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Abstract: In considering regional sustainable development, optimizing the distribution of land use
and land cover (LULC) and improving terrestrial ecosystem carbon storage (CS) have emerged as ma-
jor concerns. In this study, considering the synergistic effect between LULC and CS, a coupling model
(named MPI) that integrates Multi-objective Optimization (MOP) model, the Patch-generating Land
Use Simulation (PLUS) model, and the Integrated Valuation of Ecosystem Services and Trade-offs (In-
VEST) model, was proposed to simulate the 2030 CS and explore its spatial-temporal characteristics in
a Beijing-Tianjin-Hebei urban agglomeration (BTH). The MPI model, which combines the advantages
of the above three models, can optimize the LULC structure, simulate the LULC distribution, and
efficiently extract CS variation. The results indicated that: (1) LULC changes in BTH were mostly
represented in transfers between cropland, forest, and grassland; (2) three different scenarios were
simulated using the MPI model, named BAU (Business as usual), EDP (Ecological development
priority), and EEB (Ecological and economic balanced). The simulation results of the three scenarios
are in line with their respective goals, and the results are quite different; (3) cropland, water, and bare
land, will be reduced, and the constant shrinking of water is a pressing issue that must be addressed;
and (4) the EEB scenario balanced ecological services and economic rewards, increased the ecosystem
carbon sink function, and is an efficient way to investigate “carbon neutrality”. The application of the
MPI model is of reference value for exploring the optimal configuration of land resources.

Keywords: LULC; carbon storage; MOP-PLUS-InVEST; scenario simulation; ecological governance

1. Introduction

A significant part of the global carbon cycle is served by terrestrial ecosystems, which
annually absorb an average of 2.5 Pg of carbon, or 25% of the emissions from fossil fuels [1–3].
The effects of global warming on the economy, environment, and resources, make it a severe
problem for humanity today [4–7]. The increasing carbon storage (CS) is now thought to
be the most practical, eco-friendly, and practical way, to reduce the greenhouse effect [7,8].
Some researchers have pointed out that land use and land cover (LULC) is one of the most
important elements affecting ecosystems carbon sequestration [9–11], about 1.6 Pg of carbon
emissions per year are attributable to LULC variations [12]. China is the top carbon emitter,
and its rapid development over the past few decades has been accompanied by unreasonable
territorial spatial planning that has caused CS to decline in the majority of areas. China
is currently facing numerous challenges on its path to becoming carbon neutral [13,14].
Therefore, for future land resource allocation and ecosystem function optimization, it is
essential to comprehend the synergistic relationship of LULC and CS and dynamically
modify land use planning [15].
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The combined measurement-statistics approaches, such as the forest census [16] and
the bookkeeping model [17] employed in China to estimate forest carbon storage, have
accurate results, and are extensively utilized to solve the problem of CS estimation. How-
ever, the actual measurement process is laborious and time-consuming. As an illustra-
tion, Tang et al. set 14,371 sample squares in advance to estimate the total carbon pool
(89.27± 1.05 Pg) in China [18], making it challenging to use such methods to quickly obtain
the evolution characteristics of CS. A number of process models have been developed
based on a significant amount of measured experience and the use of remote sensing
and geographic information system, such as the BIOME-BGC model [19] and the TEM
model [20]. These process models have obvious advantages for CS evolution analysis,
but their generality is weak due to the high number of parameters and tailored design
for particular vegetation types [21]. The Integrated Valuation of Ecosystem Services and
Trade-offs (InVEST) model was developed to solve the above problems and quickly realize
the calculation of different carbon pools. It only requires the carbon density data to estimate
and map the CS of terrestrial ecosystems. The InVEST model has been widely used in
regional carbon sequestration and emission functional mismatch analysis [22], historical
CS evolution [23], and future prediction [24]. Since CS estimation in the InVEST model is
dependent on LULC data, acquiring accurate LULC historical and future simulation spatial
patterns is the foundation for a reasonable CS analysis.

LULC simulation entails both distribution prediction and demand estimation. For
future LULC prediction, the enhanced Cellular Automata (CA) model is usually used. The
CA model is a discrete grid dynamics model that includes both space and state and can be
used to model the dynamic process of complex systems [25]. Currently, there are various
improved CA models, such as Logistic-CA [26], ANN-CA [27], CLUE-S [28], and FLUS [29].
However, these models are unable to explore the underlying driving mechanisms of
LULC change, which results in low simulation accuracy. The Patch-generating Land Use
Simulation (PLUS) model, which integrated a CA model with a patch-generating simulation
strategy, contains two parts: the land expansion analysis strategy (LEAS); and an improved
CA model [30]. Based on the spatial data of driving factors and LULC, the LEAS part uses
a random forest algorithm to calculate the spatial growth suitability of each land use type.
The results of the former are input into the CA model, which uses a descending threshold
mechanism to determine the LULC distribution. The prediction of LULC demand is most
widely based on the Markov model, which assumes that future trends are consistent with
historical changes [31,32]. However, because of this, it is difficult for this model to consider
the individual development characteristics of the different study area, especially the lack
of consideration for future policy implementation [33]. The Multi-objective Optimization
(MOP) model, which enables users to design different objective functions and constraints
based on different development objectives and set the quantity demanded for each land
use type separately, has been used in urban and ecological barrier area [34,35].

In summary, MOP is a “top-down” model for optimizing the quantitative structure of
LULC, PLUS is a “bottom-up” spatial simulation function, and InVEST is a spatial-temporal
CS evolution analysis approach. In order to conduct a multi-scenario simulation analysis of
LULC and CS, here we proposed a MOP-PLUS-InVEST coupling model (MPI). To validate
the three stated objectives of the MPI model: (1) more accurate land use target planning;
(2) high accuracy patch-level LULC simulation; and (3) modelling and investigation of CS
evolution. The Beijing-Tianjin-Hebei city agglomeration (BTH) was chosen. Our main goals
are as follows: (1) explore the spatial-temporal characteristics of LULC; (2) conduct dynamic
simulations of CS at the patch scale; and (3) evaluate CS at the regional scale. This is to solve
the problem of coordinated and sustainable development of regional ecology and economy,
and to assist government departments in formulating and adjusting land-use planning.
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2. Materials
2.1. Study Area

The BTH city agglomeration (113◦04′–119◦53′ E, 36◦01′–42◦37′ N) (Figure 1) consists
of 13 cities: Beijing, Tianjin, Shijiazhuang, Baoding, Tangshan, Langfang, Xingtai, Handan,
Hengshui, Cangzhou, Qinhuangdao, and Chengde. It is located in the west of the Taihang
Mountains and the east of the Bohai Sea, with the terrain gradually decreasing t from
northwest to southeast. The climate of this area belongs to warm temperate continental
monsoon climate. BTH is China’s political and economic center in the north, accounting
for 9.4% of GDP and 2.2% of land area [36]. Rapid urbanization has resulted in major
“urban illnesses” in this region. According to the BTH Coordinated Development Planning
Outline (2015), the integration of ecological conservation and the construction of effective
environmental protection regulations are critical for regional sustainable development.
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Numerous scholars have conducted research on the LULC and ecological elements in
BTH, and explored the optimal options for land planning in various scenarios [36–40]. For
example, Yang et al.’s scenario analysis explored the sustainable development approach
of BTH from the perspective of land use [36]. Wu et al. predicted the supply and demand
balance of ecosystem services on the basis of land use analysis [37]. However, earlier
research on the BTH lack the consideration of policy factors, resulting in poor pertinence.
In addition, the CS estimation and dynamic of BTH remain under-researched. In addition,
CS estimates and dynamics of BTH still need to be studied.

2.2. Datasets

The primary sources of data for this analysis were LULC data from 2000 to 2020,
environmental and socioeconomic drivers, accessibility factors, statistical data, policy
planning documents, and data on carbon intensity, as shown in Table 1. The LULC data
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is the GlobeLand30 dataset created by Chen et al. (http://www.globallandcover.com,
accessed on 20 May 2022), with an overall precision of 84.61% and a Kappa coefficient of
0.80 [41]. Seven land use types are included in the GlobeLand30 dataset: cropland, forest,
grassland, wetland, water, built-up, and bare land. A total of 12 potential drivers were
chosen to investigate the mechanism of LULC and CS changes. These drivers including five
natural, two socio-economic, and five accessibility factors. To create the restriction in the
PLUS model, three ecological conservation reserve zones were extracted from the Chinese
nature reserve border data given by the Resource and Environment Science and Data
Center (RESDC, https://www.resdc.cn, accessed on 20 May 2022). Statistical information
(yearbooks, National Farm Product Cost-benefit Survey) were from the National Bureau of
Statistics of China (NBSC, https://data.stats.gov.cn/, accessed on 20 May 2022) and used
to calculate and correct the ecosystem service valuation (ESV) and economic benefits
per unit area in the study area. The policy planning documents were obtained from the
Ministry of Natural Resources website (http://www.mnr.gov.cn/, accessed on 20 May
2022) and was used to set the parameters of the MOP model. The carbon density data
consisted of aboveground, belowground biomass, and topsoil organic carbon density. The
former two were obtained from the dataset published by Spawn’s et al. (https://doi.
org/10.3334/ORNLDAAC/1763, accessed on 20 May 2022), which has global temporal
consistency [42]. Topsoil organic carbon density was GSOCmap, (http://54.229.242.119
/GSOCmap, accessed on 20 May 2022), a coordinated thematic map produced by the
Food and Agriculture Organization of the United Nations (FAO) in collaboration with
110 countries worldwide [43].

Table 1. Presentation of data used in the study.

Category Data Attribute Time Resolution Source and Process

LULC Land use and land cover 2000, 2010, 2020 30 m GlobeLand30 (path/row:49/35, 49/40,
50/35, 50/40)

Carbon Density
Aboveground and belowground

biomass carbon density - 300 m Temporally consistent and harmonized global
maps form Spawn’s research

Topsoil organic carbon density - 1 km GSOCmap (v1.5.0) from FAO

Natural drivers
Elevation, Slope - 30 m

ASTER GDEM V3 from NASA
(https://search.earthdata.nasa.gov/search?q=
%20C1711961296-LPCLOUD, accessed on 20
May 2022), Slope data is calculated by ArcGIS

Temperature and Precipitation 2000 0.5′ WorldClim v2.0
Soil types - - DSMW dataset from FAO

Socio-economic drivers Population and GDP distribution 2015 1 km China’s GDP and Population spatial
distribution km grid dataset, from RESDC

Accessibility drivers
Distance to government

residences, waters, highway,
railway, primary way

2015 - OpenStreetMap dataset, calculated in ArcGIS

Ecological conservation areas Soil, water, windbreak and sand
fixation functional area 2020 - Boundary data of nature reserves in China,

from RESDC

Statistical data Yearbook, National Farm Product
Cost-benefit Survey 2000–2020 - Website of NBSC

Policy Planning Document
Planning for ecological protection,

agricultural construction and
national space

2016–2035 - Website of Ministry of Natural Resources

3. Methods
3.1. MOP-PLUS-InVEST (MPI) Coupling Model

In this study, the MPI model was proposed based on the synergistic link between
LULC and CS. The MPI model, as illustrated in Figure 2, is composed of three modules:
the LULC structures (MOP) module, the LULC spatial simulation (PLUS) module, and the
module for CS analysis (InVEST). Using the study area’s land use historical evolution and
future planning, the MOP model was able to calculate land use demand under different
development scenarios and offer import data for LULC simulation. The PLUS model was
used to investigate the growth probability of each land type. The InVEST model was used
to examine the evolution characteristics of CS.

http://www.globallandcover.com
https://www.resdc.cn
https://data.stats.gov.cn/
http://www.mnr.gov.cn/
https://doi.org/10.3334/ORNLDAAC/1763
https://doi.org/10.3334/ORNLDAAC/1763
http://54.229.242.119/GSOCmap
http://54.229.242.119/GSOCmap
https://search.earthdata.nasa.gov/search?q=%20C1711961296-LPCLOUD
https://search.earthdata.nasa.gov/search?q=%20C1711961296-LPCLOUD
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3.2. LULC Quality Optimization by MOP

In the process of urbanization, the contradiction between economic development and
the ecological environment has become increasingly prominent. The simulating of the future
land conditions under various scenarios can be used as a guide for formulating relevant
policies. We created three distinct scenarios: BAU (business as usual); EDP (ecological
development priority); and EEB (ecological and economic balance). The MOP model was
built on the lingo18.0 platform, with two objective functions and 15 constraint conditions.

3.2.1. Scenario Design and Objective Optimization

(1) The BAU scenario is the creation of a baseline state of LULC based on the historical
trend without the interference of additional factors. The Markov model was used to
anticipate the land demand under the BAU scenario.

(2) EDP is an ecological priority development scenario, which focuses on protecting the
ecological environment and restore ecosystem functions. In short, the EDP scenario aims
to maximize ecosystem service valuation (ESV), which is calculated in Equation (1).

fesv(x) = ∑7
i=1 esvi·xi (1)
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where fesv(x) is the sum of ESV provided by LULC. xi is the area of the ith land use
type, i = 1, 2, ···, 7, denoting cropland, forest, grassland, wetland, water, built-up, and
bare land respectively. esvi is the ESV provided by the ith land use type (yuan/km2)
within an area unit. esvi was accessed using the method of equivalent value factor
per unit ecosystem area [44]. The value of grain in the study area was corrected by
combining the National Farm Product Cost-benefit Survey and yearbooks of Beijing,
Tianjin, and Hebei. The esvi of seven land use types were 687,276.44, 3,631,767.53,
2,666,838.00, 8,915,740.77, 21,528,377.50, 0.00, and 34,278.13, respectively. In summary,
the objective function of the MOP model under EDP scenario can be described as:
max{ fesv(x)}.

(3) The EEB scenario represents the ecological environment and social economy develop-
ment in a balanced manner, which aims to coordinate the improvement of economic
benefits and the improvement of ecological functions by adjusting land use planning.
The socio-economic benefits provided by LULC are calculated as shown in Equation (2).

feb(x) = ∑7
i=1 ebi·xi (2)

where feb(x) is the socio-economic benefit of LULC. ebi is the socio-economic benefit
per unit area of the ith type (yuan/ km2). Based on the yearbooks of BTH in 2020
and the studies of Wang et al. [34] and Li et al. [35], ebi of seven land use types
were calculated as 3,588,964.77, 874,521.30, 6,558,171.64, 52,231,514.45, 8,382,523.74
201,184,528.14, and 0.00. In summary, the objective function of the MOP model under
EEB scenario can be described as: max{ feb(x), fesv(x)}.

3.2.2. Constraint Conditions

(1) The area constraint, means that the area is greater than zero, and the sum is equal to
the area of study area.

∑7
i=1 xi = 215, 583.97 (3)

xi > 0 (4)

(2) Population constraint, means that the number of people of built-up should be con-
trolled within the target population.

dP·x6 ≤ P (5)

where dP is the population density, P is the population number. Based on the
2000–2020 population statistics of Beijing, Tianjin, and Hebei and GM (1,1) model,
dP was predicted to be 4209 persons/km2 in 2030, and P was 116,282,700. According
to the land use plans in BTH from2016 to 2035, the population of the study area will
be controlled to around 122,100,000. Thus, P was set to the average of the above two
(i.e., 119,191,350) in this study.

(3) Forest cover constraint. According to the land use plans in BTH from 2016 to 2035, the
forest cover in study area will reach more than 45% in 2030. Forest cover was calcu-
lated with the ecological green equivalent method, which refers to the photosynthesis
per unit area of forest land as a green equivalent and has been shown to measure the
ecological function of terrestrial ecosystems [34]. According to Li et al., the weighting
coefficients for cropland, grassland, and forest are 0.46, 0.49, and 1, respectively [45].
The constraint of forest cover can be expressed as:

0.45× x1 + x2 + 0.49× x3 ≥ 215, 583.97× 45% (6)

(4) Cropland area constraint, means that for ensuring national and regional food security,
the food production of cropland should meet regional demand:

x1· f3· f4· f5 ≥ P· f1· f2 (7)

where f1 is per capita grain consumption (kg). f2 is the regional food self-sufficiency
rate, f3 refers to the unit area yield of grain crops (kg/km2), f4 is the proportion of
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grain crops grown, and f5 means the replanting index. f1 was set to 517 according
to Xin et al.’s study on China’s food demand [46]. Hebei Province is a grain base in
North China, and the grain production in BTH should at least meet the requirement of
self-sufficiency, so f2 was set to 100%. In accordance with the yearbooks and the GM
(1, 1) model, f3 and f4 were set to 735,768 and 78.75%, respectively. According to a
related study by Li et al. on the Yellow River and Huaihe River Basin [47], f5 were set
to 1.12. In addition, on the basis of preserving high-quality cropland, implementing
the project of returning farmland to forest and grassland in low-yielding areas is the
main measure to manage cropland. In this study, the permanent basic farmland area
(67,601 km2) was set as minimum, and the arable land area in 2020 (104,477.76 km2)
was set as maximum:

67, 601.00 ≤ x1 ≤ 104, 477.76 (8)

(5) Forest land area constraint. According to the Master Plan for the Major Projects for the
Protection and Restoration of National Key Ecosystems (2021–2035) issued by the Chinese
government in 2020, a strategic ecological protection pattern named “two screens and
three belts” is proposed, to promote the construction of the northern sand control
belt system. Therefore, the forest area was set to grow faster than the BAU scenario
(42,160.91 km2) in the next decade. In summary, the constraint on the area of forest
land can be expressed as:

x3 ≥ 42, 160.91 (9)

(6) Grassland area constraint. The grassland has been relatively stable since 2000, and the
interconversion of grassland, cropland, and forest, occurs frequently, reserving a part
of space for landscape diversity and urban construction. In this study, the grassland
area in 2020 (38,126.48 km2) was used as the basis, and the area change was controlled
within 5%, which can be expressed as:

38, 126.48× 95% ≤ x3 ≤ 38, 126.48× 105% (10)

(7) Built-up area constraint. According to the government plan, the construction land
area per capita in BTH will be about 130 m2 in 2030. At the same time, the growth of
construction land will be strictly restrained in the future and its expansion will slow
down. Thus, the built-up land was designed to be smaller than the built-up land area
under the BAU scenario (33,240.51 km2):

P× 130× 10−6 ≤ x3 ≤ 33, 240.51 (11)

(8) Water and wetland area constraint. Water and wetland are important ecological lands.
At present, the local government has introduced policies such as returning farmland to
wetlands, which will reduce the rate of degradation of water and wetland and rebuild
ecological land in some nature reserves. So, the area of water and wetland under the
BAU scenario was used as the lower limit and the average value in 2000–2020 was
used as the upper limit:

476.69 ≤ x4 ≤ 703.74 (12)

3635.73 ≤ x5 ≤ 3839.50 (13)

(9) Bare land area constraint. The pre-construction of the Xiong’an New Area in Hebei
and the abandonment of a large amount of old industrial and mining land have
increased the area. Considering that the bare land may be reclaimed in the future, the
area in 2020 and 2000 were used as the upper and lower limits:

71.26 ≤ x5 ≤ 232.30 (14)

(10) Key ecological function constraint. In the latest ecological protection strategy, water
conservation and soil preservation functions are given priority attention. The service
values of “hydrological regulation” and “soil conservation” and total ESV in 2030
should be higher than those in 2020:
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46, 275.47× x1 + 662, 139.15× x2 + 516, 742.76× x3 + 4, 152, 795.06× x4 + 17, 522, 978.39× x5 +
5141.72× x7 > 120, 901, 993, 150.47

(15)

176, 532.35× x1 + 432, 475.70× x2 + 324, 785.25× x3 + 395, 912.36× x4 + 159, 393.29× x5 +
3427.81× x7 > 49, 905, 422, 566.24

(16)

687, 276.441× x1 + 3, 631, 767.53× x2 + 2, 666, 838× x3 + 8, 915, 740.765× x4 + 21, 528, 377.5× x5 +
34, 278.13× x7 > 412, 993, 453, 382.733

(17)

3.3. LULC Spatial Simulation by PLUS

The PLUS model is developed by Liang et al. of China University of Geosciences
(Wuhan) [30]. Studies have shown that the PLUS model has the ability to simulate the patch-
level evolution of land use landscapes [26,48,49]. In order to enhance the dependability
of LULC simulation, the driving factors, LULC transfer rule, neighborhood weights, and
space restriction, were set in the PLUS model.

3.3.1. Driving Factors

To exploit the suitability of land use types for growth, five natural drivers, two socio-
economic drivers, and five accessibility factors, were chosen in this study (Figure 3).
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3.3.2. Transfer Rule

The mechanism of transfer rule is to convert one land use type to other types. Under
the general rule of LULC change, it is generally difficult to transfer built-up to other land
use types, and it is reasonable for construction land to be converted to bare land in the
short term. With a series of governance initiatives, the transfer of water and wetland to
non-ecological land (i.e., cropland and built-up) should be strictly controlled.

3.3.3. Neighborhood Weights

Neighborhood weight ranges from 0 to 1, and the larger the value, the easier to
assimilate the neighborhood. This parameter was calculated based on the ratio of the
expansion area to the total expansion area of each land use type from 2000 to 2020. The
neighborhood weights of the seven land use types were 0.178, 0.193, 0.247, 0.007, 0.036,
0.333, and 0.007, respectively.

3.3.4. Space Restriction

In the “two screens and three belts” ecological pattern, the study area includes the
Taihang Mountain Ecological Function Reserve (soil and water conservation), the Beijing-
Tianjin Water Conservation Ecological Function Reserve (water conservation protection),
and the North of Yinshan Mountains-Hunshendake Sand Ecological Function Reserve
(windbreak and sand fixation). Therefore, the following principles were formulated: within
the scope of ecological protection areas, the transfer of land use types carrying key ecological
functions is prohibited (Figure 4). For example, the water and wetland in the water
conservation reserve were not allowed to be converted.
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3.4. CS Evolution Quick Prospect by InVEST

The InVEST model aims to provide a scientific basis to weigh the benefits and impacts
of human activities by simulating ecosystem services under [50]. The InVEST model
enables visual representation of ecosystem functions and has been widely used in the
assessment of water retention, water supply, water production, biodiversity, and carbon
storage [51–54]. The carbon storage estimation of the InVEST model contains three carbon
pools: aboveground and belowground biomass, topsoil organic carbon.
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CS = Ca + Cb + Cs (18)

where CS refers to total carbon storage, Ca represents aboveground biomass carbon storage,
Cb is belowground biomass carbon storage, and Cs is topsoil organic carbon storage. The
average carbon density of each land use type was extracted through overlay analysis of
LULC data and three carbon pools data:

dij = ∑Ni

k=1
Cijk

xi
(19)

where j refers to the serial number of three different carbon pools. k represents the serial
number of pixel where the two data overlap, Ni represents the number of pixels of the ith

land use type. Cijk is the carbon storage of the jth type of carbon pool at the kth pixel on the
ith land use type.

4. Results
4.1. Spatial-Temporal Characteristics of LULC

LULC in 2000 and 2010 were utilized as input, in order to confirm the PLUS model’s
simulation accuracy, the simulation results of LULC in corresponding years under the BAU
scenario were obtained. Comparing the simulation results to the real LULC in 2010 and 2020
revealed that the accuracy was 91% and 84%, respectively, and the Kappa coefficients were
0.86 and 0.77, respectively. This demonstrated that the accuracy met the needs of the research.

The random forest algorithm is a component of the land analysis approach in the
PLUS model, which used to assess the influence mechanism of driving factors on land
use type change [30,32]. Based on the distribution of LULC change and driving factors,
the contribution value of each driving factors was examined (Table 2). Table 2 shows that
topographic relief clearly influences all land use forms, excluding bare ground. The plain
regions with low height, better topography, and hydrothermal conditions, have a higher
concentration of agricultural activity. For the growth of grassland and forest, mountainous
with a high altitude and complicated topography are better suited. The determinants of built-
up expansion include population increase and the construction of road systems. The main
causes of the expansion of bare land are human activities and unfavorable soil conditions.

Table 2. The influence mechanism of land use spatial expansion.

Factors Cropland Forest Grassland Wetland Water Built-Up Bare Land

Elevation 0.127 0.088 0.132 0.100 0.109 0.142 0.068
Slope 0.090 0.168 0.116 0.023 0.168 0.088 0.041

Temperature 0.094 0.095 0.090 0.316 0.059 0.091 0.094
Precipitation 0.101 0.143 0.102 0.037 0.036 0.051 0.038

Soil type 0.085 0.013 0.014 0.047 0.032 0.011 0.095
GDP 0.072 0.080 0.099 0.088 0.071 0.075 0.169

Population 0.096 0.093 0.078 0.084 0.118 0.123 0.209
Dist. government 0.069 0.057 0.068 0.043 0.032 0.087 0.064

Dist. water 0.057 0.059 0.072 0.074 0.249 0.091 0.093
Dist. railway 0.072 0.067 0.089 0.061 0.038 0.069 0.053

Dist. highway 0.073 0.068 0.058 0.053 0.043 0.069 0.035
Dist. main road 0.065 0.069 0.082 0.073 0.044 0.103 0.041

According to Figure 5a,b,f,g, the transition between cropland, woodland, and grass-
land, best reflects the historical evolution. A lot of croplands were being invaded by
the rapid rise of the built-up area. As shown in Table 3, the following were the primary
LULC changes during this time: (1) There was a trend toward less cropland and water.
11,829.93 km2 cropland decreased, of which 66.38 % was converted to built-up, which was
then replaced by grassland (21.26%). A total of 207.81 km2 of water were lost, primarily
due to agricultural and built-up areas (80.20%). (2) The amount of forest, built-up, and
bare land, showed an upward tendency. Cropland and grassland provided 99.06% of the
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growth in forest, which increased by 469.02 km2. The built-up area had increased by 75%
to around 26,207.06 km2 in 2020 compared to 2010, and the growth rate was still increasing.
The loss of grassland was primarily responsible for the expansion of bare land. (3) An
inverted “U”-shaped trend of growing and then dropping in both grassland and wetland.
The grassland area increased by 0.62% and was largely constant. Wetland area declined
by 9.06%, primarily due to a shift to cropland and water. (4) There were obvious spatial
variations in the changes of the various land types. As seen in Figure 5f,g, the Taihang
Mountains to the north and west of the study area were the primary locations for the spread
of grassland and forest. The North China Plain study area’s central and eastern regions
had the greatest growth in built-up, with the pattern of growth showing a spread outward
from the urban core. Both the water conservation area and the eastern Bohai Sea coastline
zone were affected by the growth of water. These results were in line with earlier research
on the mechanisms affecting land use expansion, and they once more demonstrate how
topography, hydrothermal conditions, and economic status, can all have an impact on
LULC change.
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Table 3. Area changes of historical and simulation LULC.

Land Use Types Cropland Forest Grassland Wetland Water Built-Up Bare Land

2000 116,307.69 41,704.91 37,877.92 663.81 3970.40 14,920.37 71.26
2010 112,590.41 42,053.62 38,566.72 843.55 3785.50 17,655.77 74.22
2020 104,477.76 42,173.93 38,126.48 603.85 3762.59 26,207.06 232.3
BAU 97,972.17 42,153.18 37,656.82 444.7 3497.71 32,973.74 187.17
EDP 95,219.96 53,542.90 35,770.75 671.81 3463.27 26,072.76 144.04
EEB 96,704.18 46,130.64 39,542.89 671.75 3463.27 28,183.91 188.85

The LULC simulation results of the three scenarios in 2030 are shown in Figure 5c–e.
They demonstrated that the differences in simulation outcomes clearly had an impact
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on goals. Under BAU scenario (Figure 5c,h), the growth of forest and grassland in the
mountainous areas of the western part of the study area was at a standstill. Built-up in the
central and southern plains of the study area expanded significantly, with a growth rate of
25.83%. The wetland area showed a decreasing trend (at 26.36%), mainly transformed into
forest and water. Social construction under the BAU scenario would continue the trend of
2000–2020, with a policy focus favoring socioeconomic development. The socio-economic
benefits of LULC increased by about 22.08% and the ESV decreased by about 3.13%. Under
the EDP scenario (Figure 5d,i), the growth of built-up was at a stagnant state compared
to 2020. The area of forest and wetland increased by 26.96% and 11.25%, with 37.99%
reduction in bare land. Cropland, water, and grassland, decreased by 8.86%, 7.96%, and
6.18%, respectively. These changes resulted in a 5.52% increase in ESV and a 1.08% decrease
in economic benefits in the study area under the EDP scenario. Under the EEB scenario, the
three types of ecological land (i.e., forest, grassland, and wetland) showed an increasing
trend with a slowdown in the growth of built-up land (Figure 5e,j). Cropland and water
showed a decreasing trend, and the area of bare land remains stable. Compared to 2020, the
ESV increased by 1.69% and the socio-economic benefits increased by 6.40%. In summary,
the degree of LULC change under the EEB scenario was between the BAU scenario and
the EDP scenario, so the development objectives of the EEB scenario better reflected the
balance between ESV and socio-economic benefits.

4.2. Dynamic Simulation of CS at Patch Scale

The aboveground, belowground biomass, and topsoil organic carbon densities of
different land use types were calculated using overlay analysis based on the LULC data
and carbon density data, (Table 4).

Table 4. Average carbon density for each land use type (Mg/km2).

Land Use Types Cropland Forest Grassland Wetland Water Built-Up Bare Land

Aboveground carbon density 2348.01 9983.16 4622.73 1311.80 783.92 1370.08 4035.54
Belowground carbon density 1462.40 6885.94 4867.36 3140.96 967.33 2238.91 4036.65

Topsoil organic carbon density 3948.14 5739.06 4909.30 4181.36 3897.12 3803.45 5227.20

To explore the characteristics of CS under the three scenarios, the historical and future
simulation LULC results were input into InVEST, as shown in Figure 6. The carbon storage
was characterized by “high in the northwest and low in the southeast”, and the maximum
and minimum values of carbon storage are 22,608 Mg/km2 and 5648 Mg/km2, respectively.
As shown in Table 5, forest, cropland, and grassland, contributed the most to the carbon
storage. Through Figure 6f,g, the expansion of build-up in the plains and the encroachment
of forest in higher elevations lead to a general decreasing trend of CS in the study area.
Compared with 2000–2010, the area of CS decline increased and the degree of decline
deepened from 2010–2020. From 2000 to 2010, CS in the study area increased by 9.78 Tg,
mainly in the “Northern Sand Control Zone” in the northwestern part, showing a connected
aggregation. During 2010–2020, the CS in the study area decreased by 3.27 Tg, and the
carbon sink capacity only part of the “Water Containment Ecological Function Reserve”
showed an increasing trend.
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Table 5. Carbon storage history and multi-scenario estimation results (Tg).

CS (Tg) Cropland Forest Grassland Wetland Water Built-Up Bare Area Total

2000 902.38 942.87 545.42 5.73 22.43 110.60 0.95 2530.37
2010 873.54 950.76 555.34 7.28 21.38 130.87 0.99 2540.16
2020 810.60 953.48 549.00 5.21 21.25 194.26 3.09 2536.88
BAU 760.12 953.01 542.24 3.84 19.76 244.42 2.49 2525.86
EDP 738.77 1210.51 515.08 5.80 19.56 193.26 1.92 2684.89
EEB 750.28 1042.93 569.39 5.80 19.56 208.91 2.51 2599.39

2000–2010 −28.84 7.88 9.92 1.55 −1.04 20.28 0.04 9.78
2010–2020 −62.94 2.72 −6.34 −2.07 −0.13 63.39 2.10 −3.27

BAU −50.47 −0.47 −6.76 −1.37 −1.50 50.16 −0.60 −11.02
EDP −71.83 257.03 −33.92 0.59 −1.69 −1.00 −1.17 148.01
EEB −60.31 89.45 20.40 0.59 −1.69 14.65 −0.58 62.51

For the three scenarios, the spatial pattern of CS in 2030 was the same as that in 2010–2020.
The increase in CS was most significant in the northwestern part of the study area under
the EDP scenario, followed by the EEB scenario, while the change was not obvious under
the BAU scenario. Under the BAU scenario, CS in most areas of the study area showed a
decreasing trend, with the most significant decrease in the North China Plain, and the CS
increase area was mainly located in the Bohai Sea coastal zone (Figure 6c,h). Under the EDP
scenario, the expansion of forest in the northwest and wetlands in the northeast led to the
increase of regional carbon stock at 148.01 Tg, while the change in CS in the North China Plain
was smaller (Figure 6d,i). The variation of CS in EEB scenario was between EDP and BAU
scenarios. As shown in Table 5, the study area had the highest CS at 2684.89 Tg under EDP
scenario, which is an increase of 5.83% (148.01 Tg) compared to 2020. Under EEB scenario,
future CS was 2599.39 Tg, which is an increase of 2.46% compared to 2020. The CS was the
least in BAU scenario (2525.86 Tg), which is a decrease of 0.43% (11.02 Tg).
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4.3. Evolution Prospect of CS at Regional Scale

The results in the previous Section 4.2 shows the distribution pattern and evolutionary
characteristics of CS at the patch scale. To further explore the CS variation at the regional
scale, the CS of 13 cities in the study area were counted with the help of geographic
information technology, as shown in Table 6. Combined with the spatial distribution of
CS changes under different time periods and scenarios (Figure 6), the 13 cities showed
significant spatial heterogeneity. In terms of spatial location from 2000 to 2010, CS in the
northern part of the study area showed a decreasing trend, and in the central and southern
parts of the study area showed an increasing trend. From 2010 to 2020, CS in the northeast
of the study area showed an increasing trend, while the CS in the southwest showed
a decreasing trend. For each city, Chengde had the highest CS in 2010 and 2020, with
620.06 Tg and 620.92 Tg, respectively. In 2010 and 2020, both Baoding and Beijing hold
CS greater than 200 Tg, Shijiazhuang, Tangshan, Handan, Xingtai, and Cangzhou, were
larger than 100 Tg, and Langfang had the smallest CS at less than 50 Tg. From 2000 to
2010, the CS in Zhangjiakou and Chengde showed a significant increasing trend, with an
amount of 8.70 Tg and 1.27 Tg, respectively. The CS in Handan and Tangshan showed a
minor decrease trend, by 0.23 Tg and 0.19 Tg, respectively. From 2010 to 2020, the CS in
Qinhuangdao, Chengde, Tangshan, Tianjin, and Beijing, showed a clear increasing trend,
with an increase of 3.39 Tg, 0.86 Tg, 0.77 Tg, 0.67 Tg, and 0.59 Tg, respectively. The CS
in Zhangjiakou, Baoding and Shijiazhuang showed a clear trend of decrease, by 5.73 Tg,
1.82 Tg, and 0.94 Tg, respectively.

Table 6. CS change at the city-level scale.

CS/Tg Change of CS/Tg

2010 2020 BAU EDP EEB 2000–2010 2010–2020 BAU EDP EEB

Beijing 243.79 244.38 243.12 252.66 247.96 0.06 0.59 −1.08 8.46 3.76
Tianjin 91.10 91.78 90.53 91.94 91.25 −0.19 0.67 −0.45 0.96 0.27

Shijiazhuang 159.69 158.75 158.35 168.32 165.55 −0.18 −0.94 −0.35 9.62 6.85
Tangshan 116.97 117.76 115.02 125.50 120.53 0.49 0.77 −0.71 9.77 4.81

Qinhuangdao 96.58 99.98 98.83 115.52 107.06 0.06 3.39 −0.26 16.44 7.98
Handan 112.83 112.61 112.13 117.34 114.95 −0.23 −0.22 −0.33 4.87 2.49
Xingtai 110.55 110.18 109.87 120.02 117.70 −0.04 −0.37 −0.28 9.87 7.55
Baoding 290.17 288.35 288.00 302.45 298.21 −0.09 −1.82 −0.32 14.14 9.90

Zhangjiakou 465.05 459.32 458.63 481.57 467.82 8.70 −5.73 −0.59 22.35 8.60
Chengde 620.06 620.92 620.40 677.42 636.50 1.27 0.86 −0.41 56.62 15.70

Cangzhou 107.33 106.94 106.11 106.47 106.39 −0.07 −0.39 −0.35 0.01 −0.07
Langfang 49.51 49.59 49.24 49.67 49.60 −0.44 0.08 −0.34 0.09 0.02
Hengshui 68.04 67.87 67.67 67.85 67.79 −0.10 −0.17 −0.19 −0.01 −0.07

The results also showed that the changes of CS under the three scenarios have signifi-
cant differences, both the northern and western parts of the study area showed an increasing
trend in CS, while the central and southern parts showed a decreasing trend in CS. Under
BAU scenario, the CS of all 13 cities showed a decreasing trend, with the most obvious de-
crease in Beijing (1.08 Tg). Under EDP scenario, the CS of all 13 cities showed an increasing
tendency, with the increase of CS in Chengde, Zhangjiakou, Qinhuangdao, and Baoding,
being greater than 10 Tg. Under EEB scenario, the CS of four cities (i.e., Tianjin, Langfang,
Cangzhou, and Hengshui) were relatively stable, while the CS of the remaining cities show
an increasing trend, with the most significant increase (15.70 Tg) in Chengde. Therefore, the
carbon sink function in Hengshui and Cangzhou faces certain risks in the future.

5. Discussion
5.1. MPI Coupling Model

Simulating LULC and CS dynamics is critical for rational land use planning under the
background of China’s quest of “carbon neutrality” [55]. Some researchers have pointed out
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that the traditional estimating models of CS have the disadvantages of extensive parameter
setting and difficult operation, so the simulation models of LULC have the shortcomings of
low accuracy, poor disclosure, and poor applicability [21]. To overcome the above problems,
this work suggested a MOP-PLUS-InVEST coupling model (named MPI) that fully exploits
the benefits of each of them. The MOP model is a quantitative optimization model for
LULC that can determine demand for each land use type according to the study area’s
historical land use evolution characteristics and current territorial spatial planning policies.
The PLUS model then simulates the spatial distribution of LULC based on the demand
and growth probability of each land type, and during this process, spatial restrictions can
be imposed on multiple regions and land use types as needed to meet the specific needs
of ecological restoration, arable land conservation, and so on. Finally, by integrating the
LULC simulation results into the InVEST model for investigating CS changes at several
scales, the results of the spatial and temporal evolution of CS are swiftly produced. The
MPI model thus aids in the formulation and adjustment of land use planning. Furthermore,
the results of the MPI model can be integrated with the results of other models to broaden
its applications, such as biodiversity and soil conservation [56], calculating ESV [57], and
performing landscape pattern analysis [58].

5.2. Evolution of LULC and CS

LULC changes have a major impact on the carbon sink function of terrestrial ecosys-
tems [33,34]. Rapid urbanization and economic development have resulted in a decrease in
CS in major portions of China. This research is to determine whether a “win-win” situation
of ecological function and economic value can be achieved through a reasonable LULC spa-
tial distribution. Under the BAU scenario, ESV decreased by 3.13% and economic benefit
increased by 22.8%, and under the EDP scenario, ESV increased by 5.52% and economic
benefit decreased by 1.08%. However, under the EDP scenario, ESV and EC increased
by 1.69% and 6.40%, respectively. The result proved that the EEB scenario, which weighs
economy and ecology, is a reference for BTH to achieve a coordinated and sustainable
development approach. This is also consistent with a number of related studies, such as
Li et al.’s study on the ecological barrier zone in Sichuan-Yunnan, China, which noted that
a feasible scenario to a green economy involves balancing the ecological carrying capacity
and the spatial arrangement of economic construction [35].

LULC changes in BTH are still dominated by the mutual transfer of cropland, forest,
and grassland, while the implementation of the “Grain for Green Project” has obviously
accelerated the transfer of cropland out to another two types. The increase in the total area
of four categories of ecological land: water bodies, wetlands, woodlands, and grasslands,
is the result of the implementation of ecological conservation policies in BTH [36]. Water
is an important part of the ecological land use, and continuous water systems play a vital
role in the improvement of the neighborhood environment and the full play of ecological
services, but the area of water bodies in BTH still shows a trend of shrinking, and water
pollution and water degradation are still urgent issues that need to be resolved.

Currently, the CS in BTH is about 2536.88 Tg, of which the aboveground biomass,
belowground biomass, and topsoil organic carbon pool, account for 34.81%, 27.35, and
37.83%, respectively. It is expected that the CS in BTH will be 2525.86–2684.89 Tg in
2030. Cropland and forests, which together make up 37.58% and 31.95% CS, are the most
significant land use types. Vegetation’s ability to act as a carbon sink is influenced by its
phenology. Between 2000 and 2020, new forests were created on 1247.51 km2 of cropland
and 5912.63 km2 of grassland, but the CS in northwest BTH expanded slowly since it was
at the early age. The capacity of plants to absorb carbon increases with size, and as the
forest in the BTH will continue to grow in all three scenarios, it has the potential to be a
very significant carbon sink.



Sustainability 2022, 14, 13436 16 of 19

5.3. Potential Ecological Threat

As mentioned above, the interconversion of cropland, grassland, and forest, accounts
for the majority of the carbon gains in BTH. However, local governments must also be aware
of the potential ecological risks posed by such phenomena. Water performs significant
roles, even though it contributes less to CS than other land use types [17]. However, due to
the current protection laws not being perfect, water bodies in BTH are at considerable risk
of degrading. Forest ecological processes are significantly impacted by deforestation and
fires, hence stringent conservation of forests must persist. On the other hand, investigating
ecological changes at various scales and levels is a crucial step in developing a future
plan for ecological issues. Because different sizes and different research subjects will lead
to variances in outcomes, Liang et al.’s simulation analysis of China’s CS demonstrates
that the future CS in BTH tends to decline [21]. As a result, a multi-scale investigation
was carried out in this study, and the findings indicate that the carbon sink functions
of Hengshui and Cangzhou cities in the southeast of BTH are in jeopardy and require
policymakers’ attention. Moreover, according to the outcome envisaged by the EEB scenario,
the restoration of ecological functions and economic development are not completely
contradictory, so ecological protection cannot be implemented in an all-encompassing way.

5.4. Limitations and Prospects

A new approach suitable for exploring the simulation of LULC and CS evolution at
the regional scale was proposed in this research, but there are still some points that need to
improve. First, the MOP model’s practical application is easily constrained by the level of
detail of relevant data in the study region because it is a highly targeted LULC structure
optimization method. Similar research has been cited in this paper to strengthen the LULC
limitations in addition to closely adhering to the land use planning of BTH. Second, the
partial lack of the LULC data and driving variables will result in missing pixels on the
result images, which inherently affects the results’ correctness. Third, there are still some
uncertainties in the CS estimation results. Although mature carbon density data were used,
the results are uncertain because the InVEST model ignores variations in carbon density
within different land use types. This is because carbon density is likely to undergo subtle
dynamic changes over time due to the human activities and environmental changes.

Future studies should concentrate on: (1) integrating various techniques to look at
more standardized and effective ways to improve LULC structure; (2) examining ways
to build dynamic systems of land use and carbon density drivers, taking into account the
dynamic effects of human activity and natural environmental changes on the ecosystems’
capacity to store carbon; and (3) making empirical measurements to examine the variation
within different land use types and validating model findings with adequate empirical data
to raise the precision of regional terrestrial ecosystem CS evaluations.

6. Conclusions

In rapidly urbanizing regions, economic development and anthropogenic disturbances
have resulted in substantial LULC, which has a significant impact on ecosystem functions
and services. It is critical to assess the spatiotemporal evolution of LULC and terrestrial
ecosystem CS in these areas, especially for the BTH in China.

In this study, a MOP-PLUS-InVEST coupling model was proposed to simulate the
LULC and CS in 2030 in the BTH, based on the historical trends from 2000 to 2020. The
evolution of LULC in BTH were mostly represented in transfers between cropland, forest,
and grassland. The historical changes were characterized by the reduction of cropland
and water, and the increase of forest, built-up and bare land, among which 11,286.7 km2 of
built-up land occupied a large amount of ecological land. The BAU scenario demonstrated
the most dramatic increase in built-up, with small changes in forest and grassland, and
hence the economic benefits rose. In the EDP scenario, forest and wetland developed
dramatically, while built-up remained stagnant, restoring the ecological function. In the EEB
scenario, ecological land increased while built-up expanded slowly, resulting in economic
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and ecological benefits. The constant shrinking of water is a pressing issue that must be
addressed in the future. In terms of CS evolution, among the various land use types, forest,
cropland, and grassland, contributed the most of the carbon storage. Influenced by land
use distribution and topography, the distribution of CS was high in the northwest and low
in the southeast. At the same time, the change of CS was affected by the construction of
ecological conservation area and urban construction, showed obvious spatial differences.
The 2020 CS of BTH was 2536.88 Tg, and the predicted results under BAU, EDP, and EEB
scenarios were 2525.86 Tg, 2684.89 Tg, and 2599.39 Tg, respectively, with CS increasing
mostly in the western and northern regions. The EEB scenario balanced ecological services
and economic rewards, increased the ecosystem carbon sink function, and is an efficient
way to investigate “carbon neutrality”.
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