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Abstract: A matter of considerable concern is managing rapid population growth in a growing
megacity. After years of endeavor, the “decentralize and population cap” policy has finally been
implemented and has achieved some success in Beijing, China. Before applying what has been
learnt from this experience to other places, two questions remain to be addressed: “Can urbanization
result in land-population harmony under the double effects of accessible guiding plans and invisible
push-pull forces?” and “What will be the likely geo-simulation of population density resulting from a
city decentralization process?” Under the guidance of “orderly city development” theory, our research
(1) simulated the effects of the “organic population decentralization” policy on future population
density dynamics; (2) proposed a new framework that coupled models of Verhulst logistic differential
population and Cellular Auto-Markov; and (3) analyzed the steering effect of the policy toward a
spatial population distribution that could be described as “spread through decentralization.” The
results showed that Beijing is currently at the beginning of the “suburbanization” stage. This study
can help geographers obtain an innovative method that couples the existing spatial population
patterns and the potential population size, which is beneficial for urban planners in determining the
spatial structure of a relative equilibrium status for urban development.

Keywords: organic decentralization population policy; policy steering effect; Verhulst population
model; polarization; orderly; spatial simulation; suburbanization

1. Introduction

Considering megacity human-land disharmonies, a migrant planning strategy is an
important intervention as an alternative. According to the growth pole theory proposed
by Perroux and extended by Parr, growth “appears as several growth points or poles with
varying intensities, and it spreads along various channels”; this results in “the growth pole
effect successfully triggering the adjustment of population density distribution between
dense and loose, and the growing metropolitan areas will sprawl” [1]. However, when
the spatial expansion of the population develops to a certain point, further growth of
the central city will cause a surge in the cost of capital, labor, and time, which poses a
bottleneck for high economic productivity at high population loads. At this point, the city
will not be able to provide suitable infrastructure or a decent quality of life for its citizens.
When desired living conditions cannot be met in the city, the residents will naturally
spread to the surrounding areas, forming multiple suburban centers, satellite towns, or a
polycentric urban region with social-function divisions. The city will then move from the
“agglomeration effect” to enter the “crowding out” period [2].

The concept of “orderly development” plays an important role in city management
in cities all around the world. Cities go through three typical stages during their spiral
development modes, i.e., polarization, orderly, and transitional stages [3]. The spiral mode
means that the cities develop according to the B—A—B—C mode. Here, the meaning of
“B—A—B—C mode” is the spiral growth of a creative city, from polarization to transitional
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stages, then from transitional to orderly stages, and so on. Figure 1 illustrates this. During
this stage, the exchange of resources (e.g., capital and labor) between central cities and their
affiliated towns reaches a harmonious status, namely, “orderly” city development [4,5].
Generally, the essence of orderly city development is closely related to the redistribution of
settlement in the central and suburban areas, which helps to balance the population size
with the available urban resources, assists in promoting harmonious human–environment
interactions, results in a reasonable urban-rural flow ratio, optimizes the population struc-
ture, and helps with the coordinated deployment of various elements, such as reasonable
urban-rural flow ratios (see Figure 1) [6].
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Population distribution is influenced by the dual effect of government interventions
and personal incentives, so addressing distribution disharmony should also start from
policy implications and personal choices [7]. For example, the urban super-giants of Mum-
bai, San Paulo, and Jakarta are examples of this urban population-economic development
disassociation [8]. This phenomenon needs extra attention to repair the balance between
central and suburban population distribution. History has shown that governments have
adopted abundant population management policies, which often have a track record of
failure [8]. Recently, an increasing number of geographers and urban planners have been
promoting the decentralization of the population by reducing the multi-functionality of
cities, guiding house prices, or influencing enterprise relocation. All these strategies have
one aim: making the central city districts less attractive to potential immigrants. Besides
policy, the invisible push-pull force also plays a role in personal choice. By improving
socio-economic opportunities (education, employment, and facilities) in the outskirts of
cities or in satellite cities, even inner city residents can be attracted away from the densely
populated city centers to the less dense peripheries [9].
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Beijing experienced the polarization development stage from 1949 to 2015, with in-
creasing population pressure always present. The year 2016 can be regarded as a turning
point and start of the inner “orderly” stage, coinciding with the release of the long-term
“Beijing General Urban Planning (2016–2035)” report [10]. In this research, the citation
of “organic decentralization project” is originally proposed in “Beijing General Urban
Planning (2016–2035)”, cited in [6]. To flatten the spatial density curve in the central six
districts, prevent the further fanatical migrants influx from the suburbs and other provinces,
and promote land urbanization in the suburbs, this population cap policy has been pro-
posed through in-depth investigation. During 2016–2035, the effects of both the invisible
push-pull force and the population cap policy should force more people to move outward,
forming new secondary cities in the Beijing-Tianjin-Hebei region, signifying the beginning
of the high-level equilibrium “city clusters” stage. Spatial characteristics gradually create
integrated spatial networks by connecting urban and rural spaces [11]. Incentives and
enforcement work together to both form and manage the appropriate distribution of the
population to the hinterland.

There are lots of measuring indices to evaluate the performance of migration gover-
nance. The Migration Data Portal provides migration policy indices, such as the sustainable
development goal (SDG) indicator 10.7.2, electoral law indicators, a global migration barom-
eter, and migration governance indicators [12]. Overall, an increasing number of cases
indicate that migration policies work through personal incentives and individual choices,
and these underlying factors include employment, education, facilities and resources, and
environment.

Systems theories and evaluation tools are used to guide the harmonious development
of cities and their inhabitants. For simulation methods for demographic spatialization, the
available techniques can be divided into four categories [13–17]:

(1) Experience-based forecasting models: these include the Gray Model (GM) and Markov
Model.

(2) Quantitative prediction models: these are based on mechanical processes, such as
the system dynamics (SD) model, multivariate statistical analysis method, linear
programming method, and machine learning algorithms [13,14].

(3) Process simulation models: these are dynamic units, such as the cell-based cellular
automata (CA) model and agent-based model (ABM) [15,16].

(4) Hybrid simulation models: these use variables to define the relative response (elas-
ticity) of the land use type to conversion or the land use change in relation to the
socio-economic and bio-physical driving factors at a small region scale, such as (CLUE-
S), ABM-CA, and most global simulation models [17,18].

The essence of urbanization is population redistribution in urban and rural areas [19].
As cities experience different development stages, the size and spatial densities of the popu-
lation exhibit various characteristics, e.g., population expansion during the “spread through
growth” stage, or population shrinkage in the core regions during the “decentralization
through growth” stage [4]. The OECD and China Development Research Foundation have
reported that the spatial pattern of population distribution and the dynamics of population
decentralization and centralization not only reveal the stage of city development but also
the health of the city.

Although there are many methods available for predicting population distribution,
few have focused on the dynamics of city inhabitant size under active “organic decen-
tralization population” policies, which may solve “overpopulation” during urbanization
processes within most megacities, as well as provide a solution to “city clusters” and “city
shrinkage” [20–22]. The first challenge is that the performance of socio-economic policy
is difficult to express and embed quantitatively into a simulation mechanism [23]. The
second challenge of simulating inhabitant distribution originates from the dual-effect of
push-pull theory and immigrant demography theory. It is difficult for the single type
category of models to perform these simulations; however, the integrated models could
supplement the shortcomings of a single model. The population density distribution that
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matches the “orderly” development plan is unknown. This study aims to simulate and
examine the performance of the “organic decentralization population” policy to determine
the most sustainable spatial population densities for orderly development. In this research,
an integrated constrained Verhulst and Cellular Auto-Markov model (CA-Markov) was
proposed, and the modelling data comes from the statistical yearbooks and Remote Sensing
(RS) image interpretation products, while validated by district-level street statistics data.

2. Study Area and Data Sources

This study aims to simulate the performance of the “organic decentralization popula-
tion” policy to the sustainable population development. We selected Beijing as the research
area for this study because it has been experiencing an active “organic decentralization
population” project, which may provide a solution to “city clusters” (see Figure 2). Hence,
the city will experience the results of policy-oriented population redistribution and regional
re-scaling. The population in the six core regions will reduce, while the other ten suburban
districts will attract migrants.

In Table 1, the permanent resident population data were derived from statistical
yearbooks, while the spatial data were sourced from remote sensing image interpretation
products, validated by district-level street statistics. In addition, the vector data of land
urbanization was available, including those for rural residential areas, factories, mines, and
other construction land.
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Table 1. List of data sets used in the production of the population density potential map.

Data Sets Date Purpose Sources

1
China population: Spatial

Distribution Kilometer
Grid Data Set (Raster file)

2005, 2010

CA-Markov model: for
prediction

Global Change Research
Data Publishing &

Depository, CHN [24]

2 Electronic Map Products of
Beijing (Raster file) 2015 Geographical Information

Monitoring Cloud
Platform, CHN [25]3 Beijing municipal data

(SHP file) 2015

4
China population: Spatial

Distribution Kilometer
Grid Data Set (Raster file)

2015 for validation of the
CA-Markov model

Resource and Environment
Science and Data Center,

CHN [26]

5 Population census data set
(Statistics) 2014–2017 Verhulst model: for

prediction of model
Beijing statistics yearbook

from 2015 to 2019,
CHN [27]

6 Population census data set
(Statistics) 2018 for validation of the

Verhulst model

7
City-level and zone-level
population size top-limit

(policy proposals)
2020, 2035 for modifying model

results
Beijing General Urban

Planning (2016–2035) [10]

3. Models and Methods

Based on the data mentioned above, the objective of this study is to explain the internal
logic of the simulation of the population mobility trends after implementation of the active
“organic decentralization population” policy, using the spatial dependence between the
spatial population pattern and facilities. In this research, a workflow of the integrated
constrained Verhulst and CA-Markov model was proposed (see Figure 3).

Three main steps were involved. First, data were prepared for the fundamental
research. Second, the simulation of the spatial pattern and the simulation of the sizes in the
sub-region were undertaken. Third, the new coupling model guided by the Beijing General
Urban Planning report (2016–2035) was applied [10].

3.1. Population Density Dynamic Model under Population Cap Constraint

CA-Markov is a prediction procedure combined with the Markov Chain, logistic
regression, cellular automata, and multi-objective land allocation (MOLA) modules [17].
In this study, ten different municipal facilities contributing to population density grades
were chosen as driving factors, from level 1 to level 20 [28,29]. The Markov Chain module
studied two historical population density grid images and exported one transition area
matrix, indicating the possibility of a to-be-changed pixel, considering the likely spatial
distribution transitions [30].

Before we discuss the integrated constrained CA-Markov Model with the Verhulst
Logistic Model, we first illustrate the Verhulst logistic population model with maximum
environmental capability (see Equations (1) and (2)) [31].

Verhulst logistic population model by François Pierre:

dp
dt

= r · p ·
(

1− p
pm

)
, (1)

p =
pm

1 + Ae−rt (2)

where p is the population size, t is a time step, and r is the growth rate. p(tm) = pm
represents the environmental maximum support population size. The logistic model
describes the growth of the population as an exponential expression in the form of a
sigmoid curve controlled by a carrying capacity due to ecological and resource stresses.
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The geo-simulation of inhabitants is divided into two parts: the simulation of spatial
patterns and the trend of population size in sub-regions. The future sub-regional popu-
lation dynamics under the “organic decentralization population” policy, as well as the
city resource limit is expressed in Equation (3). The first expression in Equation (3) is the
population size dynamics prediction based on maximum environmental capability, and the
remaining three expressions are the constraint conditions of the “organic decentralization
population” policy: 

dp
dt = r

(
1− p

pm

)
dt

pzone_six(T2020) = (1− t)n ∗ pzone_six(T2014)

∑
zone

pzone(T2020) ≤ A1

∑
zone

pzone(T2035) ≤ A2

(3)
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where p (t0), p (t), and p (tm) are the sub-regional population sizes in years 0 and t, and the
population cap value with the maximum environmental capability; t and t0 are time, and
r is the net population growth rate; parameter km (coefficient of the regional population
carrying capacity, km = pm/p0) and r has been solved when the RMSE (root-mean-square
error between fitting data and original data) is minimized; parameter t = 15% is the annual
decrease rate of population sizes, and parameters A1 and A2 are the cap limit values in 2020
and 2035. By applying MATLAB programming, we could obtain the optimal solution of
the equation, representing the annual sub-regional population size.

The spatial distribution of the population was then simulated and spatially optimized
according to the needs of different generations. When linking the sub-regional popula-
tion size p(t) and the regional population distribution y, we adopted the minimum error
method to calculate the regional adjustment factor G. Thus, a new map was obtained with
Equation (4):

Zzone(t) =
16
∑

zone = 1

21
∑

r = 0
yr

zone ∗ Gr
zone + ε (4)

where yr
zone is the statistic of the number of pixels in the zoneth district and the rth density

level (zone = 1, . . . , 16; r = 1, . . . , 21); Gr
zone is the constant in the zoneth district and the rth

density level, and ε is the error.

3.2. The Metric of Population Mobility: Barkley Model

Based on Barkley’s theory, there are four types of spatial transformation that describe
immigration patterns (see Figure 4) [32–34].
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3.3. Validation of the Model

To verify the model, the predicted map in 2015 was compared with the population
density kilometer grid products (Resource and Environment Data Cloud Platform, CHN).
Validated by the census data, the population density kilometer grid products were down-
loaded from the website, classified into five ranges, and distributed over 16 districts. Using
zonal statistics, the total number of samples was 5 ranges multiplied by 16 districts. Figure 5
shows the validation of the integrated constrained CA-Markov model by comparing it
with the regional demographic statistics at the end of 2018 (from Beijing Demographic
Yearbook, 2019). With the 16-region sample data, the correlation value of R = 0.9995 and
linear equation of y = 0.99918x + 0.02762 shows a robust and positive regression between
the predicted results and the actual statistics.
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For performance evaluation, two other model results were employed as a comparison.
The CA-Markov simulation, CA-Artificial neural network (ANN) simulation, and CA-
Decision Tree (DT) simulations were performed using TerrSet 18.21 [35] and a GeoSOS
1.1.1a plugin in ArcGIS [36]. The training parameters of ANN and DT were as follows:
diffusion parameter α = 1, conversion threshold δ = 0.9, and training accuracy κ = 95.486%.
The total precision of the simulation was not less than 88.49%, and the kappa coefficient
was not less than 0.659. The receiver operating characteristic (ROC) curve and the area
under the ROC curve (AUC) values were compared to evaluate the performance of the
logistic, ANN, and decision tree models (Figure 6). The final AUC values were 0.909729,
0.862688, and 0.862201 for the CA-Markov, CA-ANN, and CA-DT models, respectively.
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4. Results
4.1. Population Density Geo-Simulation Based on the Integrated Constrained Model in Beijing
4.1.1. Initial Scenario of Demographic Size Prediction during 2015–2035

By adopting the “isodapanes” model based on Weber’s criterion, the static demo-
graphic size and density morphology can be described. Tian’anmen Square, Beijing, was
the geometric center. In this study, we divided the entire research area into 43 concentric
rings with an equal radial gap of ∆r = 3 km. The population size and density variables that
fell into each ring were used as the sample data (see Figure 7). After obtaining 43 samples
of population size and density in each concentric ring sub-region, we obtained the best
fitting curve (see Figure 8). From the results, we concluded that the distribution of the
population size was S-shaped.

In Table A1 in Appendix A, 19 single-center models for fitting the population density
are compared by the fitting accuracy and number of parameters. The model with the
minimum number of parameters and the highest fitting precision was the best choice. The
results demonstrated that the Gaussian model had good accuracy, precision, and robustness.
By weighing the number of parameters and the fitting precision, the Gaussian-3 function
(R-square of 0.98) and the Gaussian-1 function (R-square of 0.99), were selected.

Figure 8a shows the fitting curve of the population size, and Figure 8b describes the
population density in concentric rings, both by adopting the Gaussian function. In Figure 8,
the 3rd order Gaussian function was proposed for the demographic size fitting results, as
it has an accuracy of over 0.98 and three group coefficients. It also demonstrates that the
fitting mesh is formed by rotating the fitting line around the y-axis.

To evaluate the spatial relationship between facility locations and population density
levels, we have two assumptions based on the rule of population data since 2015: (1) the
spatial mesh of population density stays the same in various sub-regions. The positions of
the facilities (e.g., schools, hospitals, and transportation facilities) are fixed, and the spatial
dependence between the population density and the municipal facilities’ density remain
unchanged for an extended period; and (2) the population growth rate obeyed the Verhulst
logistic differential population model during 2014–2018.

Table 2 shows the regression results between 10 types of municipal infrastructure and
20 population density layers during 2005–2015 (sliced by 1000 persons/km2, with an upper
limit of 24, 000 persons/km2 in the densest layer).



Sustainability 2022, 14, 13592 10 of 21

Sustainability 2022, 14, 13592 10 of 22 
 

4. Results 
4.1. Population Density Geo-Simulation Based on the Integrated Constrained Model in Beijing 
4.1.1. Initial Scenario of Demographic Size Prediction during 2015–2035 

By adopting the “isodapanes” model based on Weber’s criterion, the static demo-
graphic size and density morphology can be described. Tian’anmen Square, Beijing, was 
the geometric center. In this study, we divided the entire research area into 43 concentric 
rings with an equal radial gap of ∆r = 3 km. The population size and density variables 
that fell into each ring were used as the sample data (see Figure 7). After obtaining 43 
samples of population size and density in each concentric ring sub-region, we obtained 
the best fitting curve (see Figure 8). From the results, we concluded that the distribution 
of the population size was S-shaped. 

 
Figure 7. The multiple ring buffer analysis method was applied to the analysis of population spa-
tial morphology in Beijing. The span between two adjacent concentric rings was set as ∆r = 3 km. 
There were 43 multiple ring buffers in total, although the above figure shows only 12 rings for il-
lustrative purposes. 

In Table A1 in Appendix A, 19 single-center models for fitting the population densi-
ty are compared by the fitting accuracy and number of parameters. The model with the 
minimum number of parameters and the highest fitting precision was the best choice. 

Figure 7. The multiple ring buffer analysis method was applied to the analysis of population spatial
morphology in Beijing. The span between two adjacent concentric rings was set as ∆r = 3 km. There
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Table 2. The regression results between the facility variables and population density layer variables.

Restaurant Roads Middle
School

Primary
School Company Market Hospital Residual

Block Bank Slope Intercept

Coefficient K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 B
Average value 6.14 5.89 5.22 4.61 2.98 2.46 2.20 1.63 1.10 −3.11 –
General score 10 9 8 7 6 5 4 3 2 1 –

Note: yj = ∑kij*xij + bj, where {yj} expresses the binary maps with different density populations, xij represents the
binary maps with numbers at a certain layer. K is the spatial correlation coefficient, and bj is the constant.

According to the information in Table 2, the highly correlated factors are “restaurant,”
“roads,” “middle school,” “primary school,” “company,” and “market,” while the weakest
correlation was obtained from “slope.”

For constructing the demographic model after the policy implementation in 2014, the
sub-regional population statistics for 2014–2017 were used to train the model parameters
km and r in the proposed model using MATLAB programming (see Equation (5)), and the
values could be solved when the RMSE was minimized. In addition, one year of data
(2018) was used to validate the model. The optimum values of km and r were determined



Sustainability 2022, 14, 13592 11 of 21

by reducing the RMSE between the predicted values and the official statistics. The error
minimum of the two equations was RMSE = 2.9551 and RMSE = 2.4450:pzone_six(t) = 1.05p0

1+(1.05p0/p0−1)·e−(−0.2550t)

pzone_ten(t) = 1.25p0
1+(1.25p0/p0−1)·e−0.1876t

, (5)

where Pzone_six and Pzone_ten represent the population size of six central districts or ten
suburban districts in the tth year.
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Figure 8. A spatial pattern of population size and population density obtained using the expression
of the fitting function proposed in this research. Note: Gauss-3 model: G(r) = a1*exp(−((r − b1)/
c1)ˆ2) + a2*exp(−((r − b2)/c2)ˆ2) + a3*exp(−((r − b3)/c3)ˆ2); Coefficients (with 95% confidence
bounds): a1 = 5.389 × 105 (3.908 × 105, 6.869e × 105); b1 = 36.56 (34.48, 38.64); c1 = 8.38 (5.299,
11.46); a2 = 1.71 × 106 (1.63 × 106, 1.79 × 106); b2 = 15.74 (14.89, 16.59); c2 = 12.83 (11.45, 14.2);
a3 = 4.533 × 105 (3.955 × 105, 5.112 × 105); b3 = 65.39 (61.66, 69.11); c3 = 22.86 (17.4, 28.32); Gauss-1
model: G(r) = 1.765539 × 104*b*exp(−(r.*r − 2*a*r + a*a)/(2*b*b)); Coefficients (with 95% confidence
bounds): a = −96.14 (−99.94, −92.34); b = 36.41 (35.22, 37.61).

The predicted population density grid maps of 2015, 2020, 2025, 2030, and 2035 were
obtained based on the integrated constrained CA-Markov model (see Figure 9a).
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from the Sanji chart that the total population size is stable and declining under the trend 
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suburbs or even move out of the city. One main reason for this relates to the municipal 
government heading out to Tongzhou district, which led to the overall relocation of pub-
lic institutions, universities, medical facilities, and large enterprises considering lower 
land costs. Another reason is the urban household registration point system, which has 
made it difficult for the low-level labor force to settle down. 

As Figure 9c shows, due to the outflow of urban residents and immigrants from 
other cities, the population sizes in the suburban areas increased, and the original sub-
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Figure 9. (a). Predicted population density level map under policy constraints in 2015, 2020, 2025,
2030, and 2035. (b). Permanent inhabitants and the immigrating structure in 2015, 2020, 2025, 2030,
and 2035. (c). Demographic density stratified statistics under policy constraint in 2015, 2020, 2025,
2030, and 2035.

In Figure 9c, the prediction of permanent resident structure change distributed in
urban and suburban areas every five years is another meaningful result. It can be seen from
the Sanji chart that the total population size is stable and declining under the trend line of
23 million until 2035. On the other hand, some urban residents migrate to the suburbs or
even move out of the city. One main reason for this relates to the municipal government
heading out to Tongzhou district, which led to the overall relocation of public institutions,
universities, medical facilities, and large enterprises considering lower land costs. Another
reason is the urban household registration point system, which has made it difficult for the
low-level labor force to settle down.

As Figure 9c shows, due to the outflow of urban residents and immigrants from other
cities, the population sizes in the suburban areas increased, and the original suburban areas
with low-density populations were occupied by the influx of foreign populations. The
results show that the policy played a significant role in controlling regional population
dynamics.

4.1.2. Two Scenarios of Population Size Simulation during 2015–2035

Additionally, although the model could predict the population that meets the con-
straints (Equation (5)), the prediction results were theoretically optimal, but they were not
realistic. According to the simulation results, the predicted population size in the hinterland
areas was reduced by 80% from 2015 to 2035, which led to a considerable reduction in
population and a significant influence on the living conditions of residents. Taking this into
account, Scenario II was proposed as a better choice at the cost of the loss of precision. In
Scenario II, the parameter km was specified as −0.10 instead of −0.255 during the second
stage, 2020–2035. This simulation predicts the population size that satisfies the goal of
controlling population while preserving the original civilian living conditions as much as
possible. In this case, the plan could be executed smoothly after 2020. Figure 10 illustrates
the comparison between the results of the existing model and the new model proposed in
this research.
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4.2. Evolutionary Dynamics of Inhabitants Based on Barkley’s Theory

Formulating a policy is a vital task, relying on a deep understanding of the mechanism
of demographic change adapted to the population control policy in the megacity context.
Historically, Tokyo, Keihanshin, and Nagoya did well in the social governance environment,
with the development of these megacities being successfully managed [37,38]. With these
examples in mind, it is anticipated that the concerned model used in this study will
contribute to successful social governance in the Beijing megacity background. The main
findings from the model are illustrated in Figure 11, providing vital insights for planning
the future city. In Figure 11, the main findings are illustrated as follows: (1) in a certain
district (most of the areas), the increase and decrease trend during two time periods are
identical. In detail, the overall population size of the six central districts demonstrates
negative growth during two stages, 2015–2020 and 2020–2035, while the population size of
the ten suburban districts grows or remains unchanged; (2) there is a significant difference
across the geographic districts; and (3) the districts with the highest spatial density in the
future do not show the fastest growing trends.

From the demographic size and redistribution dynamics, the city transformation stages
could be evaluated from the “polarization” development stage to the “orderly” develop-
ment stage [37–43]. Based on Berkley’s theory, immigration patterns could be described by
four types of spatial transformation [32–34]. For example, in [44], the population density
profiles over time are represented in the form of a negative exponential function to reveal
the driving role of policies on population mobility. In Figure 12a, this development mode
may be identified as “spread through growth.” It may depict an increase in the city center
density (D0

t+1 > D0
t). In it, little change in the density gradient (yt+l > yt), and an inflection

point at a greater distance from the start line (bt+l > bt). Figure 12b shows the “spread
through decentralization” mode and represents a stable or declining central city density
(D0

t+1 < D0
t). In it, a shallower density gradient (yt+l < yt), and a more distant boundary

(bt+l > bt). It shows the population spillover primarily toward the metro fringe, referred to
as “metropolitan decentralization”.
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Figure 11. Zonal population density change map during two stages, 2015–2020, and 2020–2035.
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Figure 12. Population spatial-density function during two stages, 2015–2020, and 2020–2035. Negative
exponential function expression of population density simulation maps in 2015, 2020, 2025, 2030, and
2035. (a) The r-D(r) functions without constraint, and (b) the r-D(r) functions under policy constrain.

5. Discussion
Applicability of the Model in Aiding Governmental Planning

In history, there is no shortage of successful cases of migrant planning. In China,
Chengdu Great City—a population dense city located approximately two miles outside
Chengdu—attracted 406,211,000 new migrants in the past 10 years [45]. Chengdu main
city will gradually become a multi-center and multi-area city. Another example is from
Vineyard, Utah, in the U.S., where the population of this technical and industrial satellite
town, grew from 139 in 2010 to 15,023 in 2022, making it the 9% growing rate in the
country [46]. Over the same period, the populations of 31 cities in the U.S. shrank. In
Kenia, Tatu City, the local government (planned for 62,000 residents) will complement and
slightly compete with nearby Nairobi, leading to a migration of businesses and homes to
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the surrounding suburbia [47]. Despite the history of failed attempts to solve megacity
disharmonies through migrant planning, the implementation of the depopulation policy
in Beijing may, nonetheless, learn from these failures. For instance, the remodeling of the
city of Paris in the 1850s by Baron is a perfect example of a top-down approach. During
1949–1979, eight satellite cities of London attracted a population of 420,000 settlers, but
these populations accounted for only 5% of the total population of the region [48]. Another
example is from scholars who studied the commuting patterns of migrants in Hong Kong’s
new towns and found that although the new towns had absorbed a large number of urban
residents, the long-term vision proposed in new town plans had not been achieved. Critics
of satellite cities point to exorbitant infrastructure development costs and long development
timetables, such as Brazil’s Fordlandia, England’s Harlow, and Egypt’s New Cairo [49].
Thus, land-population disharmony remains a severe worldwide problem which has not yet
been solved.

6. Conclusions and Implications
6.1. Contribution, Limitation and Future Study

At present, few studies have conducted relevant simulations and effective evaluations
on inhabitant mobility in cities while also considering their urbanization stages. Neverthe-
less, population planning will have a significant long-term impact on urbanization [50].
This success is manifested in (1) the essence of a city being an agglomeration of population;
(2) the contradiction that exists between urban supply and demand, such as environmental
pollution, traffic congestion, dense population, housing shortages, and insufficient urban
employment opportunities; and (3) the orderly development of the city, which includes an
orderly economy, orderly use of space, and orderly population settlement. Among them,
the main catalyst for the contradiction is the people. However, it is unclear whether the
decentralized population policy guidance will promote the emergence of a polycentric
spatial structure within China’s big cities.

Similar to many other policy intervention methods, our method is not yet perfect.
Firstly, our test results did not consider the human–environment–society relationship agent-
based models—especially when there is a discrepancy in the migration pattern among
temporary and permanent residents. These task-types are part of a bottom–top model,
and policy intervention factors are not sufficiently considered when the survival cost and
economic income evaluation are in balance at the same time. Secondly, our integrated
CA-Markov method also did not consider the relationship between humans–resources–
space in dynamic harmonious status. The CLUE-S model, as one representative of a system
dynamics model, assumes that the change of variable in a region is driven by the resources
demand and constraint costs in the region, and the internal system factors interact with
each other.

However, when prior knowledge is considered to be complete and precisely exe-
cuted during the decision-making process, our method could perform well and have
greater computation cost savings than those of multi-agent models. Besides, when spatial
characteristics are considered, our method could reveal causal relationships which can
be subsequently used for legislative purposes. Our approach, which has been executed
with various scenario simulations, tries to balance accuracy and simulation cost. This
integrated constraint CA-Markov approach has been evaluated using official statistics.
Furthermore, the ROC curve has been adopted by comparing the performance among the
logistic, ANN, and decision tree models, which proved the success and high precision.
Our novel approach, which combines regional population policy and temporal population
change, results in a more complicated process, but this is an inevitable consequence of
providing a more refined solution for urban planning and infrastructure configuration.

For future researches, one of the simulating mechanisms of migrant geographical
patterns may be agent-based models. There are several advantages: (a) each agent can
have its own attributes and its own states; (b) each agent can be designed to be driven by
rules that are its own; (c) each agent can be inserted into a geographical or relational space
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that limits its behavior; (d) the behavior of each agent can depend on the behavior of other
agents in its local space; (e) each agent possesses variable quantities of information. In the
context of a multi-agent system, simulating means asking each agent repeatedly to execute
the rules that define them. In the course of these iterations, the aggregated results of agents’
behavior can be determined step by step and be reinjected into the behavior of these same
agents. Thus, through a dynamic chain of loops connecting different levels of abstraction,
agent-based simulation enables the behavior of “low” level entities to be combined to
generate the macroscopic regularity that we want to reproduce. The macroscopic policies
can be obtained by “low” level entities simulation.

6.2. Conclusions

Our research is beneficial for geographers as an innovative method that couples the
existing population spatial patterns with controlling the potential population size; this
is also beneficial for urban planners in determining the spatial allocation of municipal
facilities. The contributions of this work to the field of urban population planning are
summarized as follows:

â This research confirmed that a close relationship exists between the inhabitants and
various municipal facilities in Beijing. For instance, the highly correlated factors are the
density of “restaurants,” “roads,” “middle schools,” “primary schools,” “companies,”
and “hospitals,” while the weakest correlation was obtained from the “slope” (see
Table 2).

â This research proposed a loosely coupled framework between the Verhulst logistic
differential population model and the CA-Markov model, which combines the existing
population spatial patterns with the potential population size, present pattern, and
future trends. The derivation process is presented in Section 3.1, and the synthetic
results are presented in Section 4.1.

â This research proposed a new Gaussian model for fitting the concentric ring effect
of the population density spatial distribution in Beijing, which could be applicable
to other cities. By comparing 19 types of distance-density functions, the expression
of the proposed function has fewer parameters and higher fitting precision. The
expression can be shown as D(r) = D0*b*exp(−(r*r − 2*a*r + a*a)/(2*b*b)), with two
fitting coefficients and an adjusted R-square of 0.9969 (see Table A1 in Appendix A,
Figure 8).

â By analyzing the evolutionary dynamics of immigrants based on Barkley’s theory, this
research proved that the development mode under the impact of the depopulation
policy intervention might be identified as “spread through decentralization,” which
reveals the driving role of policies on population mobility (see Figure 12b).
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Appendix A. Population Density Fitting Models

In Table A1, 19 single-center models fitting the population density are compared by
the fitting accuracy and number of parameters. The model with the minimum number of
parameters and the highest fitting precision was the best choice. The results demonstrated
that the Gaussian model had good accuracy, precision, and robustness. By weighing the
number of parameters and the fitting precision, the Gaussian-3 function (R-square of 0.98)
and the Gaussian-1 function (R-square of 0.99), were selected.

Table A1. Population density fitting models.

Type of
Model

Expression for a General
Model Coefficients Goodness of Fit Authors, Year

Linear type
D(r) = D0 + b*r

with b < 0, and D0 is the density at
the center

b = −189.5 R-square: −2.098
RMSE: 6438 Commonly used

Polynomial
type

D(r) = D0 + b*r + c*r2
With b 6= 0 and c < 0

b = −438.3
c = −2.55

R-square: 0.2501
RMSE: 3206 Newling, 1971

D(r) = a + b*r + c*r2 + d*r3
a > 0, b < 0, c > 0, d < 0

a = 1.142 × 104

b = −449.7 c = 5.766
d = −0.02337

R-square: 0.9739
RMSE: 613.8 Frankena, 1978

D(r) = a*(b + c*(R0 − r))d
With a > 0 and R0 is radius of the

urbanized area

a = 1.734
b = 0.08537

c = 0.156
d = 2.856

R-square: 0.6858
RMSE: 2128 Mills, 1969

Power type

D(r) = a*rb
with a > 0 and b < 0

a = 2.682 × 104

b = −0.7156
R-square: 0.8795

RMSE: 1285 Smeed, 1963

D(r) = a*(Rm − r)b
With a > 0, b > 0 and Rm is the

radius of the urbanized area

a = 2.042 × 10−11 (fixed at
bound)

b = 7.04

R-square: 0.994
RMSE: 287.3 Commonly used

Exponential
type

D(r) = D0*exp(b*r)
with b < 0 b = −0.07619 R-square: 0.9992

RMSE: 102.3 Clark, 1951

D(r) = D0*exp(b*r*r)
with b < 0 b = −0.005431 R-square: 0.9973

RMSE: 191.2 Tanner, 1961

D(r) = D0*exp(b*r)*rcWith b < 0
and c > 0

b = −0.07619
c = 3.64 × 10−14 (fixed at

bound)

R-square: 0.9971
RMSE: 198.8 Aynvarg, 1969

D(r) = D0*exp(b*sqrt(r))
With b < 0 b = −0.385 R-square: 0.9964

RMSE: 218 Commonly used

D(r) = D0*brwith b > 0 b = 0.9266 R-square: 0.9992
RMSE: 102.3 Commonly used

D(r) = D0*exp(b*r2 + c*r)
with b > 0 and c > 0 No fitting model. NA Newling, 1969

D(r) = a*exp((b*r + c*r2)*rˆd)
D(r) = a*exp((c*r2)*rd)

D(r) = a*exp((b*r + c*r2 + d*r3)*re)
with a > 0, b > 0, c < 0, e < 0

No fitting model. NA Zielinski, 1979

D(r) = D0*exp(b*r + c/r)
With b < 0 and c > 0

b = −0.07635
c = 0.1718

R-square: 0.8977
RMSE: 377.6

McDonald and
Bowman, 1976

Logarithm
type

D(r) = a + b*log(r)
With a > 0 and b < 0

a = 1.596 × 104

b = −3608
R-square: 0.8084

RMSE: 2162 Commonly used
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Table A1. Cont.

Type of
Model

Expression for a General
Model Coefficients Goodness of Fit Authors, Year

Fourier type
D(r) = a + b*cos(r*w) + c*sin(r*w)

Fourier1, the number of items
equals to one.

a0 = 4.014 × 1011

a1 = −4.014 × 1011

b1 = 9.588 × 107

w = −2.82 × 106

R-square: 0.7399
RMSE: 1936 Commonly used

Gaussian
type

D(r) = D0*b*exp(−(r*r − 2*a*r +
a*a)/(2*b*b))

a = −96.14
b = 36.41

R-square: 0.997
RMSE: 204.2 Liu, 2019

D(r) = a1*exp(−((r − b1)/c1)2) +
a2*exp(−((r − b2)/c2)2)

a1 = 6.076 × 105

b1 = −79.14
c1 = 40.26

a2 = 2.348 × 1019

b2 = −1609
c2 = 268.4

R-square: 0.9803
SE: 643.5 Commonly used

D(r) = a1*exp(−((r − b1)/c1)ˆ2) +
a2*exp(−((r − b2)/c2)ˆ2) +
a3*exp(−((r − b3)/c3)ˆ2)

a1 = 1.482 × 104

b1 = 1.146
c1 = 4.955
a2 = 4455
b2 = 12.97
c2 = 8.034

a3 = 2.228 × 1017

b3 = −2723
c3 = 481.8

R-square: 0.9959
RMSE: 306.7 Commonly used

Note: (1) The robust method for the evaluation of all the fitting functions is the LAR method. (2) The fitting
method is the non-linear least squares method. (3) If the fitting equation could not be computed, “No fitting
model” is shown.
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