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Abstract: This study aimed to find the optimal thickness combination of the two-layered absorbing
system combinated with an expanded polystyrene (EPS) cushion and a soil layer in a steel shed
under dynamic loadings. The coupled Smooth Particle Hydrodynamic method (SPH) and Finite
Element Method (FEM) were introduced to simulate the impact of the rockfall against the steel shed
with a two-layer absorbing system. By comparing the numerical results with test data, the coupled
numerical model was well validated. Through the verified numerical model, a series of numerical
experiments were carried out to find the optimal combination for the two-layered absorbing system.
The values of the EPS layer thickness as a percentage of the total thickness were set as 0% (P1),
20% (P2), 40% (P3), 60% (P4), 80% (P5), and 100% (P6). The results show that the coupled FEM—-
SPH method was an effective method to simulate rockfall impacting the steel rock shed; P4 (0.6 m
thickness EPS cushion and 0.9 m thickness soil layer) was the most efficient combination, which can
significantly reduce the structural displacement response by 43%. A two-layered absorbing system
can effectively absorb about 90% of the total energy. The obtained results yield scientifically sound
guidelines for further research on the design of steel sheds against rockfall.

Keywords: buffer capacity; rockfall; two-layered absorbing system; coupled SPH-FEM model;
optimal combination

1. Introduction

Rockfall hazards are natural disasters in mountainous areas. It poses a serious threat
to engineering structures such as highways, railways, bridges, buildings, etc., and the
huge impact force of falling rocks will destroy these structures [1,2]. There are mainly two
protective structures used to reduce this hazard: passive ones and active ones. Because it is
difficult to judge the potential source area of rocks, it is difficult to implement the active
ones, and engineers usually choose the passive ones. Steel rock sheds are regarded as
passive protective structures. Compared with reinforced concrete sheds, they have unique
advantages such as low dead weight and fast construction speed and are widely used to
prevent rocks from falling [3,4]. Most steel rock sheds are made of a steel column, steel
beam, steel roof slab, and a buffer layer on top of the steel roof slab [5]. The buffer layer
can effectively dissipate the rockfall impact energy, so as to reduce the maximum impact
on the steel shed [6-8].

Conventionally, sand and soil, which are relatively cheap, are used as a cushion
material; however, this kind of cushion has numerous disadvantages. The sand layer has
to be very thick to form enough resistance capacity, which in turn makes the shed too
much dead weight. Sheds also need massive foundations to support the heavy sands,
which are impractical in narrow mountainous areas. In addition, the removal of fallen
rocks and the replacement of cushion materials are difficult. In recent years, a two-layered
absorbing system combinated with an expanded polystyrene (EPS) cushion and a soil layer
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has been designed. It was found that the two-layered absorbing system provides better anti-
impact effects and, at the same time, it makes the structure dead-weight small. However,
the percentage of the thickness of the EPS layer to the total thickness of the two-layered
absorbing system is rarely studied, which leads to a poor buffering effect of the system
in practical engineering [6,9]. Therefore, in order to provide some helpful guidelines for
designing a two-layered absorbing system in steel sheds for the risk mitigation of rockfall,
it is urgently required to optimize the two-layered absorbing system.

In recent years, a series of experimental studies have been conducted in the field of
rock shed protection. Schellenberg et al. introduced various types of protective cushions
to search for better absorbing effects [10]. Calvetti et al. conducted a series of physical
experiments to study the shock absorption effects of soil stratum, including the effect of
various parameters such as falling height, block mass, and cushion thickness [11]. Bhatti
et al. performed a real-scale experiment of rockfall impacting a reinforced concrete shed to
study the dynamic responses [1]. Wu et al. developed a physical experiment of rockfall
impacting a steel rock shed with a two-layered absorbing system [12]. The above studies
are of positive significance in resisting rockfall impact. However, these studies are mainly
focused on a single buffer layer, and there are few studies on the optimization thickness
combination of a two-layered absorbing system. To date, in engineering practice, several
empirical methods have been proposed to estimate the rockfall impact force, such as the
Chinese, Swiss, and Japanese design codes [13-15]. He et al. proposed the calculation
formula of impact forces based on the elastoplastic collision theory and the Hertz contact
theory [16]. Yu et al. also established an impact force model [17]. The kinetic energy of the
rock block, the impact angle of the block, and the modulus of elasticity of the rock were
analyzed using the Buckingham theorem. Their results show that the buffer layer had a
significant effect on the magnitude of the impact force. These methods are simple to use for
a single buffer layer. However, these methods are not applicable to the combined absorbing
system [12].

Because of its economy and maturity, the numerical method has gradually become
the main research method for this kind of problem. In the present study, the numerical
methods for analyzing the combined absorbing system are mainly as follows: (1) FEM
(Finite Element Method); Wu et al. carried out numerical simulations to compare the impact
forces obtained by the single soil layer and the two-layered absorbing system [12]. Ouyang
analyzed the effects of various factors such as cushion strength and the thickness of the soil
cushion on the impact force [6]. However, the FEM simulation of the soil layer is prone to
grid distortion, which leads to a rough result. (2) DEM (Discrete Element Method); Zhang
et al. employed a DEM model to study the energy propagation during rockfall impact on a
granular material [18]. Shen investigated the various rock shape’s effects on the response of
block impacts against a buffer layer [19]. However, it is difficult to calibrate particle material
parameters with DEM [20]. Moreover, the soil layer consists of an enormous number of
fine particles, and the computer operation efficiency will be reduced. These numerical
studies are useful for understanding the mechanical mechanism of steel sheds impacted by
rockfall. However, these methods are not suitable for simulating steel sheds with buffer
layers impacted by rockfall. Moreover, it is still difficult to quantitatively conclude the
dynamic response of the combined absorbing system under rockfall impact.

Above all, the current research shows that the two-layered absorbing system has
a significant influence on the response of the steel shed, but quantitative studies of the
optimal thickness combination of the two-layered absorbing system combinated with EPS
cushion and soil layer are lacking. So, it is urgently required to study the optimal thickness
combination of the two-layered absorbing system based on a more robust numerical tool.

Smoothed particle hydrodynamics (SPH) is a convenient way to describe the particle
physics features and capture the sup-large deformation of the soil layer [20,21]. For the
finite element simulation of the steel column, steel beam, and steel slab, its algorithm
is mature, which can ensure sufficient accuracy. The coupled FEM-SPH approach can
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combine the advantages of SPH for simulating the sup-large deformation of soil and FEM
for solving structural dynamics [20,22].

In this study, the coupled FEM-SPH method is used to find the optimal thickness
combination between EPS and the soil layer under dynamic loadings. The content of this
study is outlined as follows: In Section 2, a coupled SPH-FEM method in the LS-DYNA
platform is introduced. In Section 3, a typical experiment of steel shed impacted by rockfall
is described. The coupled FEM-SPH model can successfully reproduce the scale experiment.
Section 4 conducts a series of numerical tests to find the optimal thickness combination for
the two-layered absorbing system. Section 5 summarizes several conclusions.

2. Simulation Approaches
2.1. Brief SPH Description

The basic idea of the SPH method is to use a group of arbitrarily distributed particles
to provide accurate and stable numerical solutions for the partial differential equations,
which carry field variables such as density, mass, and stress tensor [23]. The SPH method
can describe the mechanical state of the entire system by tracking the mechanical properties
of each particle at any moment. The governing equations can be converted to the SPH form
in two steps, including kernel approximation and particle approximation. In this way, the
field variables can be recommended [23]:

() = [ YW=, mar M
Q

where f(r) is a function of the particle position vector r, r’ is a neighboring particle position
vector in (), () is the support area of a particle with position vector r, and W is the smoothing
kernel function. In this study, the cubic B-spline function is selected as the smoothing kernel
function [24]:

W(q,h) =ap Pi1<g<2 2)

where g is the normalized distance between particles rand v/, g = |r — t'|/h, and h is the
smoothing length defining the size of the influence area of W. ap is the normalization factor;
in three-dimensional space, ap = 10/ (77th?).

The particle approximation discretizes the continuous form of the SPH kernel approxi-
mation into the sum of adjacent particles by evaluating the field variables of the particles
within the domain of influence as follows [24]:

m: N
(f(r1)) = =LY f(xj)W(x; — 1}, h) ®)

Pij=1

where N is the total number of particles within the influence domain of the particle at point
r, p; is the density of neighboring particles, and m; is the mass of the neighboring particles.

The governing equations for dynamic fluid flows can be written as a set of partial
differential equations [24]:

N N l @
Vi i
= B+ 29+

=1 j j
where W; is the influence area of particle i with respect to particle j. v;; is the velocity vector
of particle i with respect to particle j. F#*" are external forces [25].
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2.2. Coupled SPH-FEM Algorithm

The key problem of the coupled FEM-SPH method is dealing with the interface
between FEM elements and SPH particles. The contact form is a node-surface contact, and
the tangential impact force is obtained through the friction law. The normal impact force is
obtained through the penalty contact algorithm [24]. The flowchart of the coupled SPH-
FEM method is shown in Figure 1. At the beginning of every time step, it is determined
whether any SPH particles have penetrated the FEM surfaces. If no penetration occurs, no
processing is required, and these systems work as two separate processes. Otherwise, as
shown in Figure 2, a contact force is generated between the SPH particles that meet the
penetration conditions, and the parameters of the FEM elements and SPH particles will be
updated [22].

The normal contact force f,, is calculated as follows [22]:

fo= (knd + cné)n (5)

where §, ¢y, 5, kn, and n are the normal overlap, the normal damping coefficient, the relative
normal velocity, the normal spring stiffness, and the unit normal displacement vector,
respectively.

The tangential contact force f; is calculated as follows [26,27]:

ket + cidy); if|fn|p > ’ktst + Ctst‘
fi = ke St+c bt

)|f |y; otherwise ©
‘kt5t+ct$t‘ n ]’l/

where k¢, 8¢, p and c; are the tangential spring stiffness, the incremental tangential displace-
ment, the friction coefficient, and the tangential damping coefficient, respectively. In this
paper, both ¢, and ¢ are set as 0 [26].
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Figure 1. Flowchart of the coupled SPH-FEM method [27].
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ks and k; are calculated as follows [27]:

Ks?
kn = ke = k17 @)
where kj is a penalty scale factor and is set as 0.1 [26], s is the segment area, K is the bulk

modulus, and V is the element volume.
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Figure 2. The finite elements in contact with the SPH particles.

3. Verification of Coupled SPH-FEM Model
3.1. Experimental Overview

The test shed structure is shown in Figure 3. The shed structure model consisted of a
steel column, main girder, secondary beam, steel roof slab, and the two-layered absorbing
system. The two-layered absorbing system consisted of EPS (30 cm thickness) and sand
(40 cm thickness), in which EPS was laid under the sand. Specifications and material
parameters of test shed components were shown in Table 1 [12]. The bottom of the steel
column with a height of 0.7 m was fixed on the ground, and the top of the steel column was
welded with a steel plate. The steel plate was connected with the lower flange of the main
girder by bolts, the secondary beam was welded with the main girder, and the main girder
was connected with the steel roof slab by welding. The absorbing material was replaced
after each impact test. The impactor was a concrete polyhedral block [28]. The axial strain
of the main girder and the secondary beam was measured to reflect the dynamic response
of the shed under the impactor impact. As shown in Figure 4, the strain gauges 1 and 2
were attached to the lower flange of the main girder, 0.09 m and 0.17 m away from the
center of the shed, respectively [12].

or

‘

Steel column

Figure 3. Test model of steel shed structure.
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Table 1. Main component specifications.
Component Name Specifications Materials

Steel column HW300 x 300 x 20 x 20 Q345

Main girder HW300 x 300 x 6 x 6 Q345

Secondary beam HW150 x 150 X 6 X 6 Q345

Steel roof slab 6 mm thickness Q345

Two-layered absorbing system 30 cm thickness EPS + 40 cm thickness sand EPS + Sand
Impactor Standardized test block Concrete + Cladding steel plates
4m

Main girder

w¢¢

> <
043 m 2m

Figure 4. Bottom view of the steel shed and arrangement of the strain measuring points.

In the experiment, the impact test was conducted in accordance with the European
code [28]. The impactor was a concrete polyhedral block with a mass of 0.25 t confined
by steel plates, and the impact position of the impactor was the center position of the roof
slab of the shed [12]. Through the gantry crane, the impactor was raised to the heights
of 3 m (7.5 k] impact energy), 6 m (15 k] impact energy), and 8 m (20 kJ impact energy),
respectively. A high-speed camera was placed right ahead of the test model to record the
process of impacting with a frequency of 500 Hz. Through a dynamic acquisition system,
the time-strain curves of beams were measured to obtain the dynamic response, with the
acquisition frequency of 1000 Hz [12].

3.2. Numerical Model
3.2.1. Numerical Model Description

The calculation model is shown in Figure 5. The steel column, main girder, secondary
beam, and steel roof slab adopted shell elements with the complete integration of three/four
nodes, and the mesh size is 0.05 m. The EPS and impactor adopted solid elements with
the complete integration of six nodes, and the mesh sizes are 0.06 m and 0.04 m, respec-
tively. Due to the direct impact of the impactor, the sand cushion will experience a large
deformation, which can easily cause mesh distortion and lead to the instability of the calcu-
lation [20,27]. Therefore, SPH simulation is adopted for sand, and the spacing between the
adjacent SPH particles is about 0.05 m.
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Impactor

Steel roof slab

Y Steel column

Z Main girder \ Secondary beam

Figure 5. Numerical model of steel shed structure.

3.2.2. Constitutive Material Models

The properties of materials are shown in Table 2. Figure 6 shows the stress—strain
relations for sand, EPS, and steel material. The constitutive models are briefly outlined
below.

Table 2. Material parameters for simulation.

Elasticity

0 . 3 . .
Material Density (kg/m?) Modulus (Pa) Poisson Ratio Reference
Sand 2000 10.0 x 10° 0.060 [1]
EPS 22 0.0069 x 107 0.12 [29]
Steel 7850 200.0 x 10° 0.300 [20]
Impactor 2515 30.0 x 10° 0.300 [27]
A \ O + (MP )
a
o4 (MPa) O 1 (MPa) >
100 075 050 025 08 06 04 02 J, =300 freemmes — H %
«— y ' - 1100 g -« t + f 5 , /EA ;
] = L a0e 104 ) ‘, ! .
1300 "(l)i i Y % &
1400 Z s Vavs
1500 120 H_Aoeee £ =300
v v — ’

(a) (b) (c)
Figure 6. Constitutive model curve of material: (a) sand; (b) EPS; (c) steel.

Sand cushion. Figure 6a shows the constitutive model for the sand. The stress—strain
relationship is described in the following expression [1]:

Oeand = 5062, 8

where 0, is the stress and ¢,,,; is the volumetric strain. LS-DYNA material model
MAT_CRUSHABLE_FOAM is used, which has a good simulation effect [1,20].
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EPS. As shown in Figure 6b, under a uniaxial compression test, the EPS material
will experience three stages: the linear elasticity stage, the yield stage characterized by
platform stress, and the compaction stage where stress rapidly increases with strain [29].
MAT_CRUSHABLE_FOAM was also selected as the calculation model to simulate the
mechanical properties of the EPS material during the impact process [29].

Steel. As shown in Figure 6¢, for the steel column, main girder, secondary beam, and
steel roof slab, an elastoplastic model is used, and the plastic hardening modulus H’ is set
to 1% of elastic modulus Es [1,20].

Impactor. A rigid material model (*MAT_RIGID in LS-DYNA) can be used to simulate
some small deformation structures that do not require excessive attention, which can reduce
computer time [27].

3.2.3. Boundary Conditions

The bottom of the steel column is constrained by three translational degrees of free-
dom [12]. The steel roof slab and main girder/secondary beam, steel column, and main girder
are restricted by welding (Contact_Spotweld in LS-DYNA) [12]. Erosion contact is defined
between the impactor and sand SPH particles (Contact_Eroding_Nodes_To_Surface in LS-
DYNA), and the friction coefficient is set at 0.4 [30]. The interface between EPS and sand SPH
particles is defined as the node-to-surface contact (Contact_Automatic_Nodes_To_Surface in
LS-DYNA), and the friction coefficient is set as 0.4 [30]. The EPS finite element and the steel
roof slab element adopt surface-to-surface contact (Contact_Automatic_Surface_To_Surface in
LS-DYNA), and the friction coefficient is set at 0.3 [12].

Before the impact, gravity is applied to the entire shed structure [20]. The impact
case with an impact height of 8 m is simulated. The impact time is defined as 200 ms
when the impactor starts timing when it comes into contact with the sand [24]. During the
impact process, the automatic time step is used. It means that the program automatically
calculates the limit value of the time step. In addition, a viscous damping constant of 0.005
is considered, which is used for the lowest natural vibration mode [1].

The simulations are conducted on a 64-bit assembled Desktop with an Intel Core
i7-10700K 2.9 GHz processor and 8 GB of Kingston DDR4 RAM (random access memory)
bank. Run time refers to the real-world time, which is calculated from the onset of analysis
to its end. In this numerical model, the run time is about 3 h.

3.3. Verification of Accuracy of Numerical Analysis

The numerical analysis results for time histories of strain at the main girder and
secondary beam are compared with the steel shed test. From Figure 7, the waveforms of
the test curve and simulation curve are very similar. The maximum strain of the lower
flange of the main girder is only 520 pe, indicating that the main girder is still in the elastic
stage (the elastic limit strain is 1500 pe), and it still has a large residual bearing capacity.
Near the impact point of the impactor, the maximum strain of the main girder is much
greater than that of the secondary beam.

A more detailed comparison is shown in Table 3. It can be seen from Table 3 that
the maximum error of the maximum strain in the numerical simulation and test is only
9.0%, and the maximum error of the minimum strain is 12.2%. In this study, the time
frame between the 1st strain being 0 and the 2nd strain being 0 is denoted as a wave crest
propagation period. It can be seen from the table that the maximum error of the wave crest
propagation period of the numerical simulation and test is only —8.3%. The six groups of
key data are compared, of which the error of only one group is greater than 10%, but less
than 13%.
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Figure 7. Comparison of the strain time history: (a) strain gauge 1; (b) strain gauge 2.
Table 3. Comparison of strain obtained from the experiment and simulation.
. Maximum Strain Minimum Strain Wave crest Propagation Period
Strain
Gauge (ue) (ue) (ms)
Test Simulation Error Test Simulation Error Test Simulation Error
1 490.6 522.9 6.6% —81.1 —88.1 8.6% 54.2 49.7 —8.3%
2 456.5 497.8 9.0% -70.3 —78.9 12.2% 52.5 48.5 —7.6%

The final penetration of the impactor into the sand cushion is shown in Figure 8. The
penetration depth in the experiment is 0.16 m [12], while that in the simulation is 0.17 m.
The error of the penetration depth between the experiment and the simulation is 6.25%.

Figure 8. The final penetration of the impactor into the sand cushion.

Through the above comparison, the numerical model can be used for subsequent
dynamic analysis.

4. Numerical Simulation of Steel Shed under Block Impact

Based on the above-validated simulation model, extensive numerical simulations are
performed to investigate the dynamic response of steel sheds considering the effects of the
different combined absorbing systems. The impact process, mid-span displacements of the
steel shed, and the energy dissipation mechanism are summarized and discussed.

4.1. Computational Cases

Based on the statistical results [20], the average impact velocity of 90% of falling
rockfalls is 25 m/s. Therefore, the impact velocity of the rockfall is set as 25 m/s. The mass
of the rockfall is set to 0.75 t in the design energy level (elastic limit). It is stipulated that
the thickness of the backfill soil laid on the roof plate of the shed should not be less than



Sustainability 2022, 14, 13680

10 0f 13

(¢)0.057 s

1.5 m [30], so the thickness of the two-layered absorbing system in the model is set as 1.5 m.
The thickness of EPS is set as 0% (P1), 20% (P2), 40% (P3), 60% (P4), 80% (P5), and 100%
(P6) of the total thickness of the two-layered absorbing system, respectively.

4.2. Results and Discussion
4.2.1. Impact Process

Figure 9 illustrates the dynamic impact process of a 0.75 t impactor (EPS thickness =
40% of the total thickness of the buffer layer). As shown in Figure 9a, when t = 0.0 s, the
impactor begins to invade the sand cushion. As shown in Figure 9b, when t = 0.013 s, it
can be observed that the stress wave propagates radially downward from the impact point
in the sand cushion. As shown in Figure 9c, when t = 0.057 s, the vertical displacement of
the impactor reaches a maximum value of 0.508 m. During the transmission of the stress
wave, the elastic modulus of the material changes from large to small in the propagation
medium, and the maximum stress is located in the contact zone between the EPS and
the sand cushion, with a value of 5.07 MPa. As shown in Figure 9d, when t = 0.2 s, the
impact process of the block tends to be static, and the vertical block displacement is 0.499 m.
Finally, a bowl-shaped pit forms in the sand layer. Due to the distributed stress acting on
the EPS cushion, a small sag deformation appears in the EPS cushion.

Effective Stress (v-m) 2.843e-01
2.558e-01
2.274e-01
1.990e-01
1.706e-01
1.421e-01
1.137e-01
8.528e-02
5.685e-02
2.843e-02
0.000e+00 _|

Effective Stress (v-m)

3.541e+00

3.187!000:|
2.833e+00

2.479e+00
2.125e+00
1.770e+00
1.416e+00
1.062e+00
7.082e-01
3.541e-01
0.000e+00 _|

(@) 0.0s (b)0.013 s
5.072e+00
4.565e+00
4.058e+00
3.550e+00
3.043e+00
2.536e+00
2.029e+00
1.522e+00
1.014e+00

5.072¢-01 :I 5
0.000e+00 _| [N

Figure 9. Dynamic impact process of a 0.75 t impactor (EPS thickness = 40% of the total thickness of
the buffer layer) (stress unit: MPa): (a) t=0.0s; (b) t =0.013 s; (¢) t = 0.057 s; (d) t = 0.2 s.

Effective Stress (v-m) Effective Stress (v-m) 3.373e+00
3.035e+00
2.698e+00
2.361e+00
2.024e+00
1.686e+00
1.349e+00
1.012e+00
6.745e-01
3.373e-01 ]
0.000e+00

(d)0.2s -

4.2.2. Center Displacement of Main Girder

Figure 10 shows the center displacement of the main girder of the steel shed. The center
displacement of the main girder is mainly generated by two parts, one is the deadweight of
the buffer layer, and the other is the impact force. As shown in Figure 10a, when t = 0, the
center displacement of the main girder is not 0, which is mainly caused by the dead weight
of the buffer layer. With the increase of time, the center displacement of the main girder in
each case increases first and then decreases.

As shown in Figure 10b, with the increase in EPS thickness, the center displacement
of the main girder first decreases and then increases, and when EPS thickness is 40% of
the buffer layer thickness, the center displacement of main girder reaches the minimum
(6.9 mm). Compared with the single sand cushion, the combined cushion with an EPS
thickness of 0.6 m reduces the structural displacement response by 43%. The larger the
thickness of the sand cushion is, the smaller the impact force will be, but the corresponding
dead weight of the cushion will also increase. When the thickness of the sand cushion is
60% of the buffer layer, the adverse impact reaction to the structure will be minimized.
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Figure 10. Center displacement of main girder of steel shed: (a) center displacement time history;
(b) maximum center displacement under each case.

4.2.3. Steel Shed Energy Dissipation

Upon impact, the total energy (Et) of the block is mainly converted into residual block
kinetic energy (Ex), the internal energy of the EPS layer (Eg), the internal energy of the
sand layer (Eg), the internal energy of the steel components (Eg), and the friction energy
(Ep). The total energy (Et) is defined as:

Et = Eo + Moghy )

where M) is the mass of the block, h is the final vertical displacement of the block, and Ej
is the initial kinetic energy of the block.

Take a P3 case as an example (EPS thickness = 40% of the total thickness of the buffer
layer). The evolution of all of the energy components is shown in Figure 11a. Upon impact,
Ex decreases rapidly, and the sand cushion dissipates a large part of the Ex, accounting
for about 76.3% of the Ex. The EPS layer also dissipates about 13.7% of the Ex. There is
almost no dissipative impact energy in the steel components. The two-layered buffer layer
consumes 90% of the total energy. In addition, according to statistics, the percentage of
two-layered buffer layer energy consumption in total energy under six cases is 91.4% (P1),
90.1% (P2), 90% (P3), 88.8% (P4), 88.5% (P5), and 88.2% (P6) respectively, which indicates
that the two-layered buffer layer is very effective in protecting the steel shed structure.
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Figure 11. Evolution of the energy of steel shed: (a) evolution of the energy of P3 case (EPS thickness
= 40% of the total thickness of the buffer layer); (b) energy consumption of the buffer layer.

Figure 11b also shows the effect of the EPS thickness on the energy consumption of the
two-layered absorbing system. With the increase of EPS thickness, the energy consumption



Sustainability 2022, 14, 13680

12 0f13

of the EPS layer increases, and the rate of the increase of energy consumption increases as
the EPS thickness increases. In addition, it can be seen that the energy dissipation effect of
the sand buffer layer is better than that of the EPS buffer layer with the same thickness, and
the key role of EPS is to reduce dead weight.

The coefficient of restitution (COR) is also an indicator of the material energy dissi-
pation capacity [8]. The COR is calculated from the impact and rebound velocities using
COR = V;/Vye, where V; is the impact velocity of the falling rock at the moment of contact
with the cushion, and V. is the rebound velocity [8]. Table 4 shows COR in some cases. As
can be seen from Table 4, the simulation in this study is consistent with the test, and the
maximum error between the simulation and the test is 5%. The energy dissipation capacity
of the pure EPS foam layer is the worst, while the energy dissipation capacity of the pure
soil layer is the strongest.

Table 4. COR in some cases.

C Thickness Ratio COR E
ase of EPS Test Simulation rror
P1 0 01[8] 0 0
P6 1 0.42 [8] 0.4 5%

5. Conclusions

This paper aimed to quantitatively find the optimal thickness combination between
EPS and soil layer under dynamic loadings. In order to solve the difficulty of the super
large deformation of the two-layered absorbing system with the finite element method, the
coupled Smooth Particle Hydrodynamic method (SPH) and the Finite Element Method
(FEM) are introduced. SPH particles were used to simulate the soil layer which experienced
a super large deformation. A numerical model for a steel shed impacted by a block was
established and validated. The conclusions are drawn as follows:

The stress wave propagates radially downward into the cushion layer and then the
steel structure during the block impact. With the increase of EPS thickness, the center
displacement of the main girder first decreases and then increases, and when EPS thickness
is 40% of the buffer layer thickness, the center displacement of the main girder reaches the
minimum. Compared with the single sand cushion, the combined cushion with an EPS
thickness of 0.6 m reduces the structural displacement response by 43%.

The two-layered buffer layer consumes about 90% of the total energy, which indicates
that the two-layered buffer layer is very effective in protecting the steel shed. The energy
dissipation effect of the sand buffer layer is better than that of the EPS buffer layer with the
same thickness, and the key role of EPS is to reduce dead weight.

In engineering design, the optimal combination of more different buffer layers can be
investigated and simulated.
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