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Abstract: Rivers and streams are recognized as potential greenhouse gas (GHGs: CO2, CH4, and
N2O) sources, contributing to global warming. However, GHG emissions from rivers and streams
have received insufficient attention compared to other ecosystems (forests, grasslands, wetlands, etc.).
In this study, dissolved GHG concentrations were measured in the Qingyijiang River, the longest
tributary in the lower reaches of the Yangtze River, during two campaigns in September 2020 and
April 2021. Our results showed that the Qingyijiang River was oversaturated with dissolved GHGs.
The dissolved GHG concentration in the surface river water ranged from 8.70 to 67.38 µM CO2,
0.03 to 2.06 µM CH4, and 12.30 to 32.22 nM N2O. The average diffusive GHG emission rates were
31.89 ± 22.23 mmol CO2 m−2 d−1, 697.22 ± 939.82 µmol CH4 m−2 d−1, and 18.12 ± 7.73 µmol
N2O m−2 d−1. The total emissions (CO2-e) were CO2 (58%) dominated, while CH4 (38%) played
a moderate role in total emissions. Temporally, average GHG concentrations and fluxes from the
studied river in April were higher than those in September. The concentration and flux of CH4

exhibited high spatial variability, similar to those in most rivers. In contrast, we found that there
was no obvious spatial variability in CO2 and N2O concentrations but a significant difference among
reaches in N2O fluxes. We found that water temperature and flow velocity were the potential drivers
for the regulating spatial variability in GHGs. However, no other observed limnological parameters
were found in governing the spatial patterns of GHGs, suggesting a complex combination of factors
governing GHG fluxes; thus, these inconspicuous mechanisms underscore the need for further
research. Overall, our study suggests that this river acts as a minor source of GHGs relative to other
rivers, and CH4 cannot be ignored when considering aquatic carbon emissions.

Keywords: methane; carbon dioxide; nitrous oxide; Qingyijiang River; flow velocity; global warm-
ing potential

1. Introduction

Rivers and streams have been recognized as active transformation sites in transform-
ing organic matter (OM) and the surrounding territorial environments, sediments, and
atmosphere when transporting to the oceans [1]. As globally significant emitters of GHGs to
the atmosphere, rivers and streams play a disproportionate role in the carbon and nitrogen
cycle due to their small coverage area on the planet [2–4]. In recent decades, estimated
GHG fluxes from global rivers and streams have varied from 0.23 to 2.35 Pg C yr−1 for
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CO2 [1,3,5–8], 1.13 to 22.88 Tg C yr−1 for CH4 [2,9–12], and 0.19 to 0.68 Tg N yr−1 for
N2O [12–17]. The large, prevailing uncertainty in estimating a GHG budget for global
rivers, as reflected in the reported values, is due to the scarcity of available data related to
low-order rivers [3,18], and a limited mechanistic understanding of the processes leading
to GHG emissions [19].

Although rivers and streams represent key components of freshwater ecosystems, their
role in regional or global C and N budgets and underlying biogeochemical processes is still
unclear. Theoretically, riverine GHG production processes include the biodegradation of
terrestrial and aqueous OM, respiration of phytoplankton, methanogenesis, and nitrification
and denitrification (nitrifier and heterotrophic denitrification), while processes such as
photosynthesis by phytoplankton, CH4 oxidation, and excessive denitrification (reduce
N2O to N2) result in GHG consumption [10,19,20]. Not only are the CO2, CH4, and N2O
escaping from river networks dependent on the balance of the aforementioned microbial
production and consumption processes inside the rivers, but they are also relative to the
gases imported from the catchment [21–23]. Thus, GHG emissions are tightly linked to the
factors such as temperature, OM, redox conditions, nitrate, and ammonium that influence
these production and consumption processes [10,19,20,24]. However, the relationships
between GHGs and those factors are complicated on some occasions. For instance, anoxic
streambed sediments are favorable for methanogenesis and denitrification [10,25], leading
to CH4 and N2O emissions. When more nitrates were transported into anoxic sediments,
denitrifying bacteria could out-compete methanogens for substrates and then reduce CH4
emissions [26]. In a specific river, aquatic plant habitats will promote CO2 absorption,
which can offset CO2 emission from the open water, ultimately determining the river as a
carbon sink or source [27].

In addition, rivers and streams flow through varied landscapes, which may cause differ-
ences in abiotic and biotic factors in riverine environments that affect GHG production and
consumption processes, and thereby impact riverine GHG fluxes [28–30]. A large number
of studies have demonstrated that catchment land-use, including forestland, farmland, and
urban areas, can influence the spatial variation in GHG concentrations and fluxes [31–33].
For example, Borges et al. [34] found that rivers draining agriculture (croplands and pas-
tures) had a higher GHG flux than forested systems, which was contributing to excess
nutrient and organic matter inputs. The rivers draining urbanized areas enhanced the GHG
flux due to nutrient and organic carbon loads [35–37], or receiving external GHGs from
sewage [38]. To improve estimates of GHG emissions from running water, it is important
to understand the spatiotemporal patterns of GHG fluxes and their drivers in rivers and
streams with different catchment environments. Moreover, assessments of CO2, CH4, and
N2O concentrations and fluxes simultaneously in a river system across seasons remain
scarce.

To address the dearth of information on the dynamics and driving mechanisms of three
major GHGs in a freshwater stream with varying catchment land uses, we examined the
concentrations, fluxes, and potential drivers of CO2, CH4, and N2O along a 309 km stretch
of a subtropical river, the Qingyijiang River, subject to land use changes. The following
hypotheses were tested: (1) there would be a notable spatial pattern of GHG emissions in
varied reaches, due to the surrounding landscapes, and (2) there would be higher GHG
emissions in spring than in autumn. In addition, CH4 and N2O emissions were converted
into CO2-equivalent emissions based on their 100 yr global warming potentials (GWPs),
and the relative contribution of three gases to total CO2-equivalents was quantified. Our
results are intended to fill the knowledge gaps of GHG emissions in subtropical rivers and
support the assessment of regional GHG budgets in inland freshwater systems.

2. Materials and Methods
2.1. Site Description

This study was performed in the Qingyijiang catchment (29◦54′ to 34◦26′ N, 117◦38′ to
118◦51′E; Figure 1), located in the south of Anhui Province, Eastern China. The Qingyijiang
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River originates from the northern fringe of Huangshan Mountain and is the longest
tributary in the lower reaches of the Yangtze River. The river has a length of 309 km, with a
catchment area of 8487 km2 and an average slope of 0.00133 m m−1 [39,40]. According to
a previous study, the Qingyijiang River can be divided into three parts due to its terrain
differences [39]. In brief, the upper reach of the Qingyijiang River extends north from
the source to the Chencun Reservoir, the middle reaches extend between the Chencun
Reservoir and Wanzhi, and the lower reaches extend from Wanzhi to the outlet of the
Qingyijiang River. This region is characterized by a typically subtropical monsoon climate,
with a 30 yr (1981–2010) average annual temperature of 16.1 ◦C and average annual
precipitation of 1431 mm, 71.1% of which falls from March through to September (data
from http://data.cma.cn (accessed on 1 October 2022)).
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Figure 1. Geographical location of Qingyijiang River catchment and 20 sampling sites.

The Qingyijiang River catchment is mainly overlain by Palaeozoic and Mesozoic rocks
(granite, sandstone, conglomerate, limestone, shale, etc.) and Quaternary sediments (fluvial
deposit, proluvial deposit, red clay, etc.) [40]. Soils are mostly red soil and yellow soil [41].
Land use types were based on an analysis of the land coverage in the catchment drainage
area, which was delineated using a DEM (digital elevation model) with 4.11 m × 4.11 m
resolution images obtained from Google Earth. The results showed that the Qingyijiang
River catchment was occupied by forestland (63.8%), grassland (11.6%), farmland (11.6%),
and unused land (8.2%). In contrast, urban land and the surface water area covered 2.7%
and 2.1% of the land area in this catchment, respectively (Figure 2a). In situ measurements
and water sample collections were conducted in 20 sampling sites along the Qingyijiang
River during the autumn of 2020 (12–15 September 2020) and the spring of 2021 (19–20
April 2021). To explore the potential effects of land use on GHG concentrations and fluxes,
the land use percentage coverage in 20 drainage segments was calculated in the buffer zone
with a radius of 100 m from each sampling site.

http://data.cma.cn
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2.2. Field Sampling and Analyses

The dissolved GHG concentration was measured by a headspace equilibration
method [42]. Briefly, surface waters not exceeding 10 cm in depth were sampled by a
60 mL plastic syringe fitted with a stop-cock in triplicate, from each site. The plastic syringe
was to equilibrate 40 mL of water with 20 mL of pure N2. After vigorously shaking for
1–2 min for gas equilibrium [14,43,44], 20 mL of headspace gas was transferred to airtight
TedlarR air sample bags previously flushed with pure N2 and vacuumed. The ambient air
samples were also collected in duplicate or triplicate for analysis. These gas samples were
delivered to the laboratory and analyzed within 48 h.

The air temperature (Ta) was measured using a portable digital thermometer (JM
624, Jinming, China). The water temperature (Tw), dissolved oxygen (DO) concentrations,
and pH were determined by a portable Multi-Parameter Water Quality Sonde (HQ40d,
HACH, U.S.A.) equipped with a pH and a DO probe. The water depth (WD) was measured
by a self-made sounding lead and a tape measure. Pre-acid-washed polyethylene bottles
were used for storing water samples, which were collected at 10 cm below the surface.
Before analysis, the bottles were maintained in cool and dark conditions. Water samples
were analyzed for total phosphorous (TP) and ammonium (NH4

+-N) using a portable
Multi-Parameter Water Quality Monitor (5B-2H, Nanbei Instrument, Zhengzhou, China)
in the laboratory within 24 h. The GHG concentrations were analyzed by a modified
gas chromatograph (GC-2014, Shimadzu, Kyoto, Japan) in the laboratory, which has been
described in detail in Miao et al. [45].

2.3. Dissolved GHG Concentrations and Diffusive Fluxes

The dissolved GHG concentrations (cg: CO2 and CH4 in µM; N2O in nM) were
calculated using Henry’s Law [42]:

cg = pg KH (1)

where the dissolved GHG concentrations are a function of the partial pressure (pg: CO2 and
CH4 in µatm; N2O in natm) of the given gas in surface river water and Henry’s constant
(KH: mol L−1 atm−1) adjusted for ambient water temperature for the given gas. Henry’s
constant KH is usually determined by a function of the temperature and salinity [46–48].
Thus:

Ln KH (CO2) = −58.0931 + 90.5069 (100/T) + 22.2940 Ln (T/100) + S [(0.027766 -0.025888(T/100) + 0.0050578 (T/100)2] (2)

Ln KH (CH4) = −68.8862 + 101.4956 (100/T) + 28.7314 Ln (T/100) + S [(−0.076146 + 0.043970 (T/100) − 0.006872 (T/100)2] (3)

Ln KH (N2O) = −62.7062 + 97.3066 (100/T) + 24.1406 Ln (T/100) + S [(−0.058420 + 0.033193 (T/100) − 0.0051313 (T/100)2] (4)
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where T is the surface water temperature in Kelvin and S is the salinity in ‰. In this study,
we assumed S = 0 in the river.

The saturation ratio (sg) for surface-dissolved GHGs was calculated as follows:

sg = cg/Ceq

where Ceq is the equilibrium concentration of gas g (CO2 and CH4 in µM; N2O in nM), which
was calculated using the ambient atmospheric GHG partial pressure and the temperature-
dependent solubility for GHGs [46–48]. In our study, when sg > 1, it denotes that the water
is an atmospheric GHG source; when sg < 1, it denotes that the water is an atmospheric
GHG sink.

The GHG diffusive fluxes (fg: CO2 in mmol m−2 d−1; N2O and CH4 in µmol m−2 d−1)
between surface water and the atmosphere were determined by the thin boundary layer
model as follows:

fg = kg (cg − Ceq) (5)

where kg is the gas transfer velocity (cm h−1). In this study, the kg is determined by the gas
transfer velocity normalized to a Schmidt number of 600 (k600) [49]:

kg = k600 (SC/600)−0.5 (6)

where SC is the dimensionless Schmidt number of a given gas. The Schmidt number SC
for CO2, CH4, and N2O is calculated for the surface water temperature t (◦C) from the
following equations [50]:

SCCO2 = 1911.1 − 118.11 t + 3.4527 t2 − 0.04132 t3 (7)

SCCH4 = 1897.8 − 114.28 t + 3.2902 t2 − 0.047608 t3 (8)

SCN2O = 2055.6 − 137.11 t + 4.3173 t2 − 0.05435 t3 (9)

k600 is the gas transfer velocity (cm h−1) normalized to a temperature of 20 ◦C in water with
a Schmidt (SC) number of 600. Various empirical models have been developed to estimate
k600 in rivers and streams [49]. As kg is not measured directly, the average k600 derived from
the following models was used to calculate the diffusive GHG flux for error reduction.

Using the model by Raymond et al. [49]:

k600 = 8.42 + 11838 vS (10)

k600 = 3965 (vS)0.76 (11)

k600 = 4842 v0.85 S0.77 (12)

Using the model by Alin et al. [51]:

k600 = 13.82 + 35 v (13)

where v is the flow velocity (m s−1), S is the average river slope (m m−1) reported in Li [39].

2.4. Global Warming Potential (GWP)

The global warming potential (GWP) of the total GHG fluxes from the Qingyijiang
River was calculated by summation of the GHG using the GWP of each gas. Over the
100-year time horizon, fluxes of CH4 and N2O could be converted to their CO2 equivalents
by multiplying radiative forcing factors of 30 and 273, respectively [52].

2.5. Statistical Analyses

All the data are expressed as arithmetical means ± 1 standard deviation in this study.
The normality of the measured variables was examined by the Shapiro–Wilk test, and
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the nonnormal distributed variables were log-transformed. Differences in physical and
chemical parameters, GHG concentrations, and fluxes among seasons and varied reaches
were determined with one-way analysis of variance (ANOVA) with the LSD test. The
coefficient of variation (CV) for GHG concentrations and fluxes was calculated by dividing
the standard deviation of the variables measured on each sampling campaign by the mean
value. Pearson correlation analysis was performed to explore the relationships between
the dissolved GHG concentrations, diffusive GHG fluxes, and physical and chemical
parameters. The statistical analyses were performed by the SPSS 22 statistical package (IBM
SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Variation in Stream Physical and Chemical Parameters

The characteristics of the stream’s physical and chemical parameters are shown in
Table 1. The lowest surface water temperature was found in the upper reach and the
highest in the lower reach in September, while the lowest surface water temperature was
found in the middle reach and the highest in the upper reach. The ANOVA analysis results
showed no significant difference among the reaches for water temperature (see Table S1
in the supplementary materials). The middle part of the river presented the lowest depth
in September and highest depth in April. The lowest river flow velocity was found in the
lower reach with an average value of 0.028 ± 0.013 in September and 0.033 ± 0.006 in April.
The pH recorded in the middle reach was lower than those from the upper and lower
reaches in September but higher than those from the upper and lower reaches in April. The
highest average level of ammonium (NH4

+-N) was recorded in the middle reach, with a
value of 0.30 ± 0.33 mg L−1 in September and 0.15 ± 0.12 in April.

Table 1. Summary of the physical and chemical variables measured in the surface water of the three
river reaches during the observation period.

Month Reaches Ta (◦C) Tw (◦C) WD (m)
Flow

Velocity
(m/s)

Air
Pressure

(hPa)

DO
(mg/L) pH NH4

+-N
(mg/L)

September

Upper 24.4 ± 1.8
a

24.3 ± 1.3
a

0.30 ±
0.21 a

0.065 ±
0.045 a

99.86 ±
0.39 b

6.32 ±
0.78

7.88 ±
0.48 a

0.13 ±
0.17 a

Middle 24.8 ± 3.0
a

24.8 ± 0.9
a

0.26 ±
0.15 a

0.039 ±
0.030 a

100.14 ±
0.79 a - 7.51 ±

0.19 b
0.30 ±
0.33 a

Lower 23.0 ± 0.6
a

25.2 ± 2.2
a

0.45 ±
0.10 a

0.028 ±
0.013 a

100.73 ±
0.06 ab - 7.56 ±

0.24 ab
0.25 ±
0.09 a

April

Upper 25.4 ± 4.3
a

20.1 ± 2.1
a

0.25 ±
0.21 a

0.048 ±
0.042 a

99.78 ±
0.63 c

8.68 ±
1.17 a

7.78 ±
0.64 a

0.12 ±
0.11 a

Middle 28.0 ± 3.6
a

19.8 ± 2.0
a

0.29 ±
0.19 a

0.048 ±
0.023 a

100.40 ±
0.60 b

8.32 ±
0.81 a

7.96 ±
0.58 a

0.15 ±
0.12 a

Lower 27.7 ± 2.4
a

20.3 ± 1.0
a

0.27 ±
0.09 a

0.033 ±
0.006 a

101.25 ±
0.06 a

8.65 ±
0.99 a

7.78 ±
0.23 a

0.09 ±
0.06 a

All data

Upper 24.9 ± 3.2
a

22.2 ± 2.7
a

27.9 ±
20.6 a

0.057 ±
0.043 a

99.82 ±
0.51 c

7.64 ±
1.56 a

7.83 ± 0.5
5 a

0.13 ±
0.14 a

Middle 26.4 ± 3.6
a

22.3 ± 3.0
a

27.4 ±
16.6 a

0.044 ±
0.026 a

100.27 ±
0.69 b

7.73 ±
1.82 a

7.73 ±
0.48 a

0.23 ±
0.25 a

Lower 25.3 ± 3.0
a

22.7 ± 3.1
a

36.2 ±
13.1 a

0.031 ±
0.009 a

100.99 ±
0.29 a

8.65 ±
0.99 a

7.67 ±
0.24 a

0.17 ±
0.11 a

Note: The different letters in a column indicate the significant difference among reaches (p < 0.05). Ta, air
temperature; Tw, water temperature; WD, water depth; DO, dissolved oxygen; NH4

+-N, ammonium.

3.2. Dissolved GHG Concentrations in Surface River Water

The dissolved GHG concentrations in the surface water of the Qingyijiang River
varied from 8.70 to 67.38 µM (mean: 28.17 ± 10.31 µM) for CO2, 0.03 to 2.06 µM (mean:
0.27 ± 0.36 µM) for CH4, and 12.30 to 32.22 nM (mean: 16.16 ± 3.16 nM) for N2O during
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the observation period. The saturation ratios ranged from 0.68 to 3.33 (mean: 1.86 ± 0.57)
for CO2, from 10.49 to 752.31 (mean: 93.02 ± 130.51) for CH4, and from 1.42 to 4.01 (mean:
1.89 ± 0.45) for N2O.

Temporally, dissolved GHG concentrations observed in September were lower than
those in April (Table 2). For all sampling sites, the average dissolved CO2, CH4, and N2O
concentrations in April were 16.8%, 137.5%, and 5.5%, respectively, higher than those in
September.

The spatial variability in dissolved GHG concentrations was assessed by the coefficient
of variation (CV) in this study. The CV values were 7.28% for dissolved CO2 concentrations
and 3.59% for dissolved N2O concentrations in autumn, indicating that both gases were
homogenously distributed, while both of them were more spatially heterogeneous than in
spring (CV: 47.11% for CO2 and 26.80% for N2O). Compared with CO2 and N2O, dissolved
CH4 concentrations exhibited greater spatial variability within the river during the sam-
pling period (CV: 85.33% in autumn and 125.14% in spring). However, the ANOVA test
showed that no significant difference existed among reaches for dissolved CO2 concentra-
tions in either season, and for dissolved CH4 and N2O concentrations in spring (p > 0.05)
(Table S1). The significant difference among reaches for CH4 and N2O only occurred in
autumn. Higher dissolved N2O concentrations were observed in the upper reaches (mean:
16.08 ± 0.48 nM) than those in the middle reaches (mean: 15.43 ± 0.49 nM), while the
opposite pattern was shown for dissolved CH4 concentrations.

3.3. Diffusive GHG Fluxes

Based on the water–air gas exchange model, the calculated diffusive GHG fluxes in
the river ranged from −8.53 to 121.57 mmol CO2 m−2 d−1, 66.94 to 5395.84 µmol CH4
m−2 d−1, and 8.77 to 56.73 µmol N2O m−2 d−1, as a net GHG source for the atmosphere
(Table 2). The spatiotemporal patterns of diffusive GHG fluxes mimicked the spatial and
seasonal variability observed in the GHG concentrations. All three gas fluxes observed in
spring were higher than those in autumn, with the average fluxes of 31.89 ± 22.23 mmol
CO2 m−2 d−1, 697.22 ± 939.82 µmol CH4 m−2 d−1, and 18.12 ± 7.73 µmol N2O m−2 d−1.
The results of the one-way ANOVA test revealed that no significant difference in GHG
fluxes was observed between seasons.

The CV values of the diffusive GHG fluxes were 69.70% for CO2, 134.80% for CH4, and
42.64% for N2O, and showed considerable spatial variations on the site scale throughout the
sampling period. However, no significant difference in diffusive CO2 and CH4 fluxes was
observed among the reaches in either season (p > 0.05; Table 2), while diffusive N2O fluxes
significantly differed among the reaches in the following order: upper (19.40 ± 2.98 µmol
m−2 d−1) > middle (16.30 ± 2.63 µmol m−2 d−1) > lower (14.60 ± 0.32 µmol m−2 d−1)
(p < 0.05; Table 2). Overall, lower CO2 emissions and higher CH4 and N2O emissions were
observed in the middle reach as compared to the other reaches.
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Table 2. Descriptive statistics of surface water GHG concentration and diffusive GHG fluxes across the water–atmosphere interface during sampling period.

Month Reaches cCO2 (µM) sCO2

f CO2 (mmol
m−2 d−1) # cCH4 (µM) sCH4

f CH4 (µmol m−2

d−1) # cN2O (nM) sN2O
f N2O (µmol
m−2 d−1) #

September

Upper 25.50 ± 2.05 a 1.68 ± 0.09 a

29.71 ± 6.76 a

(15.49 ±
9.93~43.58 ±

7.89)

0.09 ± 0.06 b 29.33 ± 16.70 b

283.84 ± 153.65
b (134.43 ±

78.22~422.07 ±
234.32)

16.08 ± 0.48 a 1.74 ± 0.11 ab

19.40 ± 2.98 a

(9.95 ±
5.35~28.53 ±

3.32)

Middle 25.82 ± 1.60 a 1.66 ± 0.09 a

25.12 ± 2.71 a

(4.76 ±
6.16~41.89 ±

3.57)

0.23 ± 0.19 a 69.26 ± 55.29 a

644.76 ± 536.99
a (161.00 ±

281.30~1056.12
± 872.91)

15.43 ± 0.49 b 1.76 ± 0.07 a

16.30 ± 2.63 b

(3.36 ±
4.99~27.06 ±

2.35)

Lower 27.91 ± 1.26 a 1.79 ± 0.24 a

28.31 ± 6.57 a

(1.13 ±
0.32~49.11 ±

10.51)

0.18 ± 0.0 7 ab 54.60 ± 20.18 ab

494.17 ± 211.03
ab (18.81 ±

5.76~866.28 ±
381.03)

15.48 ± 0.51 ab 1.70 ± 0.02 b

14.60 ± 0.32 b

(0.59 ±
0.12~25.44 ±

1.26)

Overall 25.99 ± 1.89 1.69 ± 0.12

27.66 ± 5.60
(9.04 ±

9.63~43.73 ±
6.97)

0.16 ± 0.14 49.09 ± 40.59

459.76 ± 387.46
(127.72 ±

184.64~742.32 ±
641.55)

15.73 ± 0.56 1.74 ± 0.08

17.44 ± 3.15
(5.91 ±

6.01~27.48 ±
2.85)

April

Upper 29.78 ± 18.44 a 1.86 ± 0.90 a

36.00 ± 41.26 a

(16.34 ±
25.55~51.65 ±

62.33)

0.37 ± 0.64 a 132.59 ± 235.67
a

973.67 ± 1694.78
a (314.38 ±

384.78~1499.93
± 2702.71)

16.27 ± 6.29 a 1.89 ± 0.81 a

18.27 ± 14.84 a

(6.54 ±
4.06~27.94 ±

23.89)

Middle 30.64 ± 11.73 a 2.13 ± 0.73 a

35.99 ± 23.26 a

(8.56 ±
8.66~61.09 ±

40.17)

0.40 ± 0.33 a 145.15 ± 115.09
a

967.45 ± 897.37
a (267.40 ±

467.51~1578.76
± 1351.09)

17.59 ± 2.38 a 2.24 ± 0.37 a

21.04 ± 6.02 a

(4.29 ±
3.86~35.71 ±

9.91)

Lower 31.33 ± 9.89 a 2.32 ± 0.51 a

36.84 ± 16.62 a

(2.13 ±
1.60~64.78 ±

29.60)

0.33 ± 0.24 a 128.12 ± 94.23 a

730.36 ± 537.08
a (41.15 ±

34.89~1278.70 ±
936.61)

14.95 ± 1.19 a 1.89 ± 0.13 a

14.46 ± 1.87 a

(0.78 ±
0.46~25.38 ±

3.32)

Overall 30.36 ± 14.30 2.04 ± 0.77

36.12 ± 30.75
(11.10 ±

18.20~57.40 ±
48.50)

0.38 ± 0.47 136.94 ± 171.03

934.69 ± 1242.65
(254.60 ±

389.81~1498.28
± 1962.36)

16.60 ± 4.45 2.03 ± 0.60

18.81 ± 10.57
(4.78 ±

4.06~30.67 ±
17.21)
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Table 2. Cont.

Month Reaches cCO2 (µM) sCO2

f CO2 (mmol
m−2 d−1) # cCH4 (µM) sCH4

f CH4 (µmol m−2

d−1) # cN2O (nM) sN2O
f N2O (µmol
m−2 d−1) #

All data

Upper 27.64 ± 12.92 a 1.77 ± 0.63 a

32.86 ± 28.87 a

(15.92 ±
18.81~47.61 ±

43.30)

0.23 ± 0.47 a 80.96 ± 170.56 a

628.76 ± 1220.14
a (224.40 ±

284.82~961.00 ±
1941.86)

16.17 ± 4.33 a 1.81 ± 0.56 a

18.84 ± 10.40 a

(8.24 ±
4.93~28.24 ±

16.55)

Middle 28.23 ± 8.47 a 1.90 ± 0.56 a

30.56 ± 16.95 a

(6.66 ±
7.52~51.49 ±

29.28)

0.32 ± 0.28 a 107.20 ± 95.62 a

806.10 ± 733.57
a (214.20 ±

376.76~1317.44
± 1131.50)

16.51 ± 2.00 2.00 ± 0.36 a

18.67 ± 5.11 a

(3.83 ±
4.33~31.38 ±

8.27)

Lower 29.62 ± 6.58 a 2.06 ± 0.46 a

32.58 ± 12.23 a

(1.63 ±
1.17~56.95 ±

21.62)

0.26 ± 0.18 a 91.36 ± 73.05 a

612.27 ± 387.21
a (29.98 ±

649.74~1072.49
± 678.23)

15.21 ± 0.87 a 1.80 ± 0.14 a

14.53 ± 1.20 a

(0.69 ±
0.32~25.41 ±

2.25)

Overall 28.17 ± 10.31 1.86 ± 0.57

31.89 ± 22.23
(10.07 ±

14.41~50.57 ±
34.89)

0.27 ± 0.36 93.02 ± 130.51

697.22 ± 939.82
(191.16 ±

307.84~1120.30
± 1491.00)

16.16 ± 3.16 1.89 ± 0.45

18.12 ± 7.73
(5.34 ±

5.10~29.07 ±
12.28)

Note: The different letters in a column indicate significant differences among reaches (p < 0.05). cCO2 , cCH4 , and cN2O represent dissolved CO2, CH4, and N2O concentrations, respectively.
sCO2 , sCH4 , and sN2O represent saturations of dissolved CO2, CH4, and N2O in river water, respectively. f CO2 , f CH4 , and f N2O represent diffusive CO2, CH4, and N2O fluxes, respectively.
# The ranges of fluxes estimated by the different models are presented in the brackets.



Sustainability 2022, 14, 13729 10 of 16

The global warming potentials of CH4 and N2O were over the 100-year horizon, which
were 30 and 273 times larger than that of CO2, respectively [52]. For the Qingyijiang River,
CH4 and N2O emissions would translate into 20.92 and 2.47 mmol CO2 eq m−2 d−1, which
accounted for 37.84% and 4.47% of the three GHG emissions, respectively.

3.4. Relationships between GHG Emissions and Environmental Parameters

The correlation analysis between dissolved GHG concentrations and diffusive GHG
fluxes and the measured environmental parameters for each season are shown in Figure 3.
In spring, there was a significant negative relationship between CO2 concentration and
flux and DO, and a significant positive relationship between CO2 concentration and flux
and TP, while we observed a significant positive relationship between CH4 and N2O fluxes
and water temperature. In autumn, the spatial patterns of CO2 and N2O fluxes were
significantly regulated by flow velocity. However, no significant relationship between CH4
concentration (or flux) and the environmental variables was found in this study.
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4. Discussion
4.1. Comparison of GHG Emissions with Other Rivers

A considerable number of observations in the literature have demonstrated that most
of streams and rivers were supersaturated with GHGs relative to the atmosphere [3,10,19,29].
The dissolved GHG concentrations and diffusive GHG fluxes obtained from different tem-
poral and spatial sampling strategies undertaken in the Qingyijiang River were lower than
those found in most rivers and streams around the world (Table S3). However, the dis-
solved CO2 and N2O concentrations and diffusive CO2 and N2O flux were comparable to
those reported from tropical and subtropical rivers [53,54]. Dissolved CH4 concentrations
and diffusive CH4 fluxes were comparable to those reported from some boreal streams [24].
The lower GHG emissions in this study could be explained as follows: first, they might
be associated with the low frequency of sampling measurements, which was unlikely to
capture events with high GHG fluxes [55,56]. Second, they might be related to the low GHG
production capacity in the studied rivers, which received less pollutant loadings compared
to rivers flowing through urban regions or agriculture-dominated catchments [35,36,57].
For example, Wang et al. [58] found that the CO2 emission from rivers in urban areas was
2–4 times higher than that in remote rural rivers. Yu et al. [35,36] and Hu et al. [54] also
found higher CH4 and N2O fluxes from rivers draining highly urbanized landscapes. In
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addition, rivers draining agricultural landscapes emitted more GHGs than from natural
rivers [34,57,59].

Calculating CO2-equivalent Global Warming Potentials (GWP) on a specified year
timescale enabled us to assess the relative contribution of each GHG [60]. In this study,
overall CO2-equivalent emissions for the Qingyijiang River were dominated by CO2, which
was similar to other studies [30,32,61]. It is worth noting that CH4 and N2O had a certain
contribution to CO2-equivalent emissions (37.84% for CH4 and 4.47% for N2O), which
highlights the crucial role of CH4 and N2O in river GHG emissions.

4.2. Factors Influencing the GHG Spatial Variation

Previous studies have shown that emissions of GHGs across the river-water–
atmosphere interface originate in complex microbial processes (production and consump-
tion) in carbon and nitrogen cycles, which depend on abundant environmental parameters
such as temperature, oxygen, nutrient status, and flow velocity [34,57,62]. Temperature
(sediment and/or water) has been proven to be a crucial factor for determining GHG con-
centrations and fluxes, as a result of the influence on the microbial processes of production
and consumption. Similar to studies conducted in other rivers and streams [54,57,63], a
positive correlation had been found between water temperature and N2O and CH4 flux
through Pearson correlation analysis (Figure 3), but this relationship could not be estab-
lished for CO2. A considerable number of studies have shown that microbial activity can
be stimulated by suitable high water and sediment temperature, thereby affecting CH4
and N2O production and emission [10,63–65]. In addition, the solubility of CH4 and N2O
decreases with increasing temperature; therefore, CH4 and N2O are immediately released
into the atmosphere at high temperature [54,66]. Furthermore, temperature not only affects
respiration, but also affects photosynthesis in aquatic systems [67,68]; the combined effects
on CO2 concentration may have resulted in an inconspicuous temperature dependence of
CO2 emission in this study.

Dissolved oxygen, as another important feature of habitat redox status, plays a crucial
role in GHG production and consumption, thereby determining GHG concentrations and
fluxes [10,19,62]. For example, CH4 is predominantly produced via methanogenesis under
low-O2 conditions in aquatic systems [10]. However, recent studies have found that CH4
could also be produced under an oxic environment that was originally suitable for CH4
oxidation [69]. In this study, no significant relationship between CH4 and DO suggests
that the spatial heterogeneity of CH4 emission could not explained by DO concentration.
N2O can be produced via N-cycling pathways such as denitrification and dissimilatory
nitrate reduction to ammonia (DNRA) under anaerobic conditions, and nitrification under
aerobic conditions [19]. The DO concentrations observed in the Qingyijiang River were high
enough for nitrification, and the higher N2O concentration and NH4

+-N concentrations
were observed in the middle reach of the river, which suggests that the nitrification pathway
may be an important source of N2O. The negative relationships between DO concentration
and CO2 concentration and flux agree with previous studies for rivers [62,70] (Figure 3),
and could be attributed to pelagic respiratory production of CO2, thus decreasing DO
levels.

Land use types in the catchment are important in mediating carbon and nitrogen
biogeochemical processes on land, thus influencing inputs of allochthonous materials
into adjacent waters [71–73], with the consequence of changing the magnitude of GHG
fluxes [33,34]. Agricultural and urban land uses have been found to be crucial for riverine
GHG production [30,34,36,37], because nutrient loadings can lead to enhanced in-stream
metabolism [32]. However, the impact of land use on river GHG concentrations and fluxes
can be complex, and could not be clearly observed in this study (Table S2). Although no
significant correlations between GHG concentrations and fluxes and the proportions of
land use were found in the present study, higher GHG concentrations were clearly observed
in the group with >50% agricultural land use in both seasons (Figure 2b). This suggests the
importance of agriculture in generating GHGs in the river network.
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The water flow velocity is known to be an important driver in determining the spatial
variability in GHG fluxes [57,62,64,74]. In the present study, the positive relationships be-
tween flow velocity and CO2 and N2O fluxes are consistent with a previous study [61]. The
strong flow, which affected the near-surface turbulence, led to high gas transfer velocities,
thus enhancing the gas evasion [49].

Although the potential drivers influencing the spatial variability in GHGs have been
assessed, our findings suggest that it is difficult to predict GHG emissions from the Qingyi-
jiang River based on existing concentration/flux-environmental parameter relationships
alone.

4.3. Study Limitations and Future Research

Similar to many other studies, there exist several uncertainties associated with GHG
flux estimates in the Qingyijiang River. First, the riverine GHG flux calculation was derived
from the gas transfer velocity coefficient (k) and 4GHG concentration (cg − Ceq), which
was associated with high uncertainty. k was computed by empirical models, rather than
measured directly in the field, which makes the actual gas transfer velocity coefficients
unclear. As Raymond et al. [46] compiled, there are many models with which to estimate
k; however, there is no consistent principle to determine which one should be chosen. To
eliminate the divergence, the average gas transfer velocity of each gas derived from the
selected empirical models was applied to calculate GHG flux in this study. Despite this,
future studies should determine the gas transfer velocities directly in the field in order to
constrain the uncertainty in flux estimates. Secondly, our study focused on gas diffusive
fluxes without considering ebullitive fluxes, which were the main emission pathway for
CH4 reported in some streams and rivers [9,55,56]. Although the studied river originates
from a mountain area, the lower reaches of the river are located on a plain, where potential
ebullitive fluxes may occur. Previous studies have illustrated that ebullition may contribute
substantially (> 50%) to total CH4 flux [9,55,56]; thus, this study’s estimation of CH4 flux
was conservative without considering ebullitive fluxes. Whether CH4 is emitted through
bubbles in the lower reaches of our studied river requires further study.

Finally, we also recognized that our flux estimation was biased toward sampling time
and frequency. On the one hand, flux measurements conducted in the daytime may lead
to bias in flux estimates, as the diel variability of GHG fluxes has been widely reported
in rivers [8,75,76]. For instance, Gómez-Gener et al. [8] demonstrated that nocturnal CO2
emissions from global streams are on average 27% greater than those estimated from
diurnal concentrations alone. Chen et al. [56] found that higher CH4 fluxes occurred during
the daytime compared to the nighttime. Some researchers found that N2O emissions from
subtropical rivers during the nighttime were higher [77] or lower [78] than N2O emissions
during the daytime. These results imply that extrapolations based on daytime observations
most likely result in overestimated or underestimated fluxes. On the other hand, single-
time flux measurements may produce a large uncertainty in flux estimates, which has been
reported for other aquatic ecosystems [79,80]. Therefore, consideration of diel variability
and sampling frequency in future studies is critical to properly assess total riverine GHG
fluxes.

5. Conclusions

In conclusion, here, we have investigated the spatial variability in CO2, CH4, and
N2O concentration and flux from a tributary of the Yangtze River located in Eastern China.
Our results showed that the river was supersaturated in CO2, CH4, and N2O at most of
the times and at most of sites, relative to the atmosphere, but the estimated GHG fluxes
were one and/or two orders of magnitude lower than those found in most rivers and
streams around the world. Although the river acts as a minor GHG emitter, the crucial
role of CH4 and N2O cannot be ignored when considering CO2-equivalent emissions. The
GHG emissions from the river varied between seasons, with the higher values appearing
in spring. However, there was no significant spatial variability in CO2 concentrations
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and fluxes but a significant difference among reaches in N2O concentrations and fluxes
in September. This could be explained by the varied flow velocities in the sampling sites,
which determine the gas transfer velocity coefficient. Furthermore, the spatial variation in
CH4 concentration and flux was observed without obvious patterns. Unlike most studies
with clear drivers for influencing the spatial variability in GHGs, we only found water
temperature, DO, and flow velocity partly regulating GHG emissions, which suggests
that it is difficult to predict GHG emissions from this river based on measured parameters
alone. Overall, our results highlight an urgent need for more detailed studies on flux
measurements to improve the reliability of riverine GHG flux estimates, and process-based
measurements to help elucidate the drivers of variability in GHGs from these subtropical
rivers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su142113729/s1, Table S1: Summary of ANOVA examining the
effect of reaches on physical and chemical variables, GHG concentrations and fluxes during sampling
period. Table S2: Relations between GHG concentrations and fluxes and environmental variables
in each campaign. Table S3: Dissolved GHG concentrations in surface waters and diffusive GHG
emissions from Qingyijiang River compared with other studies.
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