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Abstract: Motor imagery brain–computer interface (MI-BCI) systems hold the possibility of restoring
motor function and also offer the possibility of sustainable autonomous living for individuals with
various motor and sensory impairments. When utilizing the MI-BCI, the user’s performance impacts
the system’s overall accuracy, and concentrating on the user’s mental load enables a better evaluation
of the system’s overall performance. The impacts of various levels of abstraction on visual guidance
of mental training in motor imagery (MI) may be comprehended. We proposed hypotheses about the
effects of visually guided abstraction on brain activity, mental load, and MI-BCI performance, then
used the event-related desynchronization (ERD) value to measure the user’s brain activity, extracted
the brain power spectral density (PSD) to measure the brain load, and finally classified the left- and
right-handed MI through a support vector machine (SVM) classifier. The results showed that visual
guidance with a low level of abstraction could help users to achieve the highest brain activity and the
lowest mental load, and the highest accuracy rate of MI classification was 97.14%. The findings imply
that to improve brain–computer interaction and enable those less capable to regain their mobility,
visual guidance with a low level of abstraction should be employed when training brain–computer
interface users. We anticipate that the results of this study will have considerable implications for
human-computer interaction research in BCI.

Keywords: sustainable living; EEG; motor imagery; visual guidance; mental load; ERD

1. Introduction

People who are severely physically disabled, those who have had strokes, older people
with limited mobility, and other groups face significant obstacles or limitations when it
comes to taking care of themselves, moving around, and participating in social activities,
necessitating the assistance of others and the proper social security institutions [1]. Brain–
computer interface (BCI) technology uses EEG signals to achieve communication between
the human brain and computers or other electronic devices and can effectively help the
people mentioned above to interact with the outside world [2]. With the help of BCIs,
people with a range of motor and sensory impairments are able to interact, communicate,
and operate mobility aids in their surroundings [3]. Additionally, BCIs can aid in fostering
the independent living of the disabled, reduce the personnel costs of relevant social security
agencies, and free up resources that can be applied to other facets of urban life [4]. Recent
studies have shown that EEG signals of motor imagery (MI) can be used as control sources
in the construction of BCIs, which holds promise for the recovery of motor function [5,6].
As a standard paradigm in brain–computer interfaces [7], MI has rapidly developed in
recent years. Underlying this rapid development is the ability of MI to trigger contralateral
explicit event-related desynchronization (ERD) and, in some cases, simultaneous ipsilateral
event-related synchronization (ERS) by unilateral imaging movements [8] For instance,
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when picturing unilateral hand movements, the energy of mu rhythms (8–12 Hz) and
beta rhythms (14–30 Hz) in the contralateral brain region is decreased (ERD), whereas the
energy of mu rhythms and beta rhythms in the ipsilateral motor–sensory areas is increased
(ERS) [9]. The spontaneity and classifiability of MI make it a critical factor in ensuring the
availability and smoothness (the efficiency of information transmission) of the machine
subsystem in BCI systems. Much of the current research on motion imagery has focused on
the separability of MI, enhancing accuracy by examining feature extraction [10], channel
selection [11], and classification methods [12].

Instead, it is typically essential to consider the three subsystems of person, machine,
and environment, which are in a connection of reciprocal influence and interaction. It is
necessary to evaluate the three subsystems because the motor imagery brain–computer
interface (MI-BCI) cannot be studied as a system for human–machine interaction by fo-
cusing only on the machine subsystem [13]. The system’s performance depends on each
subsystem functioning consistently and on how well they communicate with one another.
Human factors professionals suggest that when a system involves the behavior of a user,
that user is one of the most critical subsystems that must be taken into account when
assessing system performance [14]. To understand and forecast user performance, it is
frequently helpful to measure, estimate, or analyze the user’s mental load [15] because user
performance can be highly variable and unreliable. The secret to efficient system design is
understanding how the user’s mental load affects operator performance and, by extension,
system performance [16].

MI is a complex mental task [17]. The environment, user’s mental state, number
of tasks, task difficulty, etc., may influence the user’s psychology, affecting the user’s
performance and, ultimately, the system’s accuracy [18]. Usually, MI-BCI employs visual
guidance to accurately direct the user through the task and lessen its difficulty. Therefore,
before the MI-BCI can be utilized, there must be a period of user training [19]. User
training will make it easier for the user to become proficient at performing BCI and MI
tasks independently. However, there has been little research to investigate how the user’s
mental load affects the system’s overall performance or how the user subsystem of the BCI
system and MI tasks relates to the user. Therefore, by studying the psychology of the user
and the mechanisms that control the BCI system, we intend to analyze the impact of visual
guidance on the user’s mental load in MI tasks and create a successful system. We also
hope to assist users in living sustainably autonomous lives using BCIs, and we plan to take
the abstraction level of visual guidance as the breakthrough point. The abstraction level
of visual guidance refers to the generalization level of different expression models in the
cognitive process of visual guided motor imagery tasks.

In summary, the contributions of this paper are as follows:

1. We demonstrate that the brain activity and mental load during MI have significant
differences among the three levels of abstraction of visual guidance. Our results
suggest that suitable visual guidance would help users to increase brain activity and
reduce mental load during MI.

2. We provide evidence that a low level of abstraction of visual guidance influences
the classification accuracy of MI-BCI compared with the high-abstraction paradigm.
Our findings suggest that suitable visual guidance would help users to achieve better
classification performance on MI-BCI.

3. We propose that brain activity and mental load correlate with the classification accu-
racy of MI-BCI. Our results suggest that suitable visual guidance would help both the
user and the machine for sustainable system work.

This paper is organized as follows. Section 2 summarizes existing studies related to
MI-BCI and mental load based on electroencephalographs (EEG). In Section 3, we define
our research hypotheses and research objectives, and we develop multiple indicators and
methods of brain activity, mental load, and classification performance. Section 4 presents
the ERD values that represent brain activity, the PSD values that represent mental load,
and the accuracy results classified by SVM. Section 5 describes several correlation analyses
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between brain activity, mental load, classification performance, and discussions. Finally,
the paper concludes in Section 6.

2. Related Work
2.1. Related Work of MI-BCI

MI-BCI requires thorough training before the operation, for both the user and the com-
puter [19,20] [NO_PRINTED_FORM]. On the one hand, to correctly transmit recognizable
patterns of brain activity to the computer, the user must learn the MI-BCI manipulation
technique [21]. On the other hand, the computer has to be able to recognize the variations
in brain activity that take place as the user engages in various mental tasks [22].

Some research projects aimed at enhancing the performance of MI-BCI concentrate on
the feature extraction of EEG data to achieve enhanced classification accuracy by choosing
particular times or particular channels. An algorithm was proposed by Liang et al. [23]
to automatically extract the best frequency and temporal bands unique to the subject to
distinguish between the ERD patterns produced by left- and right-handed MI. This study
examined how left- and right-handed MI’s sensorimotor EEG rhythms were affected by
employing object-oriented motion as a visual cue in a virtual environment. The results
indicated the increased reliability and efficiency of MI-based BCI systems. Most researchers,
including Tang et al. [24], have concentrated more on the advancement of categorization
algorithms. For instance, a five-layer convolutional neural network (CNN) was designed
explicitly for motor imagery classification based on EEG signals’ combined temporal
and spatial characteristics. After the technique was applied to experimental and public
datasets, a classification model was created. The work offers a theoretical foundation and
technical justification for using brain–machine interface technology in the exoskeleton
sector of rehabilitation. Cheng et al. [25] created a convolutional neural network with three
convolutional layers, three pooling layers, and two fully connected layers to classify the
EEG signals in motor imagery under the assumption that fewer EEG acquisition channels
would result in more classifications. Experiments were designed and carried out for four
states of imagining: the left hand, right hand, and foot in motion and resting state. With
an average classification recognition rate of 82.81%, a convolutional neural network-based
classification model was built using the pertinent EEG data that had been collected.

A few studies have also been carried out to enhance the general usability of BCI
systems by concentrating on the user control mechanisms of BCI [21]. According to several
studies, the human brain has a mirror neuron system where visually guided MI can modify
sensorimotor EEG rhythms [26]. In numerous studies on BCI system users, visual guidance
has been used to accurately guide subjects during motor imagery. These studies prove
that visual guidance to aid users during motor imagery can help users operate a BCI
system with significantly higher operability. For instance, Liang et al. [27] trained and
classified MI tasks in a 3D virtual environment utilizing non-object-oriented, static, and
dynamic object-oriented scenarios. They did this using single- and multi-subject BCI
paradigms. It was shown that object-oriented scenarios, whether static or dynamic, can
offer better classification accuracy than non-object-oriented scenarios. Both can speed
up reaction time and be used with sparse training data. In Sun et al.’s [28] study, ten
patients with post-stroke upper limb motor dysfunction were split into two groups and
given MI exercises and regular rehabilitation routines for four weeks. The experimental
group was requested to complete the same MI under synchronous visual guidance, while
the control group was required to complete the MI under asynchronous visual assistance.
The findings demonstrated that the ERD pattern in the experimental group not only had a
bigger amplitude and longer duration but also contained more frequency components.

2.2. Related Work of Mental Load

The term “mental load” describes the cognitive effort required to complete a task over
a specific amount of time [29]. The current study aims to understand how to control an
MI-BCI system by determining how many cognitive operations are needed to perform
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left- and right-hand MI tasks. The mental load is the workload a user experiences while
executing a task, and it is affected by the user’s surroundings and outside influences [30].
The number of tasks, their level of complexity, and external factors like the temperature
and lighting all impact mental load. Personal aptitude (both physical and mental), training,
experience, fatigue, stress, and personality are internal variables that influence mental
load [31,32]. An excessive or insufficient mental load can cause human error, according to
research on mental load in specific work scenarios [30]. Working memory and attention are
two cognitive processes involved in the control of BCIs [33]. Due to this, task performance
efficiency and duration can be significantly increased by developing MI tasks with the
proper intensity of mental load needs. It is necessary to measure the user’s mental load for
various visually guided MI tasks to guide the user through the MI task using the visual
guidance that causes the lowest mental load. Using visual guidance that causes low mental
load can avoid the need to obtain high-quality EEG signals except when the subject is
over-motorized.

Cognitive load, often known as mental workload, has frequently been examined and
assessed using EEG [34]. In several scientific domains, such as sustainable work [35], driv-
ing status detection [36], visualizing impacts [37], and treating cognitive impairment [38],
the direct use of EEG to quantify mental load has not only been demonstrated to be feasible
but also found practical applications. According to research on burnout in sustainability
and sustainability psychology, López-Nez et al. [35] focused on the prevention of burnout
and the promotion of individual and organizational well-being for sustainable develop-
ment. They examined the relationship between job demands (workload), human resources
(psychological capital), and burnout. Kim et al. [39] examined EEG data gathered during
driving tests on city roads. They considered the variation in EEG values across drivers and
used the EEG rate of change to measure cognitive load. A reference interval was chosen
for each of the five extracted behavioral sections: a left-turn section, a right-turn section, a
rapid acceleration section, a rapid deceleration section, and a road change section, and the
EEG values of the extracted sections were compared with the EEG values of the reference
interval to determine the EEG rate of change, which was then statistically analyzed. To
inform safe driving while considering driving workload, the study’s results are being uti-
lized to understand the cognitive aspects of driver behavior-induced driving workload in
vehicle information systems. By applying the deep learning of EEG data to detect cognitive
driver load under high- and low-load tasks, Almogbel et al. [33] created a method for
detecting cognitive driver load. They gathered their data during various driving tasks on
a high-fidelity driving simulator. According to preliminary studies using data from only
four EEG channels, the system can accurately recognize the driver’s cognitive load, and
there is much room for improvement.

Furthermore, Rusnock et al. [29] suggested a method of estimating workload contin-
uously without interrupting the operator, making this continuous workload assessment
a workload profile with a focus on five areas that cannot be completed using existing
workload measurements. Additional studies use EEG to quantify mental load and apply
it practically. For instance, Zammouri et al. [40] investigated the potential use of data col-
lected noninvasively from the human cortex to develop a BCI capable of estimating brain
workload and mental effort during cognitive tasks and ultimately used this EEG-based
workload classifier to evaluate re-education therapies used in a physiotherapy center for
children with cognitive impairment.

3. Experiments
3.1. Research Objectives

In this study, EEG was utilized to examine the impact of the level of abstraction of
visual guidance on the user’s mental load and served as the experimental data for the
motor imagery task. The goal of this study was to determine the following: (1) whether the
level of abstraction of visual guidance affects subjects’ brain activity during motor imagery;
(2) whether the level of abstraction of visual guidance affects the classifiability of motor
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imagery and consequently MI-BCI performance; (3) whether the level of abstraction of
visual guidance affects the variability in subjects’ mental load; and (4) whether there is a
correlation between participants’ mental load and the classifiability of their motor imagery.

3.2. Research Hypothesis

Research in related domains has established direct factors (motivation, attentiveness,
etc.) that affect how users learn and carry out tasks. In research on mental load, tasks
requiring significant cognition such as attention span tend to put more mental strain
on people. According to neuroscience, the prefrontal lobe of the human brain, which is
active during cognitive processes, is closely associated with cognition. Additionally, tasks
involving the visual domain draw and hold participants’ attention, and drawing attention
increases mental load. The impact of visual guiding in MI-BCI on experimental outcomes,
such as performance and user mental load, has not yet been examined in any studies.
Consequently, this essay puts forth the following presumptions:

H1. Brain Activity: During the motor imagining task, visual guidance at various degrees of
abstraction impacted the subject’s brain activity.

H2. Mental Load: During the motor imagery task, respondents’ mental loads were affected by visual
guidance at various degrees of abstraction.

H3. MI-BCI Performance: On the motor imagery task, MI-BCI performance was influenced by
visual guidance at various degrees of abstraction.

H4. Brain Activity, Mental Load, and MI-BCI Performance: In visually guided motor imagery
tasks with varying degrees of abstraction, there is a correlation between the performance of MI-BCI,
the brain activity of the subjects, and the mental load.

3.3. Subjects and Data Acquisition

There were 17 total subjects, 11 men and 6 women, who ranged in age from 18 to 26
and had an average age of 21.65 years (SD = 2.42). All participants were right-handed and
had normal or corrected eyesight, normal color vision, and no history of mental illness or
psychosis. They were instructed to abstain from getting a perm or coloring their hair in the
three months before the experiment and from consuming stimulating drinks like wine or
coffee the day before.

Before starting the EEG tests, the subjects were aware that the tests would not harm
them psychologically. The process and specifics of the experiment were explained to
the subjects, who agreed to the experiment before they read and signed the informed
permission form. The test participants were instructed to execute a MI mental task while
sitting in a chair 50 cm from a computer screen, facing the screen, in a quiet environment.

3.4. Experimental Procedure

The experiments used the classical Graz paradigm of asynchronous MI experiments [41];
BCI research has frequently employed this paradigm. To lessen the impact of visual
residuals on MI and to better match the scenario to the actual application, the paradigm
mandates that subjects perform the MI task after watching the visual guidance and that
they do not perform visual guidance while performing the MI task. In the research on
brain science and semeiology, specific brain regions such as the hippocampus change while
watching symbols and stimuli with different levels of abstraction [42]. In psychological
research, different moving stimuli have different abstract memory representations [43].
Since our MI tasks were under the guidance of visual stimuli, we took the abstraction level
of visual guidance as the breakthrough point. During the experiment, participants were
required to complete three different types of visual guidance MI tasks at various levels
of abstraction: (1) high level of abstraction, which employed an abstract guide to cue left-
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and right-hand gripping based on the motion of a ball; (2) medium level of abstraction:
a more abstract guide that used line drawings of hand grasp animations to cue left- and
right-hand grasping; (3) low level of abstraction: a nonabstract (figurative) task that cued
the left and right hands using real-world hand grip animations. The three types of cues are
shown in Figure 1, where the cues in the medium and low abstraction groups are shown in
the first view. In the experiment, participants were instructed to maintain a relaxed state
throughout, view one of the three cues, and then visualize the left and right hands holding
an object on a blank screen after the signals had vanished. The cues were animated and
occurred randomly.
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Figure 1. Three levels of abstraction of visual guides. (a) High level of abstraction, which employs an
abstract guide to cue left- and right-hand gripping based on the motion of the ball; (b) medium level
of abstraction: a more abstract guide that uses line drawings of hand grasp animations to cue left-
and right-hand grasping; (c) low level of abstraction: a non-abstract (figurative) task that cues the left
and right hands using real-world hand grip animations.

Figure 2 shows the timing diagram for this experimental paradigm. A single-trial
experiment took 8 s to complete and had 4 phases: a 1 s preparation phase, a 2 s viewing
guidance phase, a 3 s motor imagery phase, and a 2 s rest phase. During the preparation
stage, a cross was placed in the center of the screen to draw the subject’s attention and
hold it there. An animation was played during the viewing guidance phase to show the
subject their left and right direction. The subject watched the animation and marked the
direction. The subject then imagined the action of the proper hand grip during the motor
imagery phase, with the screen blank to avoid visual residue. The screen was blank, and
only the word “relax” was displayed in the center after the visuals. The left- and right-hand
grip MI appeared randomly repeated 144 times, 72 times for the left-hand grip imagery
and 72 times for the right-hand grip imagery. The 144 trials were divided into 4 runs,
with 36 trials in each run. There was a brief pause between each run determined by the
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subject that did not last longer than 2 min. We conducted a motor imagery pre-experiment
before the formal experiment. The subjects executed ten motor imagery exercises with
their right and left hands before the formal experiment start. After the pre-experiment,
we interviewed subjects to understand the vividness of their motor imagery. If subjects
experienced difficulties at this stage, we terminated the experiment. Considering the
number of exercises and the time required, the entire experiment lasted roughly 30 min.
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Figure 2. Experimental timing diagram. A single-trial experiment took 8 s to complete and had
4 phases: a 1 s preparation phase, a 2 s viewing guidance phase, a 3 s motor imagery phase, and a 2 s
rest phase.

The subjects had to complete 3 tests totaling 432 trials over around 90 min with 3 visual
guidance events in each experiment. To lessen the impact of fatigue on the outcomes, the
three trials were carried out on three different days. The three trials were arranged in a
Latin square design to lessen the impact of the experiments’ sequence on the outcomes. We
ultimately collected 7344 trials’ worth of data from 17 participants.

3.5. EEG Signal Recording and Data Pre-Processing

The EEG signals were recorded using BrianVision Recorder 2.1 software (Brain Prod-
ucts GmbH, Munich, Germany), and the experiments were carried out using BP actiCHamp
amplifiers. BP actiCAP standard 32-channel EEG caps were used to record data from the
following electrodes: FP1, FP2, F7, F3, Fz, F4, F8, FT9, FC5, FC1, FC2, FC6, FT10, T7, C3, C4,
T8, TP9, CP5, CP1, CP2, CP10, P7, P3, Pz, P4, P8, O1, Oz, and O2. The experiment’s online
recording used Fz as the reference electrode, and the electrodes were placed in the exper-
iment's standard location for the global 10/20 system. The ground electrode is between
the two electrodes, Fp1 and Fp2, in the middle of the forehead and three fingers above
the center of the eyebrow. The sampling frequency was 500 Hz, and the impedance was
adjusted to below ten kΩ. E-prime 3.0 was used to implement the experimental stimulus
presentation. EEG data pre-processing was done using BrianVision Analyzer 2.1 software
(Brain Products GmbH, Munich, Germany).

All experimental data were preprocessed offline. The first step was to re-reference the
data from the Fz channel and use the two electrodes, TP9 and TP10, as the new reference
electrodes since the new electrodes contained less brain activity and were farther from the
brain regions we were interested in [44]; the second step was to perform band-pass filtering
from 0.5 to 40 Hz and remove signals above 40 Hz. The filter used here was the finite
impulse response (FIR) filter based on the hamming window; the third step was to remove
the artifacts, and we performed an independent component analysis (ICA) on the raw EEG
signals; the fourth step was to segment the EEG signals into epochs, where the point where
the visual guidance appears is used as the 0 points and the time from 1 s before to 5 s after
it is taken as an epoch; the fifth step was baseline correction, that is, setting the baseline
to be 500 ms after the cross appears and then correcting each epoch segment within that
time frame.

3.6. Measurements
3.6.1. ERD Measurements

The µ-rhythm (8–12 Hz) is a crucial information-processing mechanism that converts
perception into action and is intimately connected to MI activity. It represents the down-
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stream modulation of mirror neuron activity through primary sensorimotor regions [45].
The degree of neuronal excitation in cortical areas can be determined directly from the
absolute value of the µ-rhythm ERD characteristic [28]. As a result, the motor imagery
EEG’s µ-rhythm ERD value was selected as a gauge of brain activity.

The ERD of EEG is defined as the absolute ratio of the reduction in rhythmic energy
between the occurrence interval of motor imagery and the resting-state interval (reference
interval) of equal length before the imagery begins:

E = |W| = 1
a− b

∣∣∣∣∣ a

∑
b

(
Aj − R

)
/R

∣∣∣∣∣ (1)

In the formula A = 1
N−1 ∑N

i=1 (xij −
−
x j)

2
, R = 1

k ∑
r0+k
r0 Aj, where N is the number of

single experiments, [a, b] is the motor imagery interval, xij is the filtered band-pass value

of the data obtained by sampling the j-th experiment for the i-th experiment ,
−
x j is the

average value of xij obtained from the j-th sampling of all experiments, R is average energy
value during resting period [r0, r0+k], W is the energy reduction rate.

3.6.2. Mental Load Measurement

One of the ergonomics concepts that has been the most studied and utilized is mental
load, yet there is no universally agreed-upon description of it. In general, mental load can
be defined as the quantity of cognitive resources used during a specific task [29].

Overloading or underloading the mind can have various negative implications in
real-world production and living [30]. It is crucial to effectively gauge mental load and
create manageably challenging assignments. Currently, there are three basic ways to
quantify mental load: using a subjective scale, performance metrics, and physiological
signal analysis [36,46,47]

Every method of measuring mental load has benefits and drawbacks. However,
this research’s assessment method is based on physiological signals: EEG. The multiple
representational dimensions of mental load can be connected with the neurophysiological
characteristics acquired from the EEG signal. EEG-based mental load measures gather
neurophysiological signals from various brain regions and typically employ two EEG
features. One is in the time domain, like waveforms and amplitudes of event-related
units (ERPs), and is sensitive to the amount of cognitive stress over time [48]. The other is
frequency domain data, which focus more on the theta (4–8 Hz) and alpha (8–13 Hz) bands
to calculate the total energy levels in those bands over time [49]. Power spectral density
analysis was used to analyze the EEG data in this study, which placed more emphasis on
the frequency domain data.

The PSD of the EEG signal is created by analyzing the frequency domain components
of the signal using power spectra. It may be used to compare PSDs produced under various
levels of abstraction of visual guidance to assess the mental load. There are two approaches
for determining PSD: parametric and nonparametric estimation. Welch power spectrum
estimation, a nonparametric estimate technique based on the periodogram, was selected to
determine the PSD of the EEG signal in this work.

To represent the distribution of signal energy (density) and phase information in the
time-frequency domain, a joint time-frequency distribution function was first developed.
This time-frequency distribution can determine the signal power spectrum density and
other properties corresponding to a specific time and frequency. The calculation formula is
shown as Formula (2):

TFmean ( f , t) =
1
n

n

∑
m=1

(
Fm( f , t)2

)
(2)

where n represents the total number of subjects and Fm( f , t) represents the power spectrum
of the m-th subject at frequency f and time t. The power spectrum can be calculated using
the short-time Fourier transform (STFT). The STFT works by breaking a long-term signal
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into numerous equal-length shorter signals. Each shorter signal is then given a separate
Fourier transform calculation. The calculation formula is shown as Formula (3):

X(t, f ) =
∞∫
−∞

w(t− τ)x(τ)e−j2π f τdτ (3)

where X(t, f ) is the Fourier transform of w(t− τ)x(τ). The formula for calculating the
spectrum is:

SPx(t, f ) = |X(t, f )|2 (4)

The formula for calculating the PSD of the EEG signal is:

p =

∞∫
−∞

S(w)dw =
1
T

τ∫
−τ

X2(t)dt (5)

where X2(t) is calculated by Formula (3) and S(w) is the power spectral density of the
signal. The time of motor imagery in the original signal of the 31-electrode 500 Hz sampling
rate was intercepted into 3 s sample segments, and the Pwelch function in python was
used to find the power spectral density for each epoch of each electrode. Considering
the characteristics that the larger the window width, the higher the frequency domain
resolution and the more segments are divided, the smaller the noise, we selected a hamming
window with a length of 500 sampling points.

This study compared the energy values of the motor imagery phase (3 s) in various
levels of abstraction of visual guidance MI tasks using frequency domain analysis. The
study concentrated first on the spatial features of the 4 frequency bands delta (1–3 Hz),
theta (4–7 Hz), alpha (8–13 Hz), and beta (14–25 Hz) and then on the mental load related
to theta waves in the frontal region as well as theta and alpha waves in the temporal lobe,
which were studied to provide a clearer picture of the differences between the different
mental load states in each frequency band.

3.7. Classification and Data Analysis
3.7.1. SVM Classification

We classified EEG signals using SVM and performed k-fold cross validation to gauge
the effectiveness of the classification. We input the ERD values into the SVM classifier. SVM
is suitable for small sample data, such as EEG, and only needs a few training examples to
produce accurate classification results. The radial basis function (RBF) kernel was selected
as the kernel function of SVM, where the selection of the best penalty factor c and the best
kernel parameter g is determined by grid optimization each time the SVM model is trained.
K-fold cross-validation reduces variance by averaging the training results of k different
groups, so the model’s performance is less sensitive to the data division. When we divided
EEG data into training and test sets, we adopted the k-fold cross-validation method where
k equaled 5. Therefore, we divided the EEG data into 5 equal parts (29 trials), one of which
we selected as the test set each time; we used the remaining 4 (115 trials) as the model
training set. The average of the five groups of test results was taken as the accuracy of the
test set. Finally, statistical studies were performed to determine the impact of various levels
of abstraction of visual guidance on the ERD features derived from motor imagery on the
classification of left- and right-handed MI.

3.7.2. Statistical Analysis

The experimental data were analyzed using traditional statistical methods and were
performed using SPSS software. The ERD features were analyzed using the Wilcoxon
signed-ranks test, since the Wilcoxon signed-ranks test is suitable for analyzing a small
sample of data. The results of EEG for mental load features were analyzed using repeated-
measures ANOVA. When a significant overall effect was observed, the Tukey post hoc
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test was applied to examine the multiple comparisons of means. The classification accu-
racy was analyzed using paired-samples t-tests. We may determine whether there is a
significant difference between the means of the two groups using the t-test, which uses
the t-distribution theory to introduce the probability of occurrence of the difference. We
adopted p < 0.05 as statistically significant and p < 0.001 as very significant. We report
exact p values derived from statistical tests, except when they were minuscule. To further
analyze the relationships between EEG features and classification accuracy, we used the
Pearson test in the analysis since the Pearson test can be used to evaluate whether two sets
of data conform to a linear relationship.

4. Results
4.1. ERD Feature Extraction and Analysis

The ERD patterns of the subjects during the experiment were measured and analyzed.
The EEG recorded from the C3 electrode when envisioning a right-handed grip and the
EEG recorded from the C4 electrode when imagining a left-handed grasp were chosen for
study based on the spatial specificity of the motor imagery. The mean ERD values of the
alpha band for each of the three visual guidance groups were computed using 144 EEG data
for each of the 3 levels of abstraction of the visual guidance paradigm for each participant.
Their descriptive statistics are displayed in Table 1 with the three paradigms.

Table 1. Descriptive characteristics of ERD values for C3 and C4 channels under three levels of
abstraction of visual guidance.

Channel Level of Abstraction M ± SD (N = 17) Median

C3
High 0.8732 ± 0.5671 0.8990

Medium 0.9563 ± 0.7157 0.7897
Low 1.3026 ± 1.1994 1.0092

C4
High 0.9799 ± 1.0466 0.7855

Medium 1.1164 ± 0.9910 0.8905
Low 1.2976 ± 1.1627 1.1872

Figure 3 displays the ERD patterns produced by the C3, C4, and Cz channels during
left- and right-hand MI under the 3 types of visual guidance in a representative 20-year-old
subject to demonstrate this result. The orange line denotes the left-hand MI, whereas the
blue line denotes the right-hand MI.

A Wilcoxon signed-rank test was conducted on the ERD values of the C3 channel
when imagining a right-handed grasp and the ERD values of the C4 channel when imag-
ining a left-handed grasp under three types of visual guidance paradigms for the level of
abstraction (high, medium, and low). When visualizing a right-handed grasp, the median
ERD value for the C3 channel was 0.8990 for the high level of abstraction group, 0.7897
for the medium level of abstraction group, and 1.0092 for the low level of abstraction
group; the mean ERD value for the C3 channel was 0.8732 for the high level of abstraction
group, 0.9563 for the medium level of abstraction group, and 1.3026 for the low level of
abstraction group. The Wilcoxon signed-rank test revealed no differences between the
high and medium level of abstraction groups (Z = −6.86, p = 0.492) and no differences
between the medium and low level of abstraction groups (Z = −1.349, p = 0.177) but a
significant difference between the high and low level of abstraction groups (Z = −1.965,
p = 0.049 < 0.05). When imagining left-handed grasping, the median ERD value for the C4
channel was 0.7855 for the high level of abstraction group, 0.8905 for the medium level of
abstraction group, and 1.1872 for the low level of abstraction group; the mean ERD value
for the C4 channel was 0.9799 for the high level of abstraction group, 1.1164 for the medium
level of abstraction group, and 1.2976 for the low level of abstraction group. Using the
Wilcoxon signed-rank test, there was no significant difference between the high level and
the medium level of abstraction groups (Z = −0.828, p = 0.407) and no significant difference
between the medium and the low level of abstraction groups (Z = −0.497, p = 0.619) but a
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significant difference between the high and the low level of abstraction groups (Z = −2.012,
p = 0.044 < 0.05)
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4.2. Mental Load Features and Analysis

PSD represents the distribution of power as a function of frequency, and it is the
most commonly used feature [50]. The subject’s brain’s overall PSD during motor imagery
was estimated after analyzing the frequency domain characteristics. Figure 4 shows that
between 7.5 Hz and 12.5 Hz, the subjects’ brain energy peaked, and the entire brain was
active. The outcome extracts a PSD for each band from the four frequency bands including
theta, delta, alpha, and beta. Since the power changes of the alpha band (decreased) and
theta band (increased) may serve as the discriminant indicators for workload estimation
with increasing workload, we paid more attention to the power of these two bands in our
results [49].
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Figure 4. PSD values of the brain under three visual guidances. The red line and red shadow
represents the left-hand MI, and the blue line and blue shadow represents the right-hand MI. The
shadow interval represents the standard deviation. Delta waves (0.5–4 Hz) vibrate at low frequencies
but high amplitudes. Therefore, there are high PSD values in the frequency range <2.5 Hz.

4.2.1. Theta Band Energy Analysis

Previous studies indicate that the frontal and parietal areas are sensitive to workload
change [51]. As such, we used the related channels in these areas for mental load analysis. It
has been hypothesized that more theta waves take place in the brain’s frontal regions when
people are under a heavy mental load. Therefore, we isolated eight electrode channels
from the frontal area: F7, F8, F3, F4, FC5, FC1, FC2, FC6, and computed the mean PSD
during the motor imagery (3–6 s of the single trial) time window. Table 2 displays the
descriptive statistics for these electrode channels’ mean PSD. The mean PSD during motor
imagery was calculated for three levels of abstraction of visual guidance (high, medium,
low) in a repeated-measures ANOVA for 8 EEG channels (F7, F8, F3, F4, FC5, FC1, FC2,
FC6). The independent variables were the abstraction level of the visual guidance and the
EEG channels. The dependent variable was the mean theta wave energy of each subject.
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Table 2. Descriptive characteristics of average PSD of 8 frontal lobe channels under three levels of
abstraction of visual guidance (µV2/Hz × 109).

Channel Level of Abstraction M ± SD (N = 17)

F3
High 63.28 ± 76.51

Medium 67.71 ± 96.97
Low 52.64 ± 35.81

F4
High 66.55 ± 77.96

Medium 73.64 ± 106.11
Low 55.49 ± 36.02

F7
High 53.86 ± 69.95

Medium 53.45 ± 79.77
Low 41.50 ± 34.23

F8
High 50.05 ± 55.37

Medium 50.34 ± 67.23
Low 40.51 ± 27.19

FC1
High 66.38 ± 77.74

Medium 73.21 ± 98.11
Low 54.96 ± 34.74

FC2
High 66.38 ± 77.74

Medium 75.80 ± 104.67
Low 54.74 ± 34.94

FC5
High 46.42 ± 64.64

Medium 48.10 ± 73.28
Low 35.54 ± 34.94

FC6
High 44.07 ± 55.94

Medium 48.23 ± 69.58
Low 34.78 ± 23.41

The findings demonstrated that the level of abstraction of visual guidance had a
significant main effect, F = 7.228, p = 0.008 < 0.05. The main effect of the electrode channel
was not significant, F = 0.447, p = 0.850, and the interaction effect between the level of
abstraction of visual guidance and the electrode channel was not significant, F = 0.008,
p = 1. The results are also shown in Figure 5 below.
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Figure 5. Marginal means of PSD for 8 frontal area channels under three types of visual guidance.

4.2.2. Theta/Alpha Band Energy Ratio Analysis

Ke et al. [52] discovered considerable variations in the theta and alpha band energies
for various task kinds and levels of difficulty. To calculate the ratio of the average PSD of the
theta wave to the average PSD of the alpha wave during the time window of motor imagery
(3–6 s of the single trial), we extracted seven electrode channels distributed in the central
region: C3, C4, Cz, CP1, CP2, CP5, CP6. Their descriptive statistics are shown in Table 3.
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On three levels of abstraction of visual guidance, the ratio of the theta wave mean PSD
to the alpha wave mean PSD during motor imagery was calculated (high, medium, low)
with repeated measurements for the seven EEG channels (C3, C4, Cz, CP1, CP2, CP5, CP6).
The independent variables were the abstraction levels of the visual guidance and the EEG
channels. The dependent variables was each subject’s mean theta/alpha band energy ratio.

Table 3. Descriptive characteristics of theta/alpha PSD ratios for the seven central zone channels
under three levels of abstraction of visual guidance.

Channel Level of Abstraction M ± SD (N = 17)

C3
High 0.4928 ± 0.3311

Medium 0.4674 ± 0.3432
Low 0.4198 ± 0.3505

C4
High 0.4846 ± 0.3054

Medium 0.4591 ± 0.3048
Low 0.4125 ± 0.3170

CP1
High 0.4705 ± 0.3048

Medium 0.4351 ± 0.3013
Low 0.3876 ± 0.3182

CP2
High 0.4534 ± 0.2851

Medium 0.4227 ± 0.2824
Low 0.3709 ± 0.2922

CP5
High 0.5007 ± 0.3118

Medium 0.4626 ± 0.2965
Low 0.4187 ± 0.3158

CP6
High 0.4841 ± 0.2970

Medium 0.4526 ± 0.2809
Low 0.4098 ± 0.3026

Cz
High 0.5360 ± 0.3674

Medium 0.4987 ± 0.3717
Low 0.4393 ± 0.3568

The level of visually guided abstraction caused significant differences in the subjects’
mental load during motor imagery, F = 44.906, p < 0.001, as shown in Figure 6, with
the mean energy ratio in the low abstraction group being significantly lower than in the
other two levels. The main effect of the electrode channel was not significant, F = 0.100,
p = 0.996, and the interaction between the electrode channel and the level of abstraction
was not significant.
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4.3. Classification Performance

Table 4 displays the accuracy of motor imagery categorization under the visual guid-
ance of individuals with various levels of abstraction. The highest classification accuracy of
the group with a high level of visual guidance abstraction was 90.7143%, and the average
accuracy was 85.2381%; the highest classification accuracy of the medium-level visual
guidance group reached 90.7143%, and the average accuracy was 86.5294%; the highest
classification accuracy rate of the low-level visual guidance group was 97.1429%, and the
average accuracy was 90.5732%. Figure 7 shows the analysis of the classification model by
the ROC curve. Figure 8 demonstrates that the low-level abstraction of the visual guidance
group’s experimental findings had a greater average categorization accuracy than the other
two levels of abstraction of visual guidance. The classification accuracy of motor imagery
under the three levels of abstraction of visual-guided paradigms was tested pairwise using
paired-samples t-tests (high, medium, and low).

Table 4. Descriptive statistics of the accuracy of MI classification under three levels of abstraction of
visual guidance.

Level of Abstraction M ± SD (N = 17) Min Max

High 0.8524 ± 0.0372 0.7857 0.9071
Medium 0.8653 ± 0.0386 0.7714 0.9071

Low 0.9057 ± 0.0495 0.7786 0.9714

The findings revealed that there was no significant difference between the high and
medium levels of visual guidance abstraction groups (p = 0.216); there was a significant
difference between the low level and the high level of visual guidance abstraction groups
(p < 0.001); and there was a significant difference between the medium level and the low
level of visual guidance abstraction groups (p = 0.004 < 0.05).
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4.4. Correlation between Brain Activity, Mental Load, and MI-BCI Performance

We explored the relationships between the ERD values in the central area of the brain,
which represents brain activity, and the MI-BCI performance and the two measurements
of mental load. Pearson’s correlation coefficient for the investigation of the relationship
between the ERD values in the central area of the brain and the accuracy rate was found to
be r = 0.249, p = 0.012 < 0.05. This indicates that the ERD values in the central area of the
brain and the accuracy rate have a positive correlation (see Figure 9). More brain activity
improves the classification accuracy and functionality of MI-BCI.
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In the correlation analysis between the PSD of the frontal theta wave and the ac-
curacy rate, the Pearson correlation coefficient of the obtained results was r = −0.109,
p = 0.007 < 0.05. It is inferred from this that the PSD of the frontal theta wave has a negative
correlation with the accuracy rate. In the correlation analysis between the ratio of the
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PSD of the theta wave and alpha wave in the central area and the accuracy, the Pearson
correlation coefficient of the obtained result was r = −0.278, p < 0.001. It is inferred from
this (shown in Figures 10 and 11) that the ratio of the PSD of the theta wave and alpha
wave negatively correlates with the accuracy. The lower the ratio of the PSD of the theta
wave to the alpha wave in the central area, the higher the classification accuracy and the
better the performance of MI-BCI.
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5. Discussion
5.1. Brain Activity

During the experiment, the ERD patterns of the participants were measured and ana-
lyzed to evaluate hypothesis H1 that brain activity is connected with the level of abstraction
of visual guidance. The generated graphs resemble each other. The temporal performance
of ERD activation in the brain was comparable throughout the three experimental settings,
although ERD amplitudes varied (shown in Figure 3). When visual guidance with a high
level of abstraction was used, the amplitude of ERD was relatively low. The amplitude
of ERD increased as the level of abstraction decreased, indicating an increase in brain
activation. Therefore, visual guidance with varying levels of abstraction impacted the
subjects’ brain activity during the MI task.
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5.2. Mental Load

Two metrics were utilized in the analysis to evaluate H2, which states that users’
cognitive load is connected to their level of abstraction of visual guidance. The PSD of each
frequency band and channel were extracted using frequency domain analysis. Through
statistical analysis, it was discovered that the average mental load of the group with a
low abstraction level differed significantly from the mental load of the group with a high
abstraction level. In contrast to the other two groups, the subjects in the group with a high
level of abstraction had to switch the primary body throughout the cognitive process to
translate the ball’s movement into the hand’s movement. Such a mental process will almost
certainly result in some mental burden.

5.3. MI-BCI Performance

This study used classification accuracy, a conventional BCI performance metric, to test
H3 that MI-BCI performance is connected with the level of visual-guided abstraction. The
experiment’s findings indicate that the level of visual guidance abstraction impacted MI-BCI
performance: the groups with low and medium levels performed better than groups with a
high level of visual guidance abstraction. Regarding average accuracy, the low abstraction
group’s classification accuracy was about 5% higher than the high abstraction group’s, and
the medium abstraction group’s classification accuracy was around 1% higher than the
high abstraction group’s. Therefore, on the motor imagery task, the performance of MI-BCI
is influenced by visual guidance with different levels of abstraction. The experimental
paradigm for asynchronous motor imagery was used in this study. We focused more on
the time of motor imagery while calculating and evaluating the BCI’s MI performance,
and a blank screen was employed to reduce the visual effect of visual guidance and motor
imagery-related brain function. Since there was no discernible difference between the
groups with medium and low levels of visual-guided abstraction, additional research
utilizing a synchronized motor imagery paradigm and other metrics for assessing MI-BCI
performance may shed light on the visual-guided pairing and the potential effects of BCI
performance.

5.4. Correlations

To study H4 and validate earlier related research, which found that the performance
of the MI-BCI is negatively impacted when subjects are under a heavy mental load [30],
we attempted to explore the correlation results by drawing the brain electromagnetic
topographies during the MI period to make a discussion. The statistical analyses in the
Results section revealed a specific correlation between the subjects’ ERD values in the
central area of the brain and the classifiability of their motor imagery. The classifiability
of motor imagery is negatively correlated with the subjects’ mental load, as demonstrated
by the following: the mental load in the frontal lobe area of the brain and the mental load
in the central area of the brain are both negatively correlated with the classifiability of
motor imagery, and related research proposed that attention is closely tied to the frontal
lobe region of the brain [51]. We found during the early MI period (2.0–2.9 s), the frontal
lobe region of the brain was highly active (shown in Figure 12). The higher the level
of abstraction, the greater the amplitude of theta waves in the frontal regions and the
deeper red on the brain’s electromagnetic topographies. The results presented in the
brain electromagnetic topographies echo those in the Results section. The data suggest
that to complete the visually guided MI task successfully, subjects must maintain high
concentration; high mental load results in lower classification accuracy.

The central region of the brain contains human sensorimotor-related regions, and MI
tasks cause the central region to become active. As shown in Figure 13, in the middle and
late period of motor imagery (3.5–5 s), the brain’s alpha wave showed high activity. As the
level of abstraction decreases, the activity of alpha waves in the central area of the brain
increases. Based on the findings mentioned in the Results section, it is hypothesized that
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participants will be able to complete MI activities and exercise more easily the less mental
load there is in the central area of the brain. Additionally, the imagery is more classifiable.
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5.5. Research Limitations and Future Work

Future research can investigate additional metrics that have not been examined, even
if this study offers preliminary insights into the level of visual-guided abstraction on the
interaction between the two subsystems, machine, and user in an asynchronous MI-BCI
system. Calculating the continuous mental load may be more appropriate for actual use
situations. This study used 17 healthy volunteers because according to related research, the
brain mechanisms used by healthy persons and those with disabilities when performing
motor imagery are the same. Due to the complexity of this experiment and the long time
required by the three tasks, data were collected from only a small sample (17 subjects),
which led to the abnormal distribution of ERD data. If more volunteers and individuals
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with disabilities participated, other statistical analysis methods with post hoc test might
be more accurate because the brain–computer interface based on motor imagery is more
applicable to people with disabilities.

A series of methods can be further explored in the future including modeling the
abstraction degree of visual guidance suitable for subjects according to indicators such
as brain activity and mental load to realize the function of recommending more suitable
guidance for subjects. As for modeling methods, these can be weakly supervised deep
learning-based classification methods, other nonparametric heuristics, or experience-based
methods in future work.

6. Conclusions

This study examined how an MI-BCI system was affected by the visual-guided sys-
tem’s level of abstraction (user brain activity, mental load, BCI performance). This study
aimed to investigate the processes of users during motor imagery, to comprehend the
changes in user brain activity (ERD), brain load, and the performance of the overall BCI
system induced by visual guidance of the level of abstraction, as well as to investigate user
mechanisms and whether the brain activity and mental load will affect the performance of
BCI. Indicators were primarily used to examine the study’s objectives, including the ERD,
PSD for the brain region, and classification accuracy. We developed three different levels of
abstraction of visual-guided motor imagery experiments to investigate the four hypotheses
we proposed, and the four hypotheses listed above were supported by the variations in
indicators across several experimental settings. The results showed that during the MI task,
the brain activity of the subjects was affected by visual guidance with different levels of
abstraction, and visual guidance with a low level of abstraction caused more intense brain
activity in the users; level of abstraction of visual guidance had an impact on the subjects’
brain loads, where the visual guidance with a low level of abstraction resulted in a lower
brain load for the user; level of abstraction in visual guidance had an impact on MI-BCI
performance, and low-abstraction visual guidance also had better mean classification per-
formance. The performance of MI-BCI has a specific correlation with the subjects’ brain
activity and mental load.

This study’s findings demonstrate that the brain is active during MI tasks, pointing to
the level of visually guided abstraction as a critical variable that may influence user brain
activity, mental load, and MI-BCI performance. The findings indicate that visual guidance
with a low level of abstraction can be employed in brain–computer interface users’ training
to increase the level of brain activation while simultaneously ensuring the availability of
MI-BCI to give users a better user experience and reduce the information processing load
of users to achieve better brain–computer interaction while using MI-BCI. Additionally,
the findings may assist those who are disabled in regaining their capacity for sustainable
action. Our research opens up new avenues for sustainable MI-BCIs, which has exciting
implications for extending research from academia to the applied domain.

Author Contributions: Conceptualization, C.Y. and L.K.; methodology, L.K.; software, Z.Z.; valida-
tion, L.K. and Z.Z.; resources, C.Y.; data curation, L.K. and Z.Z.; writing—original draft preparation,
L.K.; writing—review and editing, C.Y., X.C., Y.T., L.K. and Z.Z.; visualization, L.K.; project adminis-
tration, C.Y.; funding acquisition, C.Y. and X.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Scientific Research Foundation of Zhejiang University
City College (No.X-202203).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Zhejiang University.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets generated for this study are available on request to the
corresponding author.



Sustainability 2022, 14, 13844 21 of 22

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Casanova, G.; Lillini, R. Disability in Older People and Socio-Economic Deprivation in Italy: Effects on the Care Burden and

System Resources. Sustainability 2022, 14, 205. [CrossRef]
2. Soekadar, S.R.; Witkowski, M.; Vitiello, N.; Birbaumer, N. An EEG/EOG-Based Hybrid Brain-Neural Computer Interaction

(BNCI) System to Control an Exoskeleton for the Paralyzed Hand. Biomed. Tech. 2015, 60, 199–205. [CrossRef]
3. Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors 2012, 12, 1211–1279. [CrossRef] [PubMed]
4. Kett, M.; Holloway, C.; Austin, V. Critical Junctures in Assistive Technology and Disability Inclusion. Sustainability 2021, 13, 12744.

[CrossRef]
5. Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Läer, L.; Yilmaz, Ö.; Brasil, F.L.; Liberati, G.; Curado, M.R.; Garcia-Cossio, E.; Vyziotis,

A.; et al. Brain-Machine Interface in Chronic Stroke Rehabilitation: A Controlled Study. Ann. Neurol. 2013, 74, 100–108. [CrossRef]
6. Pichiorri, F.; Morone, G.; Petti, M.; Toppi, J.; Pisotta, I.; Molinari, M.; Paolucci, S.; Inghilleri, M.; Astolfi, L.; Cincotti, F.; et al.

Brain-Computer Interface Boosts Motor Imagery Practice during Stroke Recovery. Ann. Neurol. 2015, 77, 851–865. [CrossRef]
7. Pfurtscheller, G.; Neuper, C. Motor Imagery Activates Primary Sensorimotor Area in Humans. Neurosci. Lett. 1997, 239, 65–68.

[CrossRef]
8. Pfurtscheller, G.; Brunner, C.; Schlögl, A.; Lopes da Silva, F.H. Mu Rhythm (de)Synchronization and EEG Single-Trial Classification

of Different Motor Imagery Tasks. Neuroimage 2006, 31, 153–159. [CrossRef]
9. Pfurtscheller, G.; Lopes Da Silva, F.H. Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles. Clin.

Neurophysiol. 1999, 110, 1842–1857. [CrossRef]
10. Jia, X.; Song, Y.; Yang, L.; Xie, L. Joint Spatial and Temporal Features Extraction for Multi-Classification of Motor Imagery EEG.

Biomed. Signal Process. Control 2022, 71, 103247. [CrossRef]
11. Idowu, O.P.; Adelopo, O.; Ilesanmi, A.E.; Li, X.; Samuel, O.W.; Fang, P.; Li, G. Neuro-Evolutionary Approach for Optimal Selection

of EEG Channels in Motor Imagery Based BCI Application. Biomed. Signal Process. Control 2021, 68, 102621. [CrossRef]
12. Amin, S.U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M.A.; Shamim Hossain, M. Deep Learning for EEG Motor Imagery

Classification Based on Multi-Layer CNNs Feature Fusion. Future Gener. Comput. Syst. 2019, 101, 542–554. [CrossRef]
13. Grychtol, B.; Lakany, H.; Valsan, G.; Conway, B.A. Human Behavior Integration Improves Classification Rates in Real-Time BCI.

IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 362–368. [CrossRef]
14. Miao, X.; Hou, W.J. Research on the Integration of Human-Computer Interaction and Cognitive Neuroscience. In Proceedings

of the IFIP Working Conference on Human Work Interaction Design, Beijing, China, 15–16 May 2021; Springer International
Publishing: New York, NY, USA, 2022; Volume 609, ISBN 9783031029035.

15. Tremmel, C.; Herff, C.; Sato, T.; Rechowicz, K.; Yamani, Y.; Krusienski, D.J. Estimating Cognitive Workload in an Interactive
Virtual Reality Environment Using EEG. Front. Hum. Neurosci. 2019, 13, 401. [CrossRef] [PubMed]

16. Frey, J.; Daniel, M.; Castet, J.; Hachet, M.; Lotte, F. Framework for Electroencephalography-Based Evaluation of User Experience.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp.
2283–2294. [CrossRef]

17. Marchesotti, S.; Bassolino, M.; Serino, A.; Bleuler, H.; Blanke, O. Quantifying the Role of Motor Imagery in Brain-Machine
Interfaces. Sci. Rep. 2016, 6, 24076. [CrossRef] [PubMed]

18. Jeunet, C.; Nkaoua, B.; Subramanian, S.; Hachet, M.; Lotte, F. Predicting Mental Imagery-Based BCI Performance from Personality,
Cognitive Profile and Neurophysiological Patterns. PLoS ONE 2015, 10, e0143962. [CrossRef]

19. Lotte, F.; Jeunet, C. Defining and Quantifying Users’ Mental Imagery-Based BCI Skills: A First Step. J. Neural Eng. 2018, 15,
046030. [CrossRef]

20. Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep Learning-Based Electroencephalography Analysis:
A Systematic Review. J. Neural Eng. 2019, 16, 051001. [CrossRef]

21. Roc, A.; Pillette, L.; Mladenovic, J.; Benaroch, C.; N’Kaoua, B.; Jeunet, C.; Lotte, F. A Review of User Training Methods in Brain
Computer Interfaces Based on Mental Tasks. J. Neural Eng. 2021, 18, 011002. [CrossRef] [PubMed]

22. Zhang, D.; Yao, L.; Chen, K.; Wang, S.; Haghighi, P.D.; Sullivan, C. A Graph-Based Hierarchical Attention Model for Movement
Intention Detection from EEG Signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2247–2253. [CrossRef]

23. Liang, S.; Choi, K.S.; Qin, J.; Pang, W.M.; Heng, P.A. Enhancing Training Performance for Brain–Computer Interface with
Object-Directed 3D Visual Guidance. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 2129–2137. [CrossRef]

24. Tang, Z.; Li, C.; Sun, S. Single-Trial EEG Classification of Motor Imagery Using Deep Convolutional Neural Networks. Optik 2017,
130, 11–18. [CrossRef]

25. Cheng, S.W.; Zhou, T.C.; Tang, Z.C.; Fan, J.; Sun, L.Y.; Zhu, A.J. CNN Based Motor Imagery EEG Classification and Human-Robot
Interaction. Ruan Jian Xue Bao/J. Softw. 2019, 30, 3005–3016. [CrossRef]

26. Bimbi, M.; Festante, F.; Coudé, G.; Vanderwert, R.E.; Fox, N.A.; Ferrari, P.F. Simultaneous Scalp Recorded EEG and Local Field
Potentials from Monkey Ventral Premotor Cortex during Action Observation and Execution Reveals the Contribution of Mirror
and Motor Neurons to the Mu-Rhythm. Neuroimage 2018, 175, 22–31. [CrossRef] [PubMed]

27. Liang, S.; Choi, K.S.; Qin, J.; Pang, W.M.; Wang, Q.; Heng, P.A. Improving the Discrimination of Hand Motor Imagery via Virtual
Reality Based Visual Guidance. Comput. Methods Programs Biomed. 2016, 132, 63–74. [CrossRef]

http://doi.org/10.3390/su14010205
http://doi.org/10.1515/bmt-2014-0126
http://doi.org/10.3390/s120201211
http://www.ncbi.nlm.nih.gov/pubmed/22438708
http://doi.org/10.3390/su132212744
http://doi.org/10.1002/ana.23879
http://doi.org/10.1002/ana.24390
http://doi.org/10.1016/S0304-3940(97)00889-6
http://doi.org/10.1016/j.neuroimage.2005.12.003
http://doi.org/10.1016/S1388-2457(99)00141-8
http://doi.org/10.1016/j.bspc.2021.103247
http://doi.org/10.1016/j.bspc.2021.102621
http://doi.org/10.1016/j.future.2019.06.027
http://doi.org/10.1109/TNSRE.2010.2053218
http://doi.org/10.3389/fnhum.2019.00401
http://www.ncbi.nlm.nih.gov/pubmed/31803035
http://doi.org/10.1145/2858036.2858525
http://doi.org/10.1038/srep24076
http://www.ncbi.nlm.nih.gov/pubmed/27052520
http://doi.org/10.1371/journal.pone.0143962
http://doi.org/10.1088/1741-2552/aac577
http://doi.org/10.1088/1741-2552/ab260c
http://doi.org/10.1088/1741-2552/abca17
http://www.ncbi.nlm.nih.gov/pubmed/33181488
http://doi.org/10.1109/TNSRE.2019.2943362
http://doi.org/10.1007/s11548-015-1336-5
http://doi.org/10.1016/j.ijleo.2016.10.117
http://doi.org/10.13328/j.cnki.jos.005782
http://doi.org/10.1016/j.neuroimage.2018.03.037
http://www.ncbi.nlm.nih.gov/pubmed/29571717
http://doi.org/10.1016/j.cmpb.2016.04.023


Sustainability 2022, 14, 13844 22 of 22

28. Sun, Y.; Wei, W.; Luo, Z.; Gan, H.; Hu, X. Improving Motor Imagery Practice with Synchronous Action Observation in Stroke
Patients. Top. Stroke Rehabil. 2016, 23, 245–253. [CrossRef] [PubMed]

29. Rusnock, C.F.; Borghetti, B.J. Workload Profiles: A Continuous Measure of Mental Workload. Int. J. Ind. Erg. 2018, 63, 49–64.
[CrossRef]

30. Xie, B.; Salvendy, G. Review and Reappraisal of Modelling and Predicting Mental Workload in Single- and Multi-Task Environ-
ments. Work Stress 2000, 14, 74–99. [CrossRef]

31. Endsley, M.R. Toward a Theory of Situation Awareness in Dynamic Systems. Hum. Factors 1995, 37, 32–64. [CrossRef]
32. Johnson, A.; Widyanti, A. Cultural Influences on the Measurement of Subjective Mental Workload. Ergonomics 2011, 54, 509–518.

[CrossRef]
33. Almogbel, M.A.; Dang, A.H.; Kameyama, W. Cognitive Workload Detection from Raw EEG-Signals of Vehicle Driver Using

Deep Learning. In Proceedings of the 2019 21st International Conference on Advanced Communication Technology (ICACT),
PyeongChang, Korea, 17–20 February 2019; pp. 1167–1172. [CrossRef]

34. Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep Learning for Electroencephalogram (EEG) Classification Tasks: A Review. J. Neural
Eng. 2019, 16, 031001. [CrossRef] [PubMed]

35. López-Núñez, M.I.; Rubio-Valdehita, S.; Diaz-Ramiro, E.M.; Aparicio-García, M.E. Psychological Capital, Workload, and Burnout:
What’s New? The Impact of Personal Accomplishment to Promote Sustainableworking Conditions. Sustainability 2020, 12, 8124.
[CrossRef]

36. Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring Neurophysiological Signals in Aircraft Pilots and Car
Drivers for the Assessment of Mental Workload, Fatigue and Drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [CrossRef]
[PubMed]

37. Chen, X.; Jin, R. Statistical Modeling for Visualization Evaluation through Data Fusion. Appl. Ergon. 2017, 65, 551–561. [CrossRef]
[PubMed]

38. Best, M.W.; Milanovic, M.; Shamblaw, A.L.; Muere, A.; Lambe, L.J.; Hong, I.K.; Haque, M.K.; Bowie, C.R. An Examination of the
Moderating Effects of Neurophysiology on Treatment Outcomes from Cognitive Training in Schizophrenia-Spectrum Disorders.
Int. J. Psychophysiol. 2020, 154, 59–66. [CrossRef]

39. Kim, H.S.; Hwang, Y.; Yoon, D.; Choi, W.; Park, C.H. Driver Workload Characteristics Analysis Using EEG Data from an Urban
Road. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1844–1849. [CrossRef]

40. Zammouri, A.; Ait Moussa, A.; Mebrouk, Y. Brain-Computer Interface for Workload Estimation: Assessment of Mental Efforts in
Learning Processes. Expert Syst. Appl. 2018, 112, 138–147. [CrossRef]

41. Kalcher, J.; Flotzinger, D.; Neuper, C.; Gölly, S.; Pfurtscheller, G. Graz Brain-Computer Interface II: Towards Communication
between Humans and Computers Based on Online Classification of Three Different EEG Patterns. Med. Biol. Eng. Comput. 1996,
34, 382–388. [CrossRef]

42. Viganò, S.; Borghesani, V.; Piazza, M. Symbolic Categorization of Novel Multisensory Stimuli in the Human Brain. Neuroimage
2021, 235, 118016. [CrossRef]

43. Seidel Malkinson, T.; Pertzov, Y.; Zohary, E. Turning Symbolic: The Representation of Motion Direction in Working Memory.
Front. Psychol. 2016, 7, 1–17. [CrossRef]

44. Yao, D.; Qin, Y.; Hu, S.; Dong, L.; Bringas Vega, M.L.; Valdés Sosa, P.A. Which Reference Should We Use for EEG and ERP Practice?
Brain Topogr. 2019, 32, 530–549. [CrossRef]

45. Fox, N.A.; Yoo, K.H.; Bowman, L.C.; Cannon, E.N.; Ferrari, P.F.; Bakermans-Kranenburg, M.J.; Vanderwert, R.E.; Van IJzendoorn,
M.H. Assessing Human Mirror Activity with EEG Mu Rhythm: A Meta-Analysis. Psychol. Bull. 2016, 142, 291–313. [CrossRef]

46. Paas, F.; Tuovinen, J.E.; Tabbers, H.; van Gerven, P.W.M. Cognitive Load Measurement as a Means to Advance Cognitive Load
Theory. Educ. Psychol. 2003, 38, 63–71. [CrossRef]

47. Rubio, S.; Díaz, E.; Martín, J.; Puente, J.M. Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and
Workload Profile Methods. Appl. Psychol. 2004, 53, 61–86. [CrossRef]

48. Kok, A. On the Utility of P3 Amplitude as a Measure of Processing Capacity. Psychophysiology 2001, 38, 557–577. [CrossRef]
[PubMed]

49. Brouwer, A.M.; Hogervorst, M.A.; Van Erp, J.B.F.; Heffelaar, T.; Zimmerman, P.H.; Oostenveld, R. Estimating Workload Using
EEG Spectral Power and ERPs in the N-Back Task. J. Neural Eng. 2012, 9, 045008. [CrossRef]

50. Dehais, F.; Duprès, A.; Blum, S.; Drougard, N.; Scannella, S.; Roy, R.N.; Lotte, F. Monitoring Pilot’s Mental Workload Using Erps
and Spectral Power with a Six-Dry-Electrode EEG System in Real Flight Conditions. Sensors 2019, 19, 1324. [CrossRef]

51. Zhou, Y.; Huang, S.; Xu, Z.; Wang, P.; Wu, X.; Zhang, D. Cognitive Workload Recognition Using EEG Signals and Machine
Learning: A Review. IEEE Trans. Cogn. Dev. Syst. 2021, 14, 799–818. [CrossRef]

52. Ke, Y.; Qi, H.; Zhang, L.; Chen, S.; Jiao, X.; Zhou, P.; Zhao, X.; Wan, B.; Ming, D. Towards an Effective Cross-Task Mental Workload
Recognition Model Using Electroencephalography Based on Feature Selection and Support Vector Machine Regression. Int. J.
Psychophysiol. 2015, 98, 157–166. [CrossRef]

http://doi.org/10.1080/10749357.2016.1141472
http://www.ncbi.nlm.nih.gov/pubmed/27077982
http://doi.org/10.1016/j.ergon.2016.09.003
http://doi.org/10.1080/026783700417249
http://doi.org/10.1518/001872095779049543
http://doi.org/10.1080/00140139.2011.570459
http://doi.org/10.23919/ICACT.2019.8702048
http://doi.org/10.1088/1741-2552/ab0ab5
http://www.ncbi.nlm.nih.gov/pubmed/30808014
http://doi.org/10.3390/su12198124
http://doi.org/10.1016/j.neubiorev.2012.10.003
http://www.ncbi.nlm.nih.gov/pubmed/23116991
http://doi.org/10.1016/j.apergo.2016.12.016
http://www.ncbi.nlm.nih.gov/pubmed/28110916
http://doi.org/10.1016/j.ijpsycho.2019.02.004
http://doi.org/10.1109/TITS.2014.2333750
http://doi.org/10.1016/j.eswa.2018.06.027
http://doi.org/10.1007/BF02520010
http://doi.org/10.1016/j.neuroimage.2021.118016
http://doi.org/10.3389/fpsyg.2016.00165
http://doi.org/10.1007/s10548-019-00707-x
http://doi.org/10.1037/bul0000031
http://doi.org/10.1207/S15326985EP3801_8
http://doi.org/10.1111/j.1464-0597.2004.00161.x
http://doi.org/10.1017/S0048577201990559
http://www.ncbi.nlm.nih.gov/pubmed/11352145
http://doi.org/10.1088/1741-2560/9/4/045008
http://doi.org/10.3390/s19061324
http://doi.org/10.1109/TCDS.2021.3090217
http://doi.org/10.1016/j.ijpsycho.2015.10.004

	Introduction 
	Related Work 
	Related Work of MI-BCI 
	Related Work of Mental Load 

	Experiments 
	Research Objectives 
	Research Hypothesis 
	Subjects and Data Acquisition 
	Experimental Procedure 
	EEG Signal Recording and Data Pre-Processing 
	Measurements 
	ERD Measurements 
	Mental Load Measurement 

	Classification and Data Analysis 
	SVM Classification 
	Statistical Analysis 


	Results 
	ERD Feature Extraction and Analysis 
	Mental Load Features and Analysis 
	Theta Band Energy Analysis 
	Theta/Alpha Band Energy Ratio Analysis 

	Classification Performance 
	Correlation between Brain Activity, Mental Load, and MI-BCI Performance 

	Discussion 
	Brain Activity 
	Mental Load 
	MI-BCI Performance 
	Correlations 
	Research Limitations and Future Work 

	Conclusions 
	References

