based on reducing uncertainty.

This method can calculate the carbon emissions of each process involved in manufac-
turing and quickly find the processes that affect carbon emissions according to the level
of uncertainty. Enterprises can also benefit from a reduction in carbon emissions, such
as improving economic and ecological benefits and providing better conditions for the
development of enterprises. The framework of the method is shown in Figure 1.
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2.2. Data Collection

In the process of axle manufacturing, the carbon emission analysis should not only
consider the characteristics of the system, but also the flow of external energy. By analyzing
capital investment, human management, and the final axle products, the carbon emissions
of the manufacturing process were divided into two aspects: inputs and outputs.

The inputs mainly include materials used in the process, as well as electricity, coal, oil,
and natural gas. The main inputs in axle production are 45 steel (kg), electricity (kW·h),
cutter (kg), cutting fluid (L), and grinding fluid (L). The outputs mainly include finished
products, waste scrap, waste liquid, waste gas, etc. [27,28]. The outputs in axle production
are mainly waste fluid (L) and waste scrap (kg).

The collection measures mainly include literature reviews, production data collection,
production log, invoice, sample collection and analysis, technical worker consultation, data
benchmarking in the same industry, etc. In axle production, a power meter and stopwatch
are used to calculate electric energy under no-load and load conditions, the balance is used
to test the material mass before and after the parts of each working step, and the measuring
cylinder is used to measure cutting fluid and abrasive fluid.

2.3. Carbon Emission Model

Based on the investigation and analysis of the production process of manufacturing
enterprises, by collecting the data of energy, production materials, and waste of the manu-
facturing system, the carbon emission measurement model of the manufacturing system
was built.

Model assumptions of a manufacturing system: the equipment required in the man-
ufacturing process is independent of each other, and one station includes one type of
production equipment. One station at the same time can only handle one processing
process; each process of the production station is carried out according to the standards
of the operation instructions, and once the production starts, it is not allowed to cancel or
interrupt; faults and abnormalities in the manufacturing process are not considered.
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(1) Calculation of carbon emissions from material

In the manufacturing system, input materials mainly include steel, alloy, cutting fluid,
cleaning oil, water, etc.

Consider the consumption of each step i (i = 1, 2 . . . i0), the type of material is j (j = 1,
2 . . . j0), and the input material loss is recorded as Wi,j, the carbon emission factor of the
consumed material is fwi,j [29], and the generated CO2 formula is as follows:

CW =
i0

∑
i=1

j0

∑
j=1

Wi,j × f wi,j (1)

(2) Calculation of carbon emissions from energy

The energy of the manufacturing system is mainly comprises sources of electricity,
some of which are coal (for heating), natural gas, hydrogen (cutting), etc.

Considering the energy consumed by each step i (i = 1, 2 . . . i0), the type of energy is k
(k = 1, 2 . . . j0), the energy is recorded as Ei,k, the carbon emission factor of the energy is
fei,k [29], and the generated CO2 formula is as follows:

Ce =
i0

∑
i=1

k0

∑
k=1

Ei,k × f ei,k (2)

(3) Calculation of carbon emission calculation from waste

Wastes mainly include waste water, waste gas, and waste residue. Considering the
number of emissions produced in each step i (i = 1, 2 . . . i0), the type of emissions is l (l = 1,
2 . . . l0), and the consumption of emissions is recorded as Hi,l, the carbon emission factor is
fhi,l [29], the generated CO2 formula is as follows:

Ch =
i0

∑
i=1

l0

∑
l=1

Hi,l × f hi,l (3)

Therefore, the carbon emissions of the production process can be expressed as:

C =
i0

∑
i=1

j0

∑
j=1

Wi,j × f wi,j +
i0

∑
i=1

k0

∑
k=1

Ei,k × f ei,k +
i0

∑
i=1

l0

∑
l=1

Hi,l × f hi,l (4)

By calculating the specific values of carbon emissions generated by input materi-
als, output energy, and emissions in mechanical production, the total carbon emissions
generated by this process can be obtained.

2.4. Evaluation Index of Carbon Emission Uncertainty

For axle manufacturing systems, the goal is to minimize total carbon emissions. The
total carbon emission needs to take into account the carbon emission generated by each
step of the whole process. In each manufacturing process, there are uncertainties in the
production schemes, tasks, consumption characteristics of resources and environment,
etc. There are disadvantages of simply comparing processes based on carbon emission
values. Therefore, the uncertainty relation of carbon emissions is introduced to consider
the optimization scheme of the overall process.

On the basis of carbon emission processes, uncertainty is proposed as the evalua-
tion index and an optimization strategy to reduce the uncertainty. The carbon emission
uncertainty model is established as follows:
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(1) Calculation of the sample mean

X =
1
n ∑n

k=1 Xk (5)

Among these values, X represents the sample mean; n is the sample size.

(2) Calculation of the sample standard deviation

After the mean of the data is obtained by calculation, the standard deviation of this
data set is calculated, and the formula is as follows:

σS =

√
1
n∑n

k=1 (Xk − X)
2 (6)

Among these values, σS is the standard deviation.

(3) Calculation of the step uncertainty range

On the basis of obtaining the sample size n and the standard deviation σS, according
to the IPCC guidelines [29], select the mathematical value t corresponding to the 95%
confidence level, and calculate the uncertainty range. The formula is as follows:

us =

[
−σs · t√

n
;+

σs · t√
n

]
% (7)

Among these values, the US indicates the uncertainty range of the step.

(4) Calculation of the uncertainty range of the process

The above model obtains the uncertainty range US of a certain step, and the uncertainty
needs to be combined for the entire manufacturing process. The carbon source relation-
ships of the process exist in juxtaposition to each other, and the addition and subtraction
operations are selected. The formula is as follows:

UC =

√
(US1 · CS1)

2 + (US2 · CS2)
2 + · · · ·+(USn · CSn)

2

CS1 + CS2 · · · ·CSn
(8)

Among these values, UC indicates the uncertainty of the process and CS represents the
carbon emissions of each step.

This model can obtain the uncertainty of each process through emission impact fac-
tors, find out the processes that have a greater impact on emissions and optimize them,
and finally reduce carbon emissions. Considering the influence of sample mean change
on uncertainty, in order to reduce the sensitivity of uncertainty, the method of random
sampling was used for sensitivity analysis.

2.5. Decision on Low-Carbon Optimization Path for Manufacturing

Based on the carbon emission uncertainty model of the manufacturing system above,
the specific application of the low-carbon optimization path decision is as follows: first, the
carbon emissions generated by the comprehensive action of various factors are calculated
through the production data of enterprises, and the degree of influence of each factor is
analyzed from the perspective of uncertainty. Then, the highly linear influencing factors
of uncertainty are identified, and corresponding improvement measures and methods
from the aspects of material selection, processing and management are formulate in order
to reduce the uncertainty of carbon emissions in the manufacturing system. Then, the
implementation effect is verified according to the plan requirements, and the experience
and problems of the improvement process are determined. Finally, it is necessary to
affirm successful experiences and formulate them into standards, procedures, and systems.
Lessons from failures can also be incorporated into corresponding standards, procedures,
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and systems. Therefore, the optimization decision can provide a quantitative basis for
reducing the uncertainty of carbon emissions in manufacturing systems.

3. Case Study
3.1. Axle Machining System

This paper takes the axle machining system of an enterprise as the research object,
which is mass-produced. The process includes forging, rough turning, heat treatment,
fine turning, rough grinding, fine grinding, and milling. The specific steps are shown in
Figure 2:

Sustainability 2022, 14, 14133 6 of 11 
 

from the aspects of material selection, processing and management are formulate in order 

to reduce the uncertainty of carbon emissions in the manufacturing system. Then, the im-

plementation effect is verified according to the plan requirements, and the experience and 

problems of the improvement process are determined. Finally, it is necessary to affirm 

successful experiences and formulate them into standards, procedures, and systems. Les-

sons from failures can also be incorporated into corresponding standards, procedures, and 

systems. Therefore, the optimization decision can provide a quantitative basis for reduc-

ing the uncertainty of carbon emissions in manufacturing systems. 

3. Case Study 

3.1. Axle Machining System 

This paper takes the axle machining system of an enterprise as the research object, 

which is mass-produced. The process includes forging, rough turning, heat treatment, fine 

turning, rough grinding, fine grinding, and milling. The specific steps are shown in Figure 

2: 

Forging
Rough 

grinding

Finishing 

turning

Heat 

treatment

Rough 

turning

Fine 

grinding
Milling

 

Figure 2. Machining process of axle. 

The machining process of the axle is a typical and representative system, which is 

used for carbon emission calculation and uncertainty analysis, providing new theoretical 

and sustainable improvement methods for machine manufacturing systems. 

3.2. Result 

According to the data from the axle factory and the actual investigation and analysis 

of the axle machining process, it can be found that each process has its own carbon foot-

print characteristics from forging to fine grinding because of the various tools used and 

different waste produced in the process.  

The carbon emissions in this calculation are calculated by the emission factor method, 

which is based on the output of manufacturing process. Among them, products and the 

empirical emission factors of products are included in the carbon emission factor, which 

refers to the statistical average of CO2 quantity produced under general conditions, ex-

pressed as the greenhouse gas production accompanied by the consumption per unit 

mass. It is an important parameter to characterize the emission characteristics of green-

house gas from a certain energy source, as well as the basic data for calculating the carbon 

footprint. According to the relevant literature, carbon emission factors of some common 

materials are organized, as shown in Table 1. 

Table 1. Carbon emission factors of common materials. 

Common Materials Unit Carbon Emission Factors References 

Steel Kg/kg 2.69 [29] 

Cutting fluid Kg/L 2.85 [29] 

Grinding fluid Kg/L 0.978 [29] 

Cutter Kg/kg  29.6 [29] 

Electricity Kg/KW·h 0.7125 [29] 

Scrap steel Kg/kg 0.361 [29] 

Waste cutting fluid Kg/L 0.21 [29] 

After data collection, the external circular lathe CA6140 was used as the manufactur-

ing equipment in the finishing turning process. The common parameters of this enterprise 

Figure 2. Machining process of axle.

The machining process of the axle is a typical and representative system, which is
used for carbon emission calculation and uncertainty analysis, providing new theoretical
and sustainable improvement methods for machine manufacturing systems.

3.2. Result

According to the data from the axle factory and the actual investigation and analysis of
the axle machining process, it can be found that each process has its own carbon footprint
characteristics from forging to fine grinding because of the various tools used and different
waste produced in the process.

The carbon emissions in this calculation are calculated by the emission factor method,
which is based on the output of manufacturing process. Among them, products and
the empirical emission factors of products are included in the carbon emission factor,
which refers to the statistical average of CO2 quantity produced under general conditions,
expressed as the greenhouse gas production accompanied by the consumption per unit
mass. It is an important parameter to characterize the emission characteristics of greenhouse
gas from a certain energy source, as well as the basic data for calculating the carbon footprint.
According to the relevant literature, carbon emission factors of some common materials are
organized, as shown in Table 1.

Table 1. Carbon emission factors of common materials.

Common Materials Unit Carbon Emission Factors References

Steel Kg/kg 2.69 [29]
Cutting fluid Kg/L 2.85 [29]

Grinding fluid Kg/L 0.978 [29]
Cutter Kg/kg 29.6 [29]

Electricity Kg/KW·h 0.7125 [29]
Scrap steel Kg/kg 0.361 [29]

Waste cutting fluid Kg/L 0.21 [29]

After data collection, the external circular lathe CA6140 was used as the manufacturing
equipment in the finishing turning process. The common parameters of this enterprise in
the finishing process are a spindle speed of 250 R/min, a feed rate of 0.3 mm/ R, and a
cutting depth of 2 mm.

In the actual manufacturing process, due to the existence of dimensional tolerance of
parts, the level of workers’ operation, the proficiency of equipment usage, and the defects
of raw material supply, there are differences in the material input, energy output, and
emissions in the finished turning.
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Data were collected according to the actual production process, the sample number is
50, and the t value is 2.01. Thirty samples were randomly selected and the test was repeated
20 times to obtain the uncertainty range of each work step for sensitivity analysis. The
carbon emissions and uncertainties of refined vehicles are shown in Table 2:

Table 2. Carbon emissions and uncertainty in the finishing turning.

Finishing
Turning

Remove
Material (g) Carbon Emissions (g) Us Uc

Input

Turning plane 170.82 459.58 1.5% (1.2–1.8%)

3.2%
(2.4–4.1%)

Turning cone 680.5 1830.55 6.8% (5.7–8.6%)
Chamfering 988.4 2658.79 7.5% (6.4–9.8%)
Threading 61.3 164.89 5.6% (4.3–7.5%)

Drill 54.7 147.14 1.6% (0.3–2.4%)
Cutter 2.72 80.51 1.4% (0.8–3.1%)

Cutting fluid 0 0 0%
Electric energy

(kW·h)
No-load

Electric energy 0.0144 10.29 0.5% (0.2–1.6%)

Processing
Electric energy 1.791 1280.92 2.6% (1.2–3.4%)

Output Waste 1955.72 706.01 6.5% (4.8–7.2%)

From the data results in Table 2, it can be seen that the uncertainty of the finished
product is greatly affected in the turning cone, chamfering, threading, and some other work
steps that require a high level of technology, because of the gap in the technical level of
workers. At the same time, waste residue and waste liquid are mixed, and there is also
a phenomenon of greater uncertainty in the separation and collection of emissions. The
values in the brackets indicate the uncertainty range recorded in the process of randomly
sampling 30 samples for 20 repeated tests. The overall sample uncertainty is within the
range, so the result meets the sensitivity requirements.

In the same way, the carbon emissions and uncertainties of other processes are calcu-
lated in turn, and the specific results are shown in Figure 3.
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Figure 3. Carbon emissions and uncertainty values in each process of the axle.

Figure 4 shows the uncertainty of carbon emissions in the whole manufacturing
process of the axle. It can be found that in the initial stage of manufacturing and the process
with a low-accuracy stage, the uncertainty of carbon emissions increases. This is due to
more removal materials and a higher technical level workers. Higher precision processes
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have lower emissions uncertainty because less material is removed, and the tolerance range
is small. Furthermore, we can see from Table 2 that a high waste uncertainty may be caused
by the gap in the collection and treatment of emissions. Meanwhile, it shows that the
enterprise lacks green awareness and an operation mode, and the low-carbon management
of production methods is unreasonable.
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By analyzing the uncertainty of carbon emissions of the enterprise’s axle processing
data, the current situation and difficulties faced by the enterprise in the current production
can be accurately diagnosed. It can provide practical method guidance for the green
production of enterprises.

Optimization decision 1: Strengthen the quality management of forgings. During the
forging process, strengthen the quality inspection process and exclude products with large
differences in size; meanwhile, try to reduce waste, standardize the operation, and stabilize
the production process. The uncertainty after implementing the decision was reduced from
6.7% to 5.6%.

Optimization decision 2: Improve the skill level of workers. In the process of keyway
processing, clarify the matching relationship of parts, reduce tolerances, and carry out
regular technology training to improve the operation level of workers. After the decision
was implemented, the uncertainty dropped to 6.2%.

Optimization decision 3: Reasonable sorting of waste. In terms of emission treatment,
a special person is responsible for the classification and recovery of slag and liquid, scientific
management, and the improvement of the accuracy of data collection. Uncertainty reduced
to 4.3% after decision implementation.

Since the implementation of this method in 2021, as shown in Figure 4, forging, milling
keyways, and emissions disposal carbon emissions uncertainties have all been reduced.
The enterprise has completed the goal of green and low-carbon production.

3.3. Discussion

Following a comparison with other research [11,12,19], this method has the
following advantages:

(1) This method analyzes the input and output of the part manufacturing process from
the perspective of carbon emissions, and establishes the uncertainty model of carbon
emissions based on data-driven methodologies.

(2) It can provide support for the low-carbon transformation and upgrading path of the
production system of manufacturing enterprises; meanwhile, it can help policymakers
strengthen quality management, improve the skills of workers, properly manage
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emissions, and reduce the uncertainty of carbon emissions in manufacturing systems.
It is the basis of the low-carbon production management of enterprises.

(3) Compared with energy benchmarking method applicable to high-end
enterprises [15,16], this method is easy to understand, implement, and provides
decision-making reference for managers in small enterprises; meanwhile, it can im-
prove the comprehensive level of low-carbon, green and clean manufacturing systems,
condense and enhance the core competitiveness of enterprises, and provide practical
help for manufacturing enterprises.

(4) Furthermore, in this study, we only focus on one part without considering the whole
manufacturing system, in view of the advantages of a digital-twin drive, we will
introduce the a digital-twin-driven intelligent manufacturing method into the field of
carbon emission statistics in the whole manufacturing system [30–32].

4. Conclusions

Under the current development background, energy saving, emission reduction, and
low-carbon manufacturing are bound to be the mainstream trends in industrial manufac-
turing systems. This paper employs a data-driven method to calculate carbon emissions
and uncertainties in processing systems. The main innovation is that it established a carbon
emission model for axle processing, determines the uncertainty evaluation index and the
carbon emission uncertainty of a process, and optimize this process with greater uncer-
tainty. In the uncertainty of forging and milling, emissions reduced to 5.6%, 6.2%, and 4.3%
from 6.7%, 8.7%, and 6.5%. Through a data analysis and evaluation of the axle processing
system, it was found that strengthening the quality inspection process, training workers to
improve their technical level, and rationally dealing with emissions can significantly reduce
uncertainty. This research has a good reference for the green transformation and upgrading
of manufacturing enterprises; and can provide effective solutions for decision-makers.
The application of data-driven methods based on uncertainty evaluation theory in the
whole process of mechanical production has great significance for the development of
sustainable manufacturing.
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