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Abstract: The question of whether and to what extent farmers can adapt to climate change has recently
gained academic interest. This paper reviews contemporary econometric approaches that assess the
impacts of climate change on agriculture and consider farmer adaptation, complementing previous
methodological reviews with this distinctive adaptation perspective. The value of adaptation can
be measured by comparing the differences between the long-term climate change effect and the
short-term weather shock effect. However, this theoretical model has not yet been well supported by
empirical evidence, as it is difficult to identify true adaptation, incorporating adaptation cost, and
estimated adaptation rate. Quasi-natural experiments, cost-benefit analysis, and Bayesian models are
effective tools to address these methodological drawbacks. Two methods dominate in the estimation
of climate effects, but each has its own advantages. A good estimate provides a trade-off between
the incorporation of farmers’ adaptive behavior and the reduction in omitted variables bias. Cross-
sectional data models based on climate variability can capture farmers’ long-term adaptations but
are prone to bias due to omitted variables. Panel data models are more effective at mitigating
omitted variable bias by applying fixed effects, but do not consider farmers’ adaptative behavior
to long-term climate change. To address this dilemma, several cutting-edge approaches have been
developed, including integration with the weather and climate model, the long differences approach,
and the long- and short-term hybrid approach. We found three key challenges, namely: (1) exploring
adaptation mechanisms, (2) the CO2 fertilization effect, and (3) estimating the distributional effects of
climate impacts. We also recommend future empirical studies to incorporate satellite remote sensing
data, examine the relationship between different adaptation measures, model farmers’ future climate
expectations, and include adaptation costs.
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1. Introduction

Over the last two decades, econometric methods have become increasingly popular in
estimations of climate change’s impacts on agriculture [1–7]. However, previous studies
have adopted numerous climatic indicators and the consequent impacts on agriculture
vary considerably. For example, the projected impacts range from severe damage [2] to
slightly positive effects [1]. Researchers widely acknowledge that the discrepancies in
these findings largely depend on the extent of farmers’ adaptation to climate change [8,9].
Adaptation enriches theoretical and policy studies by clarifying the implications of climate
change if adaptation occurs. Some adaptation measures may require large investments that
farmers cannot afford. If the benefits of adaptation are fewer than the costs of adaptation,
then the best option for farmers is to avoid the adjustment (Figure 1) [10]. In this case, the
continued use of suboptimal farming methods may lead to future profit losses [9]. Thus,
exploring the value of adaptation may inspire governments to weigh the costs and benefits
of supporting adaptation activities.
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losses [9]. Thus, exploring the value of adaptation may inspire governments to weigh the 
costs and benefits of supporting adaptation activities. 
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Figure 1. Impact of adaptation costs on adaptation level. In the current climate change, farmers’ 
baseline adaptation level should be ao (marginal benefit of adaptation MAB0 equals to marginal cost 
of adaptation MAC0). If faced with a sudden climate shock, such as drought or flood, farmers need 
a lot of capital investment to cope. the marginal cost of marginal adaptation will sharply increase 
(from MAC0 to MAC1). At this time, farmers’ optimal adaptation choice will be less adaptation level 
a1. 

Process-based crop models are widely used to simulate how crops grow in interac-
tion with the environment and can provide reliable quantitative information about the 
effects of changing climatic factors on crop yields. Crop modes examine the effects of cli-
matic factors on crop yields by precisely controlling all the elements required for crop 
growth (temperature, humidity, light, soil, fertilizer, etc.) in the simulation experiment 
[11]. The econometric approach uses a large amount of historical data to examine the re-
lationship between climatic factors and agricultural production, while controlling for 
technological progress, economic factors and climate adaptation behavior [12]. The econ-
ometric approach assumes that, if agricultural production is profitable, rational farmers 
will take adaptive measures, such as changing land use and increasing irrigation inputs, 
to take full advantage of favorable climate resources and avoid unfavorable climate con-
ditions. Compared to crop models, econometric studies may reach conclusions that are 
closer to the real world because they consider farmers’ adaptive behavior [13]. 

One of the most frequently used econometric approaches is the Ricardian method, 
introduced by Mendelsohn et al. [1], which relies on cross-sectional variation to measure 
the impacts of climate change on farmland productivity. The identification of long-term 
impacts arises from the assumption that farmers seek to maximize their agricultural out-
comes under a certain climate and that each farmer should have enough time to adapt to 
a changing climate. A number of empirical results stemming from Ricardian model appli-
cations indicate that adaptation is influential and can even completely reverse the nega-
tive effects of warming on agriculture [13]. However, contrary to these findings, some 
evidence from emerging econometric approaches, such as panel data and long differences 
models, suggests that farmers do not adequately adapt to climate change [2,4,14]. The di-
vergence between these empirical studies arises from the diverse model settings and the 
extent of adaptation that they can account for. Although the Ricardian model can analyze 
farmers’ long-term adaptation, it is susceptible to omitted variable bias (biased estimates 
of the adaptation value) [14]. The panel data and long differences models have control 

Figure 1. Impact of adaptation costs on adaptation level. In the current climate change, farmers’
baseline adaptation level should be ao (marginal benefit of adaptation MAB0 equals to marginal cost
of adaptation MAC0). If faced with a sudden climate shock, such as drought or flood, farmers need a
lot of capital investment to cope. the marginal cost of marginal adaptation will sharply increase (from
MAC0 to MAC1). At this time, farmers’ optimal adaptation choice will be less adaptation level a1.

Process-based crop models are widely used to simulate how crops grow in interaction
with the environment and can provide reliable quantitative information about the effects
of changing climatic factors on crop yields. Crop modes examine the effects of climatic
factors on crop yields by precisely controlling all the elements required for crop growth
(temperature, humidity, light, soil, fertilizer, etc.) in the simulation experiment [11]. The
econometric approach uses a large amount of historical data to examine the relationship
between climatic factors and agricultural production, while controlling for technological
progress, economic factors and climate adaptation behavior [12]. The econometric approach
assumes that, if agricultural production is profitable, rational farmers will take adaptive
measures, such as changing land use and increasing irrigation inputs, to take full advantage
of favorable climate resources and avoid unfavorable climate conditions. Compared to
crop models, econometric studies may reach conclusions that are closer to the real world
because they consider farmers’ adaptive behavior [13].

One of the most frequently used econometric approaches is the Ricardian method,
introduced by Mendelsohn et al. [1], which relies on cross-sectional variation to measure the
impacts of climate change on farmland productivity. The identification of long-term impacts
arises from the assumption that farmers seek to maximize their agricultural outcomes under
a certain climate and that each farmer should have enough time to adapt to a changing
climate. A number of empirical results stemming from Ricardian model applications
indicate that adaptation is influential and can even completely reverse the negative effects
of warming on agriculture [13]. However, contrary to these findings, some evidence from
emerging econometric approaches, such as panel data and long differences models, suggests
that farmers do not adequately adapt to climate change [2,4,14]. The divergence between
these empirical studies arises from the diverse model settings and the extent of adaptation
that they can account for. Although the Ricardian model can analyze farmers’ long-term
adaptation, it is susceptible to omitted variable bias (biased estimates of the adaptation
value) [14]. The panel data and long differences models have control over unobservable
omitted variables, but the identified adaptation measures can only be implemented in the
short- or medium-term, thus effectively moderating the adverse effects of unanticipated
weather shocks [9]. Using the envelope theorem, Hsiang [15] argues that panel data models
can estimate long-term climate responses, as the value of long-term adaptation to climate
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change is zero. However, his model relies on some unrealistic assumptions: (1) agents
always maximize profits, (2) climate change is stationary, (3) adaptation is continuous, and
(4) adaptation has no associated costs.

In this context, the extent of farmers’ adaptation to climate change remains an empirical
question that requires further methodological developments. First, the current models
imply that the agricultural adaptation mechanism remains unchanged over time, and do
not pay attention to the impact of agricultural structure transformation and agricultural
technology progress. Second, the long differences model and Ricardian model estimate
the total effects of all adaptation channels, but these approaches generally provide little
information on how different adaptation types and levels play a role in mitigating the
harmful, or exploiting the beneficial, effects of climate change. Third, in the analysis of the
Ricardian model, product and factor prices are not directly controlled. Studies have shown
that both product and factor prices are quite sensitive to climate shocks. Neglecting the
role of prices will lead to biased results in the estimated climate impacts. Incorporating the
Ricardian model into a general equilibrium model would provide a solution to this problem.

Several pieces of the literature have reviewed the quantification mechanisms of climate
change’s impact using econometric approaches. For example, Ortiz-Bobea [16] provides
an overview of the mixed statistical and biophysical approaches on modeling planting
and harvesting decisions, irrigation and other input adjustments. Blanc and Schlenker [17]
summarize the methodology of panel data model for estimating the impacts of climate
change on crop yields or agriculture productivity. Kolstad and Moore [9] conduct an
in-depth review with an emphasis on the costs of adaptation, which will depend on the rate
of adaptation and the effectiveness of adaptation options. However, few studies provide a
comprehensive overview of econometric approaches for estimating the impact of climate
change under farmers’ adaptation and identify the knowledge gaps and future model
development in this field.

The aim of this paper is to explore the major econometric approaches that integrated
farmer adaptation, in terms of their strengths and weaknesses, to highlight the knowledge
gaps and potential future model developments. We analyze the theoretical specification
differences emerging in these approaches to determine why inconsistencies occurred in
previous empirical results. This paper will contribute to a better understanding of the mech-
anisms involved in climate modeling for agricultural adaptation and provide researchers
with an overview of state-of-the-art methodological tools, and its findings provide lessons
for research on climate change adaptation in other fields.

The rest of this paper is organized as follows. In Section 2, we present a review
approach. In Section 3, we establish a conceptual framework to model farmer adaptation.
In Section 3, we review the econometric approaches to estimate the impact of climate
change that consider farmer adaptation. In Section 4, we highlight the typical challenges
in the analysis of climate–agriculture relationships and how to overcome them. Section 5
comprises the conclusions and key recommendations.

2. Review Approach

To explore the role of adaptation in estimating the climate’s impacts on agriculture,
we performed a selective literature review. Papers included in our review had to meet the
following criteria: (1) use classical econometric models (time series, cross-sectional and
panel data models) to quantify the value of adaptation; (2) pioneer or improve econometric
methodologies for quantifying the value of adaptation, rather than just applying the current
model to a case; (3) have a high number of citations to ensure the reliability of methodology.

We first searched selected Web of Science databases for papers published within
the last 30 years using the following keyword pairings: “climate change”, “agriculture”,
“adaptation”, “impact”. These searches yielded a total of 3756 articles (Figure 2). Based
on titles, we removed articles that were not addressing climate adaptation or that were
not using econometric approaches. From the 456 articles remaining, we searched abstracts
and removed papers that clearly did not meet our inclusion criteria (e.g., papers use
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classical econometric models (cross-sectional or panel data models) to quantify the value
of adaptation), reducing the total to 397. From these, we removed those that did not meet
all inclusion criteria defined above, based on a full reading. The search and exclusion
process left us with 25 articles. Many articles were removed because they did not pioneer or
improve methodologies for quantifying the value of adaptation, and merely focused on the
application of econometric models. We displayed the evolution of econometric approaches
that consider farmer adaptation in Figure 3.
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Figure 3. The evolution of econometric approaches that consider farmer adaptation. Purple represents
the cross-sectional data model, orange represents the panel data model, and blue represents the
emerging model. The starting box is the cross-sectional Ricardian model. Details of all models are
reviewed in Sections 4 and 5. Source:Authors, based on the literature review.
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3. Conceptual Model of Climate Change Impacts on Agriculture Considering
Farmer Adaptation

The econometric model used to estimate the impact of climate change on agriculture
derives from the basic production function:

Y = f(X, Z).
Y: Agricultural output(ton).
X: a vector of climate-dependent choices including adaption choices and factor inputs,

such as irrigation area(hectare) and fertilizer(kilogram).
Z: climate variables, such as temperature (◦C) and precipitation(mm).
Assume that the prices of output Y and X are P and W, respectively; then, the profit π

derived from producing agricultural product Y is:
π = P·f [X, Z] −W·X.
π: profit (USD).
Z: climate variables, such as temperature (◦C) and precipitation (mm).
X: a vector of adaption choices and factor inputs, such as irrigation area(hectare) and

fertilizer(kilogram).
and fertilizer.
P and W: the price vector of output Q and choice variables X.
Adaptation to climate change involves “the process of making adjustments to the

actual or expected climate and its effects, in order to moderate its harm or exploit beneficial
opportunities [12]”. In economics, farmers’ choices of adaptive behavior will be a rational
optimization process. That is, a farmer will choose the optimal set of adaptation measures
and input levels that can maximize his or her profits given the local climate [1]. Specifically,
the optimization process for a farmer is to maximize:

max
X
π = P· f [X, Z]−W·X (1)

π: profit (USD).
Z: climate variables, such as temperature (Celsius degree) and precipitation(mm).
X: a vector of adaption choices and factor inputs, such as irrigation, varieties
and fertilizer.
P and W: the price vector of output Q and choice variables X.
The necessary condition for the optimal solution of Equation (1) is ∂π/∂X = 0. The op-

timal climate adaptation choices and factor inputs would be a function of climate and price:
X* = x (Z, P, W).
X*: the optimal adaption and factor inputs demand.
Z: climate variables.
P and W: the price vector of output Q and choice variables X.
Substituting Equation (4) into Equation (1), the resulting output would be a function

of climate and price:
y* = f [P, W, Z].
y*: the maximum output.
X*: the optimal adaption and factor inputs choices.
Z: climate variables.
P and W: the price vector of output Q and choice variables X.
Figure 2 further illustrates the relation between climate and profit. Assuming that the

functional relationship between climate and profit is an inverted U-shape [4], under the
different climatic conditions Z1 and Z2, farmers have two different optimal adaptation
choices, X1 and X2, respectively, corresponding to two different profit functions.

If the adaptation measure X1 is not adjusted, when climate changes from Z1 to Z2, the
farmer’s profit decreases from V0 to V2. Farmers may react to climate changes by switching
the adaptation measure from X1 to X2, and the profit will decrease from V0 to V1. Thus,
adjustment to the optimal adaption choices can mitigate the V1-V2 of loss from climate
change (Figure 4).
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Given the above conceptual framework, the estimated climate effect under farmers’
adaptation should be V1-V2. Climate econometrics has developed three approaches to
consider the benefits of adaptation (Table 1). The first approach is to compare the cross-
sectional variations in outcomes (e.g., yield and profit) in different climatic zones. The
approach assumes that, to maximize the benefits, farmers will adjust their production
strategies to fully adapt to their local climate [9]. For example, farmers in different climatic
zones adopt different crop varieties. The benefits of adopting new varieties under different
historical climatic conditions can be measured by comparing crop yields or profit in different
climatic zones.

Table 1. Main characteristics of economic methodology measuring the benefit of adaptation.

Economic Methodology Climate Variables Sociodemographic and Orographic
Variables Main Problem

Comparing the cross-sectional
variations in outcomes in
different climatic zones

Cross-sectional
weather average

Per capita income
Population density

Longitude
Latitude

Slope
Soil quality

Omitted variable bias, such as
irrigation and price [13],

Unable to analyze specific
crops [18],

Unable to consider climate
prediction information [19]

Comparing responses of
outcome variables to

high-frequency weather
variation with to

low-frequency weather
variation

Decade-to-decade
weather variation

Fertilizer
Machine

Labor

Underestimating the
adaptation effect if

high-frequency weather
variation already incorporates

some degree of adaptation
effect [10],

Omitted variable bias, such as
technology and price

Comparing estimates derived
from high-frequency

weather variations across
subsamples with
different period

Seasonal/annual
realizations of

weather

Irrigation area
soil quality

Unable to quantify adaptation
effects of specific strategies,
Bias due to measurement

errors in weather
variables [17]

Source: [9,13].

The second approach will directly compare the responses of outcome variables to
short-term weather shocks with long-term, gradual climate change. As gradual climate
change is relatively long-term and predictable, this leaves enough time for farmers to
respond. However, as weather shocks are unforeseen and random in most cases, farmers
have only a very limited choice of response measures [13,20].
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The third approach will compare the outcomes derived from high-frequency weather
variation across subsamples over different periods. This approach argues that if farmers’
adaptation techniques continue to improve, then the sensitivity of agriculture to extreme
heat should decrease over time [2,21,22].

However, it is challenging to statistically measure adaptation to climate change. The
first challenge is to identify actual adaptation measures. For instance, Lobell [23] points
out that some agronomic practices aimed at enhancing productivity are misclassified as
adaptation measures. As technology upgrades would lead to the same yield gains under
both warming and non-warming conditions, this practice does not moderate the yield
losses caused by climate change. Thus, failing to exclude misclassified agronomic practices
may exaggerate farmers’ potential to mitigate negative climate change effects through
adaptation. Nonetheless, it is difficult to distinguish adaptation measures from other
agricultural management activities, as agricultural measures cover adaptation to climate
change and can often address many agricultural issues [24]. The investigation of location-
specific genuine adaptation practices is, therefore, essential to identify true adaptation.
Specifically, the researcher should first investigate whether the farmers have perceived
the change in the local climate. Then, the researcher should investigate the benefits of
specific adaptation measures that farmers have taken. Finally, the researcher can conduct a
quasi-natural experiment to compare the differential impact of adaptation on adapters and
non-adapters.

The second challenge is accounting for adaptation costs. Adaptation measures are not
free and may require unaffordable investments in some cases. For example, Jagnani et al. [25]
found that smallholder farmers will not change their inputs to respond to climate change,
because they have financial constraints and cannot afford the cost of adaptation. Addi-
tionally, incorporating private adaptation costs in an empirical study is difficult, because
the macro-information on these costs is unavailable. The cost of adaptation at the farm
level must be collected as thoroughly as possible in future studies. Once information on
the cost of adaptation is available, researchers can use cost-benefit analysis to measure the
economic value of specific adaptation measures.

The third challenge relates to estimations of the adaptation rate, determining climate
damage and adjustment costs to a large extent. Low adaptation rates result in adjustment
costs [26]. This rate depends on an updated understanding of climate change [27]. However,
it is difficult to observe how farmers update their beliefs about unobserved and nonstation-
ary climate. People use realizations of weather to infer whether the climate is changing.
Kelly et al. [26] and Moore [27] suggest that Bayesian statistical models can model how
people update their beliefs about climate change by using sequential weather observations.

The fourth challenge is that theoretical models lack a micro-level farmer perspective
to understand the mechanisms of adaptation. An analysis of the micro-perspective requires
for the differences among individual farmers and the differences in adaptation behavior to
climate change to be distinguished. We summarize four main influencing factors from the
farmer’s perspective in Figure 3. These factors also differ in their mechanisms of influence
regarding farmers’ choices to adapt. Demographic and socio-economic factors mainly influ-
ence farmers’ adaptation behavior by affecting their preferences and abilities. For example,
older farmers have extensive experience in farming. They hold a broad knowledge about
climate change and may know the necessity of climate adaptation [28]. Female farmers
prefer conservative practices, and they are less willing to adopt new adaptation technolo-
gies [29]. Education can increase the likelihood of taking adaptive measures, as it makes
farmers receive timely information and learn about improved technologies [30]. Among
the psychological factors, perception and awareness of climate change are prerequisites for
their adaptive behavioral choices. The stronger the farmers’ perception and knowledge of
climate change, the more prominent their adaptive behaviors [31]. Capital and technology
represent the material base and resource conditions possessed by farmers’ households. The
human and social capital of households can improve the likelihood of adaptation to climate
change by improving farmers’ access to information and technology [30]. Institutional and
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political factors are the conditions and real constraints that farmers face in their production.
Clear land property rights will motivate farm households to adopt adaptation strategies
to cope with climate change. Land-owning farmers are more likely to adopt new tech-
nologies to cope with the negative impacts of drought than land-leaseholders [32]. Future
research should collect long-term data at the farmer level and distinguish differences in
climate change adaptation among farmers with different characteristics, such as gender
and cultural differences (Figure 5).
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4. Econometric Approaches

Given the conceptual framework outlined above, short-term and long-term responses
that depend on a specific setting are clearly all relevant to a full quantification of the role
of adaptation. As various empirical methods describe the feasibility of estimating some
or all of these responses, it is necessary to review some of the most common econometric
approaches and the emerging techniques that combine short- and long-term variations
in panel data to improve the quantification of climate change impacts (see Table 2). Our
examination of each technique involves an estimating equation, its ability to estimate
adaptation, and its potential improvements.

4.1. Cross-Sectional Ricardian Model

Early studies exploit cross-sectional variations in average temperature and precipita-
tion to estimate the long-term climate effects on agricultural outcomes across locations. For
example, Mendelsohn et al. [1] propose a cross-sectional Ricardian model to determine the
long-term equilibrium relationship between farmland value and climatic conditions. Their
approach assumes that farmers adjust their cropping structure in response to local climate
change to maximize profits. The adjustment benefits are eventually reflected in farmland
value. Specifically, the cross-sectional Ricardian model can account for both intensive and
extensive margin adaptation. It can be expressed as follows [1]:

Vit = α+ β Zit + γXit + εi (2)

i: the location,
Vit: the sum of the present value of land in the future,
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Zit: the climate variables, including average temperature and average precipitation
over the previous 30 years,

X: soil quality and socioeconomic variables,
εi: the error term,
α: the intercept term,
β: the marginal impacts of climate change,
γ: the marginal impacts of soil quality and socioeconomic variables.

Table 2. Main characteristics of models quantifying the benefit of adaptation.

Model Data Crop Type Adaptation Environmental
Conditions Advantages Disadvantages

Ricardian
model

Land values,
Long-term

realizations of
weather

No
Specific

crop

Long-term
adaptation to

climate change

Irrigation
Soil quality

No CO2 effects

Estimating
long-term climate

adaptation

Omitted
variable bias

Unable to
consider price

effects

Panel data
model

Crop yields,
farm profits, and

total factor,
seasonal/annual

realizations of
weather

Corn [2–4,33],
Wheat [2,3],
Cotton [2],
Soybean
[2,7,14],

Barley [34],
Banana [35]

Short-term to
adaptation
to weather

change

CO2 effect
Irrigation and
soil quality are
absorbed in the

fixed effect

Estimating
Short-term

weather
Adaptation,
Robust to
omitted

variable bias

No long-term
climate

adaptation,
Measurement

errors in weather
data

Hybrid
approach

Crop yields,
farm profits, and

total factor,
realizations of

weather

Corn [4,20],
Soybean [36],

Barley [20]

Medium-term
or long-term
adaptation to

climate change

Irrigation
Soil quality

No CO2 effect

Estimating
long-term climate

adaptation,
Robust to
Omitted

variable bias

Unable to
consider price

effects,
Unable to

consider climate
prediction

information

Source: [9,13].

A recent review shows that cross-sectional Ricardian studies examining climate im-
pacts on agriculture have been carried out in over 40 countries [13]. Overall, it appears
that, with a 2 ◦C increase in average global temperatures and a 7% increase in precipitation,
Ricardian results predict an 8–12% decline in net farm revenue. The Ricardian approach
has also been used to reveal that climate change impacts vary across regions. In this regard,
warming benefits agriculture in cold regions, but undermines agriculture in warm regions.

Despite these advantages, the Ricardian model has the critical weakness of omitted
variable bias. As the model cannot control some unobservable climate-related determinants
of land value [13,18], various improvements were suggested to solve this problem. For
instance, Massetti and Mendelsohn [37] adopted Hsiao’s two-step method to the Ricardian
model, thus allowing for the estimation of climate impacts on farmland value to obtain
both time-invariant (i.e., climate variables Zit in Equation (2)) and time-variant (i.e., control
variable Xit in Equation (1)) variables, using panel datasets. In the first stage, net revenue is
regressed on time-varying variables by means of a fixed-effects method. In the second stage,
the time-mean residuals obtained from the first stage are regressed on the climate variables.
This approach mitigates omitted variable bias, because the fixed effects are controlled in
the first stage.

Moreover, Drukenmiller and Hsiang [38] present the spatial first differences estimator
to control the unknown omitted variables in the Ricardian model. This approach directly
compares the outcomes in two neighboring counties. Intuitively, neighboring counties
are more likely to share some characteristics, such as soil quality, farming system, and



Sustainability 2022, 14, 13700 10 of 23

agricultural policy. By restricting comparisons to neighboring counties, this estimator can
explicitly control for the omitted variable bias. The model can be expressed as [38]:

Vi −Vi−1 = β(Zi − Zi−1) + γ(Xi − Xi−1) + (εi − εi−1) (3)

i and i − 1: the observations that are immediately adjacent to one another,
V: the sum of the present value of land in the future,
Z: the climate variables, including average temperature and average precipitation over

30 years,
X: the soil quality and socioeconomic variables,
εi: the error term,
β: the marginal impacts of climate change,
γ: measures the marginal impacts of soil quality and socioeconomic variables.
The spatial first differences model is effective in identifying neighboring counties with

regular grid data, but it struggles to identify those relying on irregular maps.
In addition to improving measurement estimations, academic efforts have focused

on modifying the farmland value variable. For instance, Moretti et al. [39] argue that the
externalities of agricultural production, such as agricultural pollution and natural resource
depletion, are capitalized into farmland value and would bias the estimates in the Ricardian
model. They propose incorporating sustainable land value into the Ricardian model to
account for the impacts of environmentally harmful intermediate inputs. Moreover, Ortiz-
Bobea [40] find that climate change has a significant impact on newer farmland value,
probably due to rising non-farming roles, such as the increasing recreational demand for
land in cooler areas. He claims that farmland rental prices can be added to correct the
bias of omitting non-farm variables. Finally, Severen et al. [19] state that, with the rising
awareness of future climate change risks, as evidenced by public opinion surveys, climate
change forecasts can be capitalized into farmland value. They develop a forward-looking
Ricardian model to test whether global climate projections would bias the model’s estimates.
Their results show that ignoring future climate expectations overestimates climate damage
by 50%.

4.2. Panel Data Model

A significant step forward in the climate econometrics literature began with the use of
time-series variations for identification in a panel data context. The key advantage of the
panel data approach lies in its ability to include fixed effects in model specifications and
the possibility for researchers to control any confounding factors, whether time-invariant
or local-invariant [17]. The specific econometric model is as follows [14]:

Vit = λi + δt + αWit + γXit + εit (4)

i: the location,
t: the year,
Vit: the farm profits,
λi: the fixed effects that capture unobservable economic, geographic, and policy

differences between locations,
δt: the year fixed effects, capturing year-to-year price fluctuations and technological advances,
Wit: the weather variables, including average annual temperature and average precipitation,
Xit: other control variables, including soil quality, per capita income, and population density,
α: the marginal impacts of annual weather fluctuations,
γ: measures the marginal impacts of soil quality and socioeconomic variables.
Based on U.S. county-level data, Deschense and Greenstone [14] predict that climate

change would result in a 25–30% drop in farm profits by the end of the 21st century. The
main reason for the controversy over Deschense and Greenstone’s [14] prediction is the
panel data model’s inability to capture farmers’ long-term adaptation to climate change.
Using a fixed-effects model is equivalent to taking the deviation from the respective mean
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of each considered variable. In fact, farmers have very limited response measures against
short-term weather shocks [13].

More recently, some authors have raised further concerns about the possibility of
identifying adaptation through panel data econometrics. Huang and Sim [41] suggest that
replacing county fixed effects with state-by-year fixed effects can capture farmers’ long-term
adaptations to climate change. Using panel data from U.S. counties, they compared the
results of the two effects and found that U.S. farmers’ long-term adaptation can offset two-
thirds of the adverse climate effects. The rationality of their approach is justified, because
short-term weather fluctuations are the same across counties within a state. Thus, state-
by-year fixed effects can absorb short-term weather fluctuations, thus leaving within-state
inter-county climate differences as the remaining form of climate variation.

Some scholars establish that adding farmers’ expectations of future climate to the
panel data model can be used to model their forward-looking perspectives [22,42]. In the
case of a continuous climate change trend, farmers can take forward-looking adaptation
measures, such as adjusting sowing dates or crop choices, by relying on their former
climate expectations. Wang et al. [22] and Sharder [42] propose a conceptual model to
reflect the process:

yit = α + β1wit + β2Ei,t−1(wit) + µit (5)

i: the location,
t: the year, yit is the yield,
wit: the current realization of weather at place i,
Ei,t−1(wit): individual i’s expectations of future weather based on accumulated knowl-

edge of previously realized weather in year t − 1,
β1: the direct effect of realized weather on yield,
β2: the ex-ante adaptation benefit.
Shrader [42] uses ENSO forecast information to characterize farmers’ expectations

of future climate change, and his results show that the effect of expected weather on
agricultural output is three times greater than the effect of realized weather. Importantly,
his study suggests that Equation (2) underestimates the total effects of weather, because
realized weather does not account for the value of forward-looking adaptation.

Panel data models have been widely applied to both food and cash crops (See Table 2).
Climate change in most regions of the world explains more than 60% of the variation in
the production of corn, rice, wheat and soybeans. Most of these regions are high-yielding
global food regions, such as the Midwest region of the United States [2], the corn-growing
belt of China [4], and the major wheat-producing regions of France [34]. In most of the
countries of Eastern and Western Europe, the effect of temperature variation on wheat yield
is more important, and this finding was confirmed in previous regional and global studies.
This is due to the fact that Eastern European countries have a continental climate, which
leads to a greater amplitude of temperature [14]. Temperature variation is an important
climatic factor explaining wheat yield variability in these regions. In most African countries,
the effect of precipitation variability on maize yield fluctuations is most pronounced in
relation to ENSO variations [43]. Changes in temperature have a relatively important effect
on maize yields. This is because, in many arid areas of the U.S. Great Plains, the water
needed to grow corn comes from irrigation, so temperature is the main influence. In the
U.S. corn and soybean harvesting regions, temperature changes explain 37% and 38% of
the variation in corn and soybean yields, respectively [2].

4.3. Hybrid Approach

To tackle the Ricardian model’s omitted variable bias and the panel model’s possible
failure to capture long-term adaptation, Burke and Emerick [4] developed a long differences
approach that seeks to exploit temporal variations in long-term climate to fully account
for adaptation. To understand how this approach captures long-term adaptations, it is
assumed that two multiyear periods are denoted by a and b, with each spanning n years,
while i denotes the region. The next step is to calculate the mean values of the dependent
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variable Y (yield) and the independent variable X (weather) in the a and b periods. These
considerations can be represented as follows:

Yip =
1
n ∑

t∈P
Yit (6)

Yip =
1
n ∑

t∈P
Yit (7)

where p = a or b, and Yip and Xip are the average yield and average weather in the a or b
periods, respectively.

Then, the two periods are differentiated, and time-invariant variables are dropped [4]:

Yia −Yib = α + βLD
(
Xia − Xib

)
+ εi (8)

where βLD identifies the yield response to long-term climate change. The general idea
behind the long differences approach stems from the gradual changes in the climate that
allow for averaging across long timespans to offer the possibility of inciting adaptation be-
haviors, because people only adjust their choice when environmental changes are predicted
to be persistent and slow.

Considering that the panel data model captures limited forms of climate adaptation,
Burk and Emerick [4] suggest that comparing the estimates from the long differences
approach and the panel data model, respectively, can identify the extent of the long-term
adaptation. The equation used to quantitatively assess the extent of adaptation is as
follows [4]:

A = 1− βLD
βPanel

(9)

where βLD represents the coefficients of climate variables from the long differences ap-
proach and βpanel reflects the coefficients of weather variables from the panel data model.
A is the extent of long-term adaptation, implying the extent to which long-term adaptation
offsets negative short-term weather shocks. Applying this approach to corn yields in the
U.S., Burk and Emerick [4] found that U.S. farmers’ adaptation mitigated 21% of the nega-
tive effect of extreme heat on corn yield. Similarly, Chen and Gong [6] note that Chinese
farmers’ adaptation mitigated 37.9% of this negative effect on total agricultural productivity.
Their conclusions indicated that long-term farmer adaptation can only mitigate the adverse
impacts of climate change to a limited degree.

In some studies, the comparison between the long differences approach and the panel
data model, regarding their performance in identifying farmers’ long-term adaptation, faces
two empirical problems. First, as these two models differ in terms of model specification
and data type, a comparison of their estimated results cannot fully capture the adaptation
value. Second, while the panel data model may partially include some adaptation to
short-term weather fluctuations, the long differences approach underestimates the value of
adaptation [9]. To resolve these issues, a hybrid approach was developed to jointly estimate
long-term climate impacts and short-term weather impacts with a single equation [20,44].
The specific econometric equation is similar to the following [20,44]:

Vit = β1Wit + β2W2
it + β3

(
Wit −Wit

)2
+ λt + µit (10)

i and t: the location and the time,
λt: the year fixed effects that capture year-to-year price fluctuations and technological

advances,
Vit: the farm profit or yield,
Wit: the weather variables,
Wit: the climate variables that vary across locations.
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It is assumed that the long-term climate response function is the outer envelope of the
short-term weather response function, with a tangent point at Wit = Wit.

Once again, omitted variable bias is a problem for this approach. The location fixed
effects cannot be added to Equation (8), as this would remove the climate differences Wit
between different locations. Bento et al. [45] propose an alternative approach, where the
location fixed effects are included to consider the tendency of long-term climate trends at a
particular location to change over a larger period of time. This can be represented as [45]:

Vit = β1(W it −Wip) + β2Wip + αi + λs + µit (11)

i and t: the location and the time,
p: a larger aggregation of t (e.g., t is the year and p is the decade),
s: a larger aggregation of t than p,
αi: the location fixed effects,
λs: the time fixed effects,
Vit: the farm profit or yield,
Wit, Wit and Wip: the weather variables, the climate variables that vary across time

and the climate variables,
β1: the short-term effects of weather deviations from climate change,
β2: identifies the long-term effects.
Here, the adaptation value can be measured as the difference between β1 and β2.
The reliance on the assumption of perfect adaptation is a potential problem in this hy-

brid approach. Perfect adaptation means that long-term climate responses are consistently
better than short-term weather responses. However, this is not common in agriculture.
First, some short-term adaptation strategies are not feasible in the long term, such as pump-
ing groundwater, as this measure is unsustainable in the long term due to groundwater
depletion [4]. Second, farmer adaptation may be limited, due to socioeconomic factors, in-
cluding credit constraints [46], a lack of information on climate change [47], cultural barriers,
technology unavailability [48], and institutional barriers [49]. These limitations generally
prevent farmers from having a higher adaptation capacity and, therefore, influence their
adoption of relevant measures.

Third, maladaptation may also occur in the long-term, referring to agricultural systems
becoming increasingly vulnerable to climate change due to the implementation of some
adaptation measures. The short-term response curve can become flatter than the long-term
curve, suggesting that farmers would rather suffer greater losses in the long-term after
the application of adaptation measures. To detect maladaptation, Lobell et al. [50] interact
the time variable with soil moisture (an index of agricultural drought) in the panel data
model to test the sensitivity of U.S. corn to drought changes over time. Their results show
that U.S. corn is becoming increasingly vulnerable to climate change, with the sensitivity
of corn to soil moisture increasing by 55% from 1999 to 2018. Similarly, by combining
periods and climate variables, Yu et al. [51] developed a flexible long differences approach
to estimate the time evolution relationship between yield and heat. Their results reveal that
maladaptation contributed to U.S. corn and soybean’s growing sensitivity to heat.

As the long-difference model requires decades of extensive spatial data, it is only
applied in U.S. and Chinese agriculture at present. Burke and Emerick [4] find that U.S.
corn producers have a very limited ability to adjustment to climate change using long-
difference analysis. In contrast, Cui [36] examined the relationship between crop acreage
changes and long-term weather changes in various regions of the U.S. He found that
climate change leads to crop substitution, and that climate change can explain 10–35% of
the increase in soybean and corn acreage in the U.S. in recent decades, with some areas that
were dry and cold becoming suitable for corn and soybean growth and experiencing a large
increase in acreage due to climate change. This rise in acreage in areas that were previously
dry and cold is due to climate change. Climate change may change the comparative
advantage of U.S. regional cropping. In cooler regions, rising temperatures make growing
corn and soybeans profitable, and farmers switch from less profitable spring wheat to
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corn and soybeans. However, in warmer regions, warmer temperatures inhibit corn and
soybean growth more severely than the more heat-tolerant winter wheat and sorghum.
Therefore, farmers will plant less corn and soybeans in warmer regions under future climate
change scenarios.

Here, we discuss the impact of the regions’ characteristics on the model’s imple-
mentation. First, the implementation of the Ricardian model is constrained by the local
political and social environment. The Ricardian approach relies on strict assumptions of
well-functioning land and credit markets. In developing countries, a large proportion of
small-scale, poor farmers are subject to credit constraints [52]. In addition, exploitation,
uncertainty about land tenure, and violent conflict can impede the good functioning of
land markets. With the failure of either of these two markets, Ricardian analysis is not a
valid tool for quantifying the impact of climate change on agriculture. Second, the long
differences model and Ricardian models are based on a cross-sectional analysis and cannot
simulate changes in the dynamics of agricultural structure; therefore, a shift in the regional
food production structure can affect the models’ implementation [53]. For example, by
increasingly specializing in commodities with low climatic sensitivity, a region should
reduce its overall climatic sensitivity. U.S. commodity programs were focused on Midwest-
ern agriculture and largely oriented toward supporting some climate-sensitive crops [54].
Third, the country’s educational attainment affects the implementation of the model. The
more educated farmers are more knowledgeable about both climate-adaptation-related
technologies [4]. Agriculture is not adapting to the climate, most likely because farmers in
these areas are less educated and cannot master the adaptation technologies. Therefore, it
is necessary to examine the role of education level in the model analysis.

5. Methodological Challenges in Valuing Adaptation

In this section, we review some of the methodological challenges and provide some
possible solutions for the researcher.

5.1. Estimating the Distributional Effects of Climate Impacts

In early studies based on the Ricardian model, all counties are pooled in a regression
to make a strong assumption regarding the spatial invariance of climate impacts [55]. For
example, confining the sample to rain-fed areas in the U.S., Schlenker et al. [56] observed
that climate change could lead to a shortage in surface water and a subsequent 50% drop in
farmland value by the end of the 21st century. This problem arises from the aggregation
bias of spatial data. Specifically, it is impossible for aggregated county data to adequately
account for variations in the local climate and other relevant variables that characterize
each farm, such as adaptation capacity and technology [57,58]. Exploring the distributional
effects of climate impacts helps to understand whether any apparent differences in the
warming effects between regions are caused by divergences in underlying exposure to
harmful temperatures or by variations in responsiveness at a given temperature level.

Hsiang et al. [46] propose a theoretical framework to examine the distributional effects
of climate impacts, according to which climate damage can be expressed as the following
function [46]:

D = f(e, x) (12)

D: the climate damage,
e: the state of the climate at a given time in a given region, such as temperature

and precipitation,
X: the economic and social attributes, such as institutions and available adaptation technology.
Economic and social attributes, and the state of the climate, interact and work together

to determine the marginal effects of climate impacts. Hsiang et al. [46] argue that climate
change has important distributional implications for two main reasons: (1) the nonlinear
effects of climate (e.g., hotter regions usually have a more unfavorable baseline climate
and tend to be located in the steeper part of the loss function), and (2) the interaction
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between economic and social attributes and climate (e.g., hotter countries tend to have
lower incomes, poorer policies, and less available technology).

Nonlinear weather terms, such as quadratic temperature and precipitation terms,
were included to explore the nonlinear effects of climate. In this regard, Kolstad and
Moore [9] contend that a nonlinear panel data model can capture farmers’ long-term
adaptation, because the estimated marginal effects of weather differ in hot and cold climates.
As heat experience enhances adaptation to high temperatures, Butler and Huybers [3]
developed a heterogeneous marginal effects panel model to explore whether hot regions
can agriculturally adapt to extreme heat better than cold regions. This model is set up as
follows [3]:

Yit = αi + β1GDDit +
(

β2 + β3lnKDDi + ηi
)
KDDit + µit (13)

i: the county,
t: the year,
Yit: the yield,
GDD: the cumulative beneficial temperature,
KDD: reflects the cumulative harmful heat,
KDD: the average cumulative harmful heat in county i over the years,
µit and ηi: the error terms,
αi: the fixed effects,
β1, β2, and β3: the coefficients of GDDit, KDDit, and the interaction term, respectively.
Equation (14) implies that the marginal effects of KDDit on Yit are as follows:

∂Yit
∂KDDit

= β2 + β3lnKDDi + ηi (14)

Equation (13) suggests that if β3 > 0, the marginal effects of KDD are smaller in hot
regions than in cold regions. Butler and Huybers [3] ran this regression for U.S counties
from 1981 to 2008 and found that corn grown in warmer areas shows a lower sensitivity to
extreme heat than when grown in colder areas. They conclude that substantial adaptation
often occurs across warm regions and that adaptation would mitigate 8% of the yield losses
caused by a 2 ◦C rise in temperature. Nevertheless, their conclusions have been criticized.
As Blanc and Schlenker [17] point out, farmers in the tropics face a trade-off between lower
average yields and lower heat sensitivity.

Furthermore, the sub-sample analysis aims to understand how the climate impacts
on agriculture differ conditionally based on socioeconomic factors. However, it has some
potential problems with regards to sample-splitting. Cai and Dall’Erba [55] note that
subgroups are defined based on the researcher’s a priori knowledge, rather than being
justified from a statistical perspective. They found that adopting various irrigation ratios
to define rain-fed and irrigated areas may lead to differences in the estimated climate
impacts, summarized as group uncertainty. They believe that machine learning methods
have significant advantages over econometrics in terms of data classification and advocate
for the adoption of these methods in future research to analyze spatial heterogeneity.
Malikov et al. [59] also highlight the infeasibility of the sample-splitting approach due to
the loss of freedom in sampling and structural information in panel data.

A few classic econometric methods, in which the sample is not split, were devel-
oped to estimate the distributional effects of climate impacts. Quantile regression has
received increasing attention at present. This approach is known to properly account for
heteroskedasticity by allowing for different coefficients at varying dependent quantiles. In
other words, a quantile regression approach, in which the heterogeneity of climate impacts
is present, is useful when the effect of the covariates does not shift the entire conditional
distribution, which is by a fixed amount. Accordingly, using Brazil farm-level data, De-
Paul [60] forms a quantile Ricardian model to explore how climate effects vary across the
conditional quantile of land value, finding that warming is more detrimental to farms with
high soil quality, because they need to pay greater adjustment costs. He argues that soil
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quality is a climate-related variable, as it determines agricultural output and changes with
land value. In other words, the quantile Ricardian model can capture soil quality, a variable
that is often omitted in empirical studies.

Moreover, Malikov et al. [59] created a panel quantile model in which time-varying
coefficients are used to estimate whether agricultural output is sensitive to climate changes
over time at different quantile levels. After analyzing the county-level panel data from
the U.S., they noticed that the U.S. agriculture’s sensitivity to high temperatures decreases
over time, especially in high-output areas. The reasons for this might include technological
advances and farmers increased adaptive capacities. Their study also reveals that the panel
data model with fixed coefficients may overestimate the adverse effects of climate change if
the ways in which the relationship between climate and agriculture evolves over time are
not taken into consideration.

When it comes to spatial econometrics, studies have frequently applied geographically
weighted regressions to explore the spatial heterogeneity of climate impacts. This is a
local spatial approach that uses neighboring datapoints to construct a local model and
then estimates the coefficients of each local model to clearly present spatial heterogene-
ity [61]. Applying this approach to U.S. agriculture, Cai et al. [62] confirmed that global
warming benefits cold regions, but harms hot regions. However, they also unmasked two
shortcomings of geographically weighted regressions: (1) the optimal bandwidth choice
influences the estimated coefficients, and (2) estimating too many coefficients leads to a
loss of freedom.

More recently, novel approaches have been formulated to estimate the spatial hetero-
geneity of climate impacts. For example, the “mean observation OLS”, designed by Keane
and Neal [21], allows for the estimated coefficients of climate impacts to vary with unit and
time. The “generalized random forests” method, contrived by Stetter and Sauer [63], can
account for complex variable interactions between weather, farm environment, and tech-
nology. These methods constitute a promising step forward in exploring the distributional
effects of climate impacts.

5.2. Exploring Adaptation Mechanisms

Adaptation practices have diverse types and levels. Some reduced-form econometric
models estimate the total effects of all adaptation channels, but these approaches generally
provide little information on how different adaptation types and levels play a role in
mitigating the harmful effects or exploit the beneficial effects of climate change. The
requirement of a specific input for adaptation communication is an unacceptable shortfall
when assessing the progress of adaptation-targeted policy interventions. In fact, there are
several empirical approaches that can explore adaptation mechanisms.

The first approach involves specific adaptation measures interacting with climate
variables, as this is conducive to understanding how these measures affect climate impacts
on agricultural outcomes. In this regard, Zaveri and Lobell [64] interacted irrigation and
extreme heat in a panel fixed effects model to identify the extent to which irrigation reduces
Indian wheat’s sensitivity to heat. Their results demonstrate that, from 2000 to 2009,
irrigation reduced the damage that high temperatures cause to wheat yield by 2.7% to 4.1%.
Using a similar approach, Wang et al. [22] further employed period interaction terms to
scrutinize the temporal evolution of the impacts of extreme temperature on Chinese corn
and soybean through irrigation expansion. They determined that irrigation contributed to
31.5% and 32.3% of the decline in corn and soybean temperature sensitivity, respectively.

Both studies verify irrigation’s important function as an adaptation mechanism to
mitigate heat sensitivity. Nevertheless, whether the role of irrigation is sustained in the
future has been completely disregarded. Global warming increases surface water evapora-
tion, inevitably increasing the cost of irrigation water. Thus, in future empirical studies,
it is necessary to fully consider rising irrigation costs and the probability of groundwater
depletion when quantifying the role of irrigation.
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The second approach involves the mediating effects analysis, in which a mediating
variable is added to the baseline model to test significant changes in the marginal effects
of the climate. This mediating variable plays a greater role if the coefficient of estimated
climate impacts significantly changes. Miao et al. [65] applied this approach to analyze
how crop and input prices affect U.S. corn and soybean’s sensitivity to high temperatures.
Accordingly, the adverse effects of climate change on both yields are significantly reduced
by controlling farmers’ responsiveness to expected input and output prices. However, the
inclusion of control variables in the model may result in biased coefficients for the climate’s
impacts on agriculture, because climate differences actually influence these variables [9].
In fact, many control variables included in the model, such as irrigation, soil quality, and
income, are susceptible to climate.

The instrumental variables approach is an effective way to tackle this problem [66–68].
Chatzopoulos and Lippert [68] use it to address the endogeneity of irrigation and farm
type selection in the Ricardian model. There are two stages in their estimation process:
(1) following the multinomial logit model to estimate the probability of a farmer choosing
an adaptation measure under specific household characteristics and climatic conditions,
and (2) using estimated probability as an instrument variable of adaptation measures.
In addition, intra-annual weather fluctuations are regarded as an exogenous variable,
as farmers have a limited choice of response measures to tackle weather shocks, which
are unforeseen and random in most cases [17]. Nonetheless, the instrumental variables
approach contains the powerful assumption that it is impossible to affect agricultural
outcomes through any channels other than the considered one. Understandably, it is rather
demanding to meet this assumption, and the treatment of intra-annual precipitation, as a
strictly exogenous variable, has been criticized as changing relative crop prices [69].

5.3. CO2 Fertilization Effect

Rising CO2 concentrations can efficiently enhance crop photosynthesis and water use
through fertilization. Agricultural systems’ increased resilience to climate change is not only
the result of adaptation but may also be related to the CO2 fertilization effect. For instance,
Moore et al.’s [70] meta-analysis reveals that excluding CO2 concentration in a 3 ◦C warming
scenario would overestimate the adverse climate effects by 14% for rice and 25% for
wheat. Unfortunately, almost all empirical studies ignore the CO2 effect, probably leading
to an overestimation of climate change’s adverse effects across the board. Accordingly,
Mendelsohn and Massetti [13] acknowledge that the cross-sectional Ricardian model cannot
control the CO2 effect, because the CO2 concentration does not vary across space.

Using the panel data model, Taylor and Schlenker [71] attempted to identify the
crop yield’s response to rising CO2 concentrations. Using OCO-2 satellite and Carbon-
Tracker data, they noticed that, with every 1% increase in CO2 concentration, U.S. corn and
soybean yields increased by 0.5%, 0.6%, and 0.8%, respectively. They further controlled
for environmental pollution, vegetation intensity, and some economic confounders in the
model. Their approach relies on a long cycle so that CO2 concentration reaches a uniform
spatial distribution. Although it is possible to analyze the short-term CO2 effect through
the panel data model, a potential shortfall of the approach is the uncertainty regarding
whether some agricultural output determinants associated with the CO2 fertilization effect
would bias the estimates. Additionally, as the timescale of Carbon-Tacker’s recorded data
is only five years, it is unclear to what extent these relationships between yields and the
CO2 fertilization effect can be extrapolated in the long term under climate change. Hence,
it is important to obtain longitudinal panel data on the CO2 fertilization effect.

Finally, existing studies focus on quantifying the CO2 effect’s benefits for crop yields,
but pay little attention to the negative impacts of CO2 on crop quality [72]. Nonetheless,
several pioneering efforts have been made in academia to quantify the impacts of climate
change on crop quality. For example, Kawasaki and Uchida [73] statistically calculated
the relative contribution of heat-triggered changes in Japanese rice yields and quality to
farmer income, and divided their rice data into three classes, according to the quality and
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the share of each quality level in the total output. Their results demonstrate that extreme
heat significantly affects rice quality and that changes in this quality affect farmer income
far more than yield changes. A similar approach was applied to study apple [74] and
wine quality [75]. Although not related to CO2 concentration, these studies provide useful
references for exploring the effect of this concentration on crop quality in future studies.

6. Conclusions and Future Work

This paper reviews the rapidly growing number of articles on how climate change
impacts agriculture, especially from the perspective of farmer adaptation. Specifically, it
summarizes the main empirical methods, the improvements, and the challenges in the
field (Figure 6). In the first section, adaptation extent was characterized into no adaptation,
intensive, and extensive margin adaptation. Theoretically, it is difficult to measure the
value of adaptation because this process involves identifying true adaptation measures,
considering the costs, and estimating the rate and exploration mechanism that influences
farmers’ adaptation decisions.
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Figure 6. Methodological challenges and solutions in climate adaptation research.

In the second section, we compared the key contemporary econometric approaches
for estimating the impacts of climate change on agriculture, while considering farmer
adaptation perspectives. The cross-sectional Ricardian model can account for both intensive
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and extensive margin adaptation but is susceptible to omitted variable bias. Recent articles
provide some suitable ways to address this issue, including the panel Ricardian model, the
spatial first differences model, and correcting land-value variables. The panel data model
solves the issue of omitted variables through the use of location and time fixed-effects
but fails to incorporate farmer adaptation into the impact estimations. Adding farmers’
future climate expectations to the model can capture their forward-looking adaptation. The
hybrid approach, designed to exploit panel data variations in both climate and weather,
combines the strengths of the Ricardian and panel data methods. In addition to considering
long-term farmer adaptation, this approach can mitigate omitted variable bias, but its
perfect adaptation assumption is considered untenable. We also summarized the variables
that should be considered in the empirical model (See Table 3).

Table 3. Summary of the variables to be considered in the empirical model.

Outcome Variables Climate Variables Environmental Variables Socio-Economic Variables

Crop quality
Crop area

Cropping frequency
Livestock profit
Cash crop yield

Intermediate inputs

Other climate variables: wind
speed, humidity, so

lar radiation, etc.
Weather Forecast Information

Extreme weather:
drought, heat and flooding, etc.

Greenhouse Gas
Air pollution: ozone and

PM2.5
Surface water supply

Biodiversity

Agricultural Policies
Price Effect

Crop insurance and subsidies
Costs of irrigation

Land size
Farmers’ education level
Property rights of land

The third section describes the challenges in quantifying the value of adaptation and
some suitable solutions. The first challenge lies in estimating the distributional effects of
climate impacts. The differences in socioeconomic factors, baseline climate, and adaptation
levels in different units can cause biases in spatial data. Therefore, it is necessary to reveal
the spatial heterogeneity of climate impacts through a disaggregated analysis. Although
the sub-sample analysis has become a standard method to analyze spatial heterogeneity in
climate econometrics, it has potential drawbacks, including grouping uncertainty and free-
dom losses. Researchers are recommended to use quantile regression, spatial econometrics,
and machine learning to flexibly address this problem.

The second challenge involves understanding adaptation mechanisms. Simplified
formal econometric methods provide little information about the specific adaptations that
play a role in this and offer few policy implications as a result. The interaction term model,
the mediating effects analysis, and the instrumental variables approach serve to explore
the adaptation mechanisms and can inform future empirical studies. The third challenge
concerns incorporating the CO2 effect. Ignoring this effect leads to an overestimation of the
climate-related losses and obscures the value of adaptation. The spatial invariance of CO2
concentration makes it infeasible to address this issue using cross-sectional models. As
such, the panel data model is a viable way to identify the short-term CO2 effect, but more
academic efforts should be made to examine the long-term impacts, especially regarding
crop quality.

A spatial correlation of samples, irrigation costs, and climate variable measurements
are three important externalities that help to highlight knowledge gaps and potential
model development. First, spatial correlation refers to the existence of interactions between
samples in proximity to each other. For example, agricultural policies in one county can
indirectly affect agricultural production in surrounding counties. Pest and disease general
production are regional and not concentrated within a particular county. As variables that
are spatially correlated (e.g., agricultural policies and pest and disease disasters) affect local
crop growth and are also correlated with local climate, ignoring spatial correlation can also
lead to biased model estimation results [17]. Spatial econometric methods are an effective
tool to control for spatial correlation. Therefore, implementing land-value measurements
in a panel spatial econometric model can better mitigate the bias of omitted variables in
the Ricardian model. Second, rainfed and irrigated areas are divided into agricultural
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areas, and the precipitation variable can better measure the water supply to crops in the
rainfed areas, but it is not reasonable to measure the water supply to crops in the irrigated
areas. The price of water is not the same for rainfed and irrigated areas. Crop production
in rainfed areas is essentially zero-cost for natural precipitation, while crop production in
irrigated areas requires groundwater extraction at a higher cost. Water supply patterns
and costs are different between the two types of areas, and land values are not measured
in the same way. Therefore, future studies need to further integrate the cost of adaptation
into land values [13]. Third, empirical studies usually measure climate using interval
cumulative temperatures. This approach can examine the non-linear effects of temperature
on yield, but the disadvantage is that it does not distinguish between crop growth stages
and it is not possible to know from where the climate effects originate. Seasonal differences
in climate change are also evident; for example, the increase in climate in China is greater
in winter than in other seasons. Further research is needed to better model the effects of
seasonal temperature changes on crops in the future.

We provide three central recommendations for future research based on our analysis.
First, satellite remote sensing data enable empirical models to more accurately estimate
the impacts of climate change on agriculture. Specifically, satellite remote sensing data
record local information on specific crops, including crop-growth cycles, planting frequency,
and crop distribution. Such information is useful to understand crop-level adaptation in
economics. However, remote sensing data have some impeding external characteristics,
such as being massive, heterogeneous, and multi-source, as well as some difficult internal
characteristics, including being highly dimensional, multi-scale, and not smooth. Thus,
as it is difficult to directly apply these data to econometric methods, the process requires
collaborations with machine learning and geographic remote sensing scientists.

Second, the study of adaptation involves empirically examining farmers’ choices,
based on one or more adaptation measure, without verifying the relationship between
the different measures adopted by farmers. However, other adaptation measures can
influence the outcome of the studied adaptation measure, meaning that there may be a
complementary or alternative relationship between some of them. Unfortunately, most
existing studies ignore the potential presence of such a relationship. Annan and Schlenker’s
study [76], which reveals that the adoption of crop insurance overthrows other adaptation
measures, is the sole exception. Examining the relationship between different adaptation
measures has implications for the exploration of farmer adaptation mechanisms, which
should be a focus of future research.

Third, empirical approaches should be better integrated with theoretical models
that describe an agent’s expectations of a changing climate. Econometric models only
measure the relationship between agriculture and historical climate trends. However,
future climate trends may affect agriculture, as farmers’ choices partially depend on their
climate expectations. In this regard, Kelly et al. [26] used a conceptual Bayesian model
to simulate the effects of future climate shocks and observed that farmers are likely to
acquire knowledge by learning about previous climate shocks to better cope with future
climate change. In addition to past experience, TV programs, relevant training, and
weather forecasting techniques give farmers increasing access to information about future
climate fluctuations. Thus, the availability of information can be incorporated into new
theoretical models.
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