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Abstract: Prediction of water quality is a critical aspect of water pollution control and prevention. The
trend of water quality can be predicted using historical data collected from water quality monitoring
and management of water environment. The present study aims to develop a long short-term
memory (LSTM) network and its attention-based (AT-LSTM) model to achieve the prediction of water
quality in the Burnett River of Australia. The models developed in this study introduced an attention
mechanism after feature extraction of water quality data in the section of Burnett River considering
the effect of the sequences on the prediction results at different moments to enhance the influence of
key features on the prediction results. This study provides one-step-ahead forecasting and multistep
forward forecasting of dissolved oxygen (DO) of the Burnett River utilizing LSTM and AT-LSTM
models and the comparison of the results. The research outcomes demonstrated that the inclusion of
the attention mechanism improves the prediction performance of the LSTM model. Therefore, the
AT-LSTM-based water quality forecasting model, developed in this study, demonstrated its stronger
capability than the LSTM model for informing the Water Quality Improvement Plan of Queensland,
Australia, to accurately predict water quality in the Burnett River.

Keywords: water quality prediction; time series; attention mechanism; long short-term memory
(LSTM)

1. Introduction

Changes in water quality greatly affect ecosystem and human health. Prediction
of water quality is the use of a long-term collection of water quality data to forecast
possible water quality trend over a period of time for the future. It provides a scientific
decision-making basis for assessing water environment in advance and preventing the
large-scale occurrence of water pollution problems. Accurate water quality prediction
plays an essential role in improving water management and pollution control. The goal of
the Burnett Water Quality Improvement Plan of Queensland, Australia, is to manage the
pollutant loads into the Burnett waterways and to help protect the Great Barrier Reef (GBR)
region. Establishment of an effective and accurate water quality parameter prediction
model is of great significance for improving the water quality of the Burnett River [1].

As the cost of hardware equipment related to water quality monitoring has been
decreasing, it is possible to deploy a large-scale water quality monitoring sensors in rivers
and lakes [2]. Water quality monitoring sensors automatically monitor parameters such as
DO, pH, turbidity, and many other indicators. All indicators are recorded in the order of the
monitoring time occurrence of the time series. In recent years, with the large-scale operation
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of water quality automatic monitoring stations, substantial data are being produced, and
big data-driven water quality prediction models are receiving more and more attention
in the field of water research. However, due to the variety in water quality indicators,
the long period of water quality data collection, the correlation among the water quality
indicators, the nonlinearity between water quality characteristics, and the volatility of the
data, accurate and effective prediction of water quality has become a challenging issue. The
current research hotspots mainly focus on how to improve the applicability and reliability
of water quality prediction models [3].

River water quality exhibits characteristics such as seasonality and periodicity on
macroscopic timescales, with nonlinearity and uncertainty [4]. River water quality parame-
ters are not only affected by external factors, but also by the historical values of independent
variables and random perturbations, and the selection of lagged terms and correlation
variables is one of the factors affecting the prediction accuracy. Organic contaminants
account for a large proportion of river water pollution. Organic pollution of rivers, due to
the oxygen consumption from decomposition of contaminants, causes dissolved oxygen
in water to decrease rapidly, consequently leading to deterioration of water quality. The
self-purification ability of river water bodies decreases, resulting in serious damage to the
ecosystem. Dissolved oxygen is a critical parameter for the pollution of river water, as well
as an important indicator for whether the river water has the ability of self-purification.
In the water environment, the growth of aquatic plants and animals cannot be separated
from the appropriate amount of dissolved oxygen. In this study, the key parameter of DO
for water quality evaluation is used as the target for model construction and prediction
evaluation [5].

There are many traditional statistical techniques for water quality prediction [6], such
as the autoregressive integrated moving average (ARIMA) method [7], and multiple linear
regression (MLR) model [8,9]. However, water environment indicators are affected by
many complex factors such as physical, chemical, and biological, and they have strong
nonlinear characteristics. The above linear distribution-based models often fail to consider
the influence of these factors in an integrated manner. In this study, water quality pre-
diction uses traditional machine learning methods, including support vector regression
(SVR) [10–12], artificial neural networks (ANN) [13–15], and other nonlinear methods.
Singh et al. [13] proposed the use of ANN to predict water environment time series in-
dicators. Barzegar et al. [16] used wavelet neural network (GWNN) to predict the salt
concentration of the Aji Chay River in Northwest Iran. Through the calibration and verifica-
tion of the model, the superiority of GWNN in water quality prediction is evident. ANN is
also a powerful data-driven prediction model, which can well fit the nonlinear relationship
between time series [17]. However, these methods still do not sufficiently learn the hidden
relevant features in the time series, which significantly affect the prediction accuracy.

Currently, most water quality data belong to long correlation series data [18], and
there may be some important events with long delays and intervals in the corresponding
time series. It is difficult for traditional machine learning methods to fully use the available
information with long historical observations. Recursive neural network (RNN) [19]
is one of the deep learning methods capable of preserving and utilizing memory from
previous network states [20]. RNN is very flexible in dealing with time series and capturing
nonlinear relationships [21]. Nevertheless, it is difficult for the traditional RNN model to
retain long-term dependencies among the variables due to the gradient vanishment [22].
Long short-term memory (LSTM) is a variant of RNN and can effectively alleviate the
RNN network time delay and gradient vanishment [23] by implementing gating [24]. The
interactive operation among these gates makes LSTM have sufficient ability to address
the problem of long-term dependencies which general RNNs cannot learn, and it can
balance the temporal and nonlinear relationship of data [25]. LSTM has been widely used
in the prediction of water quality [26,27]. Ye et al. [28] combined all the water quality
monitoring data of the rivers in Shanghai, used the LSTM model to predict and verify the
main pollutant index, potassium permanganate index (COD), in the rivers, and proved
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that the prediction accuracy and generalization ability of the model outperformed the
traditional RNN network model. Barzegar et al. [29] proposed a hybrid model combining
LSTM and convolutional neural network (CNN) that outperformed single machine learning
models including SVR, CNN, LSTM, and decision tree (DL) in predicting short-term water
quality variables for the Small Prespa Lake in Greece. This shows that there is still much
room for research based on LSTM to achieve high-precision water quality prediction, which
can be explored in the direction of optimizing the internal structure of the network or
combining with other methods [30,31]. LSTM lacks the ability to pay different degrees
of attention to sub-window features, which may lead to some relevant information being
ignored, and the important characteristics of time series cannot be valued.

In recent years, attention mechanisms [32,33] have been deployed in various tasks
of natural language processing [34–37], including machine translation [38,39], syntactic
analysis [40,41], and speech recognition [42,43]. We have applied the attention mechanism
to effectively capture the more distant critical information and enhance the influence
of the important characteristics on the prediction model by weighting the hidden layer
elements at each timestep. Attention mechanisms have also been widely adopted in the
field of time series analysis and forecasting [44,45]. Zhou et al. [46] proposed a short-term
photovoltaic power forecasting based on LSTM neural network and attention mechanism
to forecast short-term photovoltaic power generation in a time series manner. On this
basis, we introduced the attention mechanism and developed an AT-LSTM model based
on the LSTM model, focusing on better capturing the water quality variables. The DO
concentration in the section of the Burnett River, Australia, was predicted using water
quality monitoring raw data. Lastly, the prediction results were compared with the LSTM
model. We aimed to achieve adaptive learning of long-term dependencies and hidden
correlation features of multivariate temporal data to make river water quality predictions
more accurate. The Burnett River was considered a case study to illustrate the applicability
of the proposed AT-LSTM model.

2. Data Source and Pre-Processing
2.1. Study Area and the Data

The Burnett River is located in southeastern Queensland, Australia, and originates
on the western slopes of the Burnett Range east of the Eastern Highlands in a subtropical
climate. The river flows southwest to Eidsvold, then turns east at Mundubbera, and finally
flows northeast through Gayndah and Bundaberg before entering the Pacific Ocean at Bur-
nett Heads after 270 miles (435 km) of navigation. It has a catchment area of 12,440 square
miles (32,220 square kilometers). The major tributaries are the Auburn and Boyne rivers
and the Baramba River. The Burnett Basin has a population of approximately 94,100 res-
idents. The primary land use is grazing (77%, 2,500,000 hectares), followed by forestry
(12%, 405,000 hectares). Approximately 10,100 hectares of sugar cane, the largest area of
dryland cultivation (approximately 81,000 hectares), irrigated cultivation (approximately
41,000 hectares), and horticulture (approximately 10,000 hectares) are located in the Burnett
watershed. It also contains several impoundments, including Paradise Dam. The catchment
has undergone extensive modifications over the past 40 years, including industrial and
port development in the estuary. The data used for this study are water quality data from
the Burnett River automatic monitoring sites, the locations and catchment boundaries of
which are shown in Figure 1.
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Figure 1. Location of monitoring points and the extent of the watershed.

To ensure the reliability and applicability of the model, we used the monitoring data of
the water quality collected from January 2015 to January 2020 in the Burnett River. The data
are collected every half-hour and include five characteristics: water temperature (Temp),
pH, dissolved oxygen (DO), conductivity (EC), chlorophyll-a (Chl-a), and turbidity (NTU).
In this paper, the hourly water quality data with 39,752 characteristics and dissolved oxygen
are used as the output variable. Table 1 shows the descriptive statistics of the data.

Table 1. Descriptive statistics of the water quality time series.

Temp
(◦C)

EC
(uS·cm−1) pH DO

(mg·L−1)
Turbidity

(NTU)
Chl-a

(ug·L−1)

Count 39,601 39,752 39,752 39,752 39,752 39,752
Mean 24.31 37,536.07 7.86 6.63 14.96 9.23

Standard
deviation 3.69 13,618.6 0.69 0.98 44.77 28.93
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In this water quality dataset, the indicators of the water quality data are mainly used
to assess the water quality of the river. The DO used in this experiment is a key indicator
of water organic pollution, which can reflect the degree of water pollution. In addition
to DO water quality indicator, there are some indicators that affect water quality such as
pH, Temp, EC, Chl-a, and turbidity. The variation of DO in the study period is shown in
Figure 2.

Figure 2. Variation of dissolved oxygen content in Burnett River.

2.2. Missing Value Processing

Missing values of data are handled in two ways: (1) if only one indicator is missing in
one monitoring, the data are filled in by linear interpolation; (2) if a monitoring value is
missing continuously, the data of the monitoring moments are deleted to avoid large errors
caused by artificial filling.

Linear interpolation [47] is a widely used interpolation algorithm in the field of
mathematics and graphics. Linear interpolation of water quality data can effectively
compensate for the missing data problem of time series data and improve the model effect.

Assuming that there are missing values (x, y) between coordinates (x0, y0) and coor-
dinates (x1, y1), we can obtain Equation (1):

y− y0

x− x0
=

y1 − y0

x1 − x0
, (1)

where x is known, and the value of y is obtained as in Equation (2):

y = y0 + (x− x0)
y1 − y0

x1 − x0
= y0 +

(x− x0)y1 − (x− x0)y0

x1 − x0
. (2)

After interpolation, the dataset becomes a continuous time series of equal time intervals.

2.3. Water Quality Correlation Analysis

The multivariate time series build predictive models by analyzing historical time series
data and correlations between individual factors [48]. For multi-element water quality time
series data, different element features have different effects on water quality prediction.
Multiple features need to be selected, and feature selection can reduce model training time,
improve model efficiency, and make its generalization ability stronger.

Pearson correlation test [49] is used to determine the relevance of different features
to the time-series features that need to be predicted. The Pearson correlation is mainly
used to describe the degree of linear correlation between variables. The Pearson correlation
coefficient is calculated as the quotient of the covariance E(XY)− E(X)E(Y) of variable



Sustainability 2022, 14, 13231 6 of 20

X and variable Y divided by the standard deviation of the two variables, as shown in
Equation (3):

ρX,Y =
E(XY)− E(X)E(Y)√

E(X2)− (E(X))2
√

E(Y2)− (E(Y))2
, (3)

where ρ is the correlation coefficient of variable X and variable Y, and its absolute value
is equal to 1. A correlation coefficient of 1 indicates that the two variables are strongly
positively correlated and Y increases as X increases; a coefficient of −1 indicates that the
two variables are strongly negatively correlated and Y decreases as X increases; a coefficient
of 0 indicates that there is no correlation between the two variables.

In this paper, we used the Pearson correlation test for relevant multifactor water
quality characteristics, and final test results are shown in Table 2.

Table 2. Pearson correlation feature screening results of water quality time series.

Temp EC pH DO Turbidity Chl-a

Temp 1 −0.247 −0.153 −0.411 0.248 0.403
EC −0.247 1 0.056 −0.091 −0.453 −0.301
pH −0.153 0.056 1 0.430 −0.085 0.054
DO −0.411 −0.091 0.430 1 0.053 0.209

Turbidity 0.248 −0.453 −0.085 −0.053 1 0.468
Chl-a 0.403 −0.301 0.054 0.209 0.468 1

According to Table 2, the main element characteristics related to the water quality
prediction index DO are pH, Chl-a, and Temp. The water quality prediction of multiple
elements mainly considers these factors as the input characteristics.

2.4. Outlier Detection

Water quality monitoring stations are often affected by environmental changes and
instrument failures in the process of data collection, resulting in missing data and data
anomalies, which can have a serious impact on the subsequent model predictions. In this
experiment, the detected anomalous values are considered as missing values, and linear
interpolation is used to complete the data. Usually, outliers can be identified with the
help of graphical methods (box-line plots and normal distribution plots) and modeling
methods (linear regression, clustering algorithms, and K-nearest neighbor algorithms). This
experiment used the box-line plot method to identify outliers.

The box-line plot technique [50] actually used the quantile of the data to identify the
outliers among them. The graph is a typical statistical graph, which is widely used in both
academia and industry. The shape of the box-line plot is characterized as shown in Figure 3.

Figure 3. Structure of box-line diagram.
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The lower quartile in Figure 3 refers to the value corresponding to the 25% quartile of
the data (Q1), the median is the value corresponding to the 50% quartile of the data (Q2),
and the upper quartile is the value corresponding to the 75% quartile of the data (Q3). The
formula for the upper whisker is Q3 + 1.5(Q3 − Q1), and the formula for the lower whisker
is Q1 − 1.5(Q3 − Q1), where Q3 − Q1 denotes the quartile difference. If a box-line diagram
is used to identify outliers, the judgment criterion is that when the data value of a variable
is greater than the upper whisker of the box line diagram or less than the lower whisker of
the box line diagram, such a data point can be considered as an outlier.

2.5. Data Normalization

For the joint multifactor water quality time series data prediction, different water
quality indicators often have different levels. In the subsequent water quality time series
prediction process, different levels of elements seriously affect the accuracy of model
predictions. In addition, in the process of model training, too large or too small input
data can lead to problems such as model nonconvergence. To solve this problem, this
paper used outlier normalization (min–max normalization) [51] to normalize the data.
Outlier normalization scales the data on the basis of the ratio of the difference between the
maximum and minimum values such that the range of variation of water quality data is
maintained between 0 and 1. Normalization can alleviate the impact of different scales on
model training. The normalization formula is shown in Equation (4):

Xnorm =
X− Xmin

Xmax − Xmin
Xnorm =

X− Xmin
Xmax − Xmin

, (4)

where X is the original data, Xnorm is the normalized data, Xmax is the maximum value in
the original data, and Xmin is the minimum value in the original data.

2.6. Time Series Conversion to Supervised Data

Converting time series data from unsupervised data to supervised data is required
before using a time series prediction model for forecasting to facilitate the model by
comparing the gap between the true and predicted values. The conversion of time series
data to supervised data relies on sliding window interception of feature input values and
target values to construct supervised data [52]. Figure 4 shows the specific process.

Figure 4. Sliding window diagram.
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3. Theoretical Foundation and Model Construction
3.1. Long Short-Term Memory Neural Network

The LSTM neural network is a special recurrent neural network (RNN) [53] that is
capable of learning long-term patterns. It was first proposed by Hochreiter and Schmidhu-
ber [54]. It has been applied very well to a wide variety of problems and is now widely
used. The LSTM network is suitable for processing and predicting time-series features with
very long intervals and delays in the time series. The LSTM network is also effective in
solving the gradient disappearance and gradient explosion problems that tend to occur in
traditional recurrent neural networks.

The LSTM model has an input gate, an output gate, and a forget gate, which are used
to modify the memory. The input gate and output gate are mainly used to control the
input features and output contents, while the forget gate is mainly used to decide which
memories in the memory unit should be retained and which memories can be forgotten,
which can be described by the Equations (5)–(9). The structure of LSTM is shown in
Figure 5.

Input gate : it = σ(Wi · [ht−1, xt] + bi). (5)

Forget gate : ft = σ
(

W f · [ht−1, xt] + b f

)
, C̃t = tanh(WC · [ht−1, xt] + bC). (6)

Output gate : ot = σ(Wo[ht−1, xt] + bo). (7)

Long memory : Ct = ft ∗ Ct−1 + it ∗ C̃t. (8)

Short memory : ht = ot ∗ tanh(Ct). (9)

Figure 5. Structure of LSTM.

The W matrix represents the parameter matrix of various gates and memory cells,
x represents the input values, h represents the hidden state variables, which are mainly
used to store and update the historical information, and σ and tan h represent the sigmoid
activation function and the tan h activation function, respectively. Once trained sufficiently,
the LSTM model can extract features of complex time series information. On the basis of
these effective features (hidden layer information from the LSTM model), the final fully
connected layer is able to decode them into predicted values with reasonable accuracy.

3.2. Attention Mechanism

The essence of the attention mechanism is that, for a given target, a weight coefficient
is generated and multiplied with the input to identify which features in the input are
important for the target and which features are not. To implement the attention mechanism,
we consider the raw data of the input as 〈key, value〉 pairs, and we calculate the similarity
coefficient between Key and Query. On the basis of the Query in the given task in the target,
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we can get the weight coefficient corresponding to Value, and then multiply the weight
coefficient with Value to get the output. We use Q, K, and V to denote Query, Key, and
Value; the formula for calculating the weight coefficient W is shown in Equation (10):

W = softmax
(

QKT
)

. (10)

The attention weight coefficient W is multiplied by value using Equation (11) to obtain
the output a containing the attention.

a = attention(Q, K, V) = W �V = softmax
(

QKT
)
�V. (11)

The detailed structure of the attentional model is shown in Figure 6.

Figure 6. Diagram of attention structure.

As we can see, the attention mechanism forms an attention weight vector by comput-
ing 〈key, value〉, and then is multiplied by value to get a new output incorporating attention.
The attention mechanism has many applications in various fields of deep learning. How-
ever, it should be noted that attention is not a unified model, but only a mechanism that has
different sources for Query, key, and value in different application domains. This means
that different domains have different implementation methods.

For the calculation of attention there are three steps: the first step is to calculate
the similarity between the Query and key to get the weights, and the common similarity
functions are dot product, splicing, and perceptron; the second step is to use a softmax [55]
function to normalize these weights; the third step is that the weights are multiplied with
the corresponding key value to get the final attention.

3.3. Model Establishment

In this research, we introduce an attention mechanism to the LSTM network and
propose the AT-LSTM network model to process multivariate time series data. The main
idea of the model is to reduce the effect of irrelevant factors on the results and highlight
the impact of related factors by adaptively weighting hidden layer elements of the neural
network, thus improving prediction accuracy. The model framework is shown in Figure 7,
and the main components are the LSTM layer and the attention layer.
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Figure 7. The framework of the proposed AT-LSTM model.

The model structures and main parameters are shown in Table 3. The fully connected
layer gets the normalized similarity weights via the softmax activation function. The
weights are multiplied with the input layer to calculate the final attention. The flatten
layer is used to “flatten” the input, which is to turn a multidimensional input into a one-
dimensional one. The hyperparameter setting of the model affects its performance on water
quality prediction to some extent. This paper sets the time window to 100 through a trial-
and-error method, uses Bayesian optimization [56] for model hyperparameter optimization,
and identifies relatively better hyperparameters and activation functions. The difference
in the AT-LSTM model proposed in this study is the addition of the attention layer in
comparison with the traditional LSTM model, while the other main structures are the same.
In addition, the models were trained under the same hyperparameters, which helped us to
compare the models. According to the above principle, the model learns on the basis of
past fitting results, optimizes the water quality prediction by using the property of LSTM
with memory, and finally outputs after activation through the fully connected layer.

Table 3. Model structure.

Layers Output Shape Hidden Dimension

Input layer (64, 100, 4)
LSTM (64, 100, 100) 100
Dense (64, 100, 100) 100

Activation (softmax) (64, 100, 100)
Multiply (64, 100, 100)
Flatten (64, 10000)
Dense (64, 1) 1

Activation (sigmoid) (64, 1)

The specific process of the comprehensive water quality data prediction algorithm
proposed in this paper is as follows:

Step 1: Data cleaning. Before water quality prediction, the box-line plot technique in
Section 2.4 is used to detect the abnormal values of water quality data, and the abnormal
values are set to empty values. Then, the linear interpolation method in Section 2.2 is used
to supplement the vacancy value

Step 2: Data enhancement. Firstly, the Pearson correlation test in Section 2.3 is used to
select characteristics, the correlation analysis between different water quality parameters
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is performed, and the key characteristics related to the characteristic to be predicted are
used as inputs to the model. Secondly, the sliding window technique in Section 2.6 with a
window size of 100 is used to capture the trend of water quality variables. Thirdly, the min–
max normalization in Section 2.5 is used to alleviate the impact of different characteristic
scales on model training.

Step 3: Training model. The water quality data are divided into three datasets accord-
ing to the ratio of 8:1:1: training, validation, and test set. In this study, the training set
contained 31,802 hourly entries (from 1 January 2015 to 4 February 2019), the validation
set contained 3975 hourly entries (from 4 February 2019 to 20 July 2019), and the test set
contained 3975 hourly entries (from 20 July 2019 to 1 January 2020). We used the training set
to fit data samples, the validation set to tune hyperparameters, and the test set to evaluate
the predictive performance and generalization ability of the model. The algorithm flow
chart is shown in Figure 8.

Figure 8. Flowchart of water quality prediction algorithm based on attention mechanism and LSTM.

3.4. Performance Criteria

The water quality prediction is essentially a regression problem. In the present study,
the mean absolute error (MAE), root-mean-square error (RMSE), and coefficient of determi-
nation (R2) were used to quantitatively evaluate the model prediction effect (as shown in
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Equations (12)–(14)). To reduce the randomness error of the algorithm, a random seed (ran-
dom seed) was set during the experiment to ensure the consistency of the operation results.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2, (12)

MAE =
1
n

n

∑
i=1
|ŷi − yi |, (13)

R2 =
m

∑
i=1

(ŷi − ymean )2/
m

∑
i=1

(yi − ymean )2, (14)

where yi is the measured value, ŷi is the predicted value, ymean is the mean value of yi, and
m is the number of test sets.

The RMSE is the square root of the MSE, a magnitude that is more intuitive. For
example, if the RMSE is equal to 10, the regression effect can be considered to differ from
the actual value by an average of 10. Its value ranges from zero to positive infinity; when
it is equal to 0, it indicates a perfect model, with a larger the error denoted by a higher
value. R2 represents the fitting ability of the model; a closer value to 1 denotes a stronger
fitting ability.

3.5. Experimental Environment

In this study, we used the Keras and Tensor-flow framework to provide water quality
prediction with the following parameters: Intel i5-1140 CPU, 2.7 GHz frequency; Nvidia
GTX 3050 GPU; 16 GB PC memory; Windows 10 64-bit operating system; Python version
3.9 development language; PyCharm Professional Edition 2021.3. To achieve the prediction
of water quality in the Burnett River using AT-LSTM and LSTM models, we used the
MSE as the loss function of the model and performed the calculations using the following
standard equation:

loss = ‖Y− Ŷ‖2
2. (15)

Both models were trained on the training set using the Adam optimizer [57] with a
batch size of 64. To accelerate the convergence of the error, the backpropagation learning
method was used. The validation set was used as an early stopping method to ensure that
the model did not over-train.

4. Results and Discussion
4.1. Comparisons of One-Step-Ahead Forecast Using LSTM and AT-LSTM Models

This study aimed to analyze the differences between the AT-LSTM and LSTM mod-
els in multivariate time-series forecasting. The AT-LSTM and LSTM models used the
past values of multivariate time series for one-step-ahead forecasting before performing
multistep-ahead forecasting. The models used the same input data to predict the DO
for the next hour. Figure 9a shows the comparison between the LSTM model and the
AT-LSTM model when making predictions on the test set. From Figure 9a, we can see that
the AT-LSTM model outperformed the LSTM model for water quality prediction for the
Burnett River test set. The standard LSTM method performed less well, with an RMSE of
0.171 and R2 of 0.918. After the introduction of the attention mechanism, RMSE and R2

showed a reduction and an increase, respectively. This is because the attention layer in the
model weighs hidden layer elements of the neural network of different moments, removes
redundant information and noise in the time-series data, and highlights the influence of
the relevant features on the prediction effect, thus improving prediction accuracy.
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Figure 9. (a) Comparison of the predicted DO values of LSTM and AT-LSTM models with measured
DO values in the test period. Blue dots refer to the scatter plot of the measured and predicted DO
value, while the black dashed line denotes a perfect match where “measured DO value = predicted
DO value”. (b) Comparison of predicted DO values of LSTM and AT-LSTM models with actual DO
values in the test period.

Detailed comparisons of predicted and actual values from the two models in the test
set at the corresponding time allowed us to better understand the differences between the
two such as shown in Figure 9b. In Figure 9b, the blue curve represents the actual values,
and the orange curve indicates the predicted values from the modeling. Although LSTM
can predict water quality changes, AT-LSTM’s predictions are less different from the actual
values, indicating that AT-LSTM’s generalization abilities are stronger than those of LSTM.

Table 4 summarizes the performance of these models for the one-step-ahead DO
prediction task in the monitoring sections. From the table, we can see that the method
proposed in this paper shows significant improvements in the MAE, RMSE, and R2 in
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comparison with LSTM. The R2 of the AT-LSTM model increased from 0.918 to 0.953, and
the RMSE and MAE of the AT-LSTM water quality prediction model had 23.9% and 27.7%
reductions, respectively.

Table 4. Performance indicators of the one-step-ahead DO prediction models for the testing dataset.

Models RMSE MAE R2

LSTM 0.171 0.130 0.918
AT-LSTM 0.130 0.094 0.953

Figure 10 shows a box plot of the relative error percentage of each model in predicting
DO. Clearly, the relative error distribution interval of the AT-LSTM model was smaller than
that of the LSTM model. The attention mechanism allocated corresponding weights to the
hidden layer elements of the neural network according to the different levels of importance
of the hidden relevant features. Thus, with the same parameters used in the LSTM model,
the AT-LSTM model could better fit the true value of DO, reduce the prediction error, and
improve the accuracy and robustness of the model. The relative error percentage was
calculated using Equation (16):

δt =
|xt − x̂t|

xt
× 100%, (16)

where xt is the actual value of the moment t, and x̂t is the predicted value of the moment t.

Figure 10. Error percentage box diagram of each model.

4.2. Comparisons of Multistep Forecasting Using the LSTM and AT-LSTM Models

To verify the prediction performance and generalization ability of AT- LSTM model,
this study conducted DO water quality prediction experiments with different step lengths.
The sliding window width was still set at 100. The prediction steps were 4–48 steps, i.e.,
the past 100 h of data to predict the future 4–48 h of water quality. A comparison of the
prediction errors MAE, RMSE, and R2 of the LSTM and AT-LSTM models for the test set
is presented in Table 5. Clearly, the MAE and RMSE values of the AT-LSTM model were
smaller than those of the LSTM model in every step, and the R2 of the AT-LSTM model was
higher than that of the LSTM model at each step. The average values of MAE and RMSE
of the total model decreased by 14.6% and 12.2% in comparison with LSTM, respectively,
but the average R2 increased by 10.8%. In terms of general trends, with the increase in the
prediction step, the model prediction error also increased, being inferior to the prediction
of the future 1 h.
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Table 5. MAE, RMSE, and R2 for 4–48 h ahead prediction of LSTM and AT-LSTM.

Time
(Hour)

RMSE MAE R2

LSTM AT-LSTM LSTM AT-LSTM LSTM AT-LSTM

4 0.229 0.201 0.178 0.152 0.853 0.887
8 0.271 0.238 0.212 0.178 0.794 0.841

12 0.295 0.228 0.232 0.173 0.757 0.854
16 0.297 0.229 0.234 0.171 0.753 0.853
20 0.317 0.254 0.248 0.191 0.719 0.820
24 0.335 0.263 0.267 0.194 0.686 0.806
28 0.365 0.346 0.280 0.256 0.626 0.664
32 0.374 0.357 0.292 0.271 0.607 0.644
36 0.367 0.355 0.282 0.269 0.623 0.647
40 0.406 0.374 0.315 0.288 0.538 0.608
44 0.446 0.378 0.348 0.288 0.443 0.601
48 0.422 0.405 0.333 0.312 0.501 0.541

Average errors 0.344 0.302 0.268 0.229 0.659 0.730

Comparisons of the values of real and model-predicted DO, error plots, and residual
histograms produced by the LSTM and AT-LSTM models for the next 48 h are presented
in Figures 11 and 12, respectively. They demonstrate the comparison of the reasonable
precision of the 48 h ahead DO forecasts between AT-LSTM and LSTM. As shown in
Figures 11 and 12, although both the LSTM and AT-LSTM models accurately captured
the trend of the DO content, the AT-LSTM model exhibited better prediction and stronger
generalization than the LSTM model. The performance evaluation indices are presented
in Table 5. The values of evaluation criteria produced by the LSTM model on the test set
were as follows: R2 = 0.501, MAE = 0.333, and RMSE = 0.422. On the other hand, the values
of evaluation indicators produced by the AT-LSTM model on the same test set were as
follows: R2 = 0.541, MAE = 0.312, and RMSE = 0.405. This explains once again that the
attention mechanism could improve the effectiveness and accuracy of the AT-LSTM model
for prediction in multivariate time series.

Figure 11. Line graph, residual histogram, and error plots for 48 h ahead forecasting using LSTM
model on the test dataset.
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Figure 12. Line graph, residual histogram, and error plots for 48 h ahead forecasting using AT-LSTM
model on the test dataset.

4.3. Model Verification

A new independent dataset (Gregory River data) was used to verify the advantages
of AT-LSTM over LSTM in the prediction performance of multivariate time series. The
comparison of RMSE using the LSTM model and the AT-LSTM model for 1–12 h ahead
prediction on the new dataset is shown in Figure 13. By comparing the variation of RMSE
from LSTM and AT-LSTM models with the steps, it can be seen from Figure 13 that the
RMSE of AT-LSTM predicted 1–12 h ahead on the new dataset was always lower than
that of LSTM. This verifies that the AT-LSTM model proposed in this paper has more
advantages than the traditional LSTM model in the prediction performance of multivariate
time series. The above experimental results demonstrate that the developed deep learning
AT-LSTM model outperformed the LSTM model in terms of prediction performance and
could generalize the prediction capabilities outside the training station.

Figure 13. RMSE for 1–12 h ahead prediction of AT-LSTM model and LSTM model on the new dataset.
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5. Conclusions and Future Work

With the rapid development of technology, gathering water quality data quickly
evolves from manual collection to automatic monitoring, which makes the processing of
water quality data of a large capacity and high frequency a reality. However, the traditional
prediction method struggles to fully extract the true characteristics of water quality infor-
mation; thus, the results of prediction cannot meet the needs of the actual application. It
is urgent to develop a better water quality prediction method with higher accuracy. The
AT-LSTM model proposed in this study incorporates the nonlinear mapping capability of
the LSTM neural network and the feature weighting function of the attention mechanism,
extracts the characteristic information of water quality data efficiently, and predicts the
dissolved oxygen content of the Burnett River with significantly better accuracy than the
LSTM model. In comparison with the standard LSTM model, the RMSE and MAE of the
AT-LSTM water quality prediction model had 23.9% and 27.7% reductions, respectively,
and it achieved a higher R2 of 95.3% with better generalization performance. In practical
application, the AT-LSTM model can be used to establish the water quality prediction
and early warning platform of Burnett River, to sense the potential pollution risk of the
river water in advance, send early warning reports, and conduct pollution retrieval. This
AT-LSTM model can significantly improve the prediction ability of relevant departments on
water environment risk, upgrade the passive water environment risk emergency treatment
to automatic prediction, and provide early warning and active prevention, thus protecting
the aquatic environment of the Burnet River and the Great Barrier Reef. Furthermore, the
model proposed in this study can provide a reference for the construction of water quality
prediction models of surface water bodies in other regions. Clearly, the AT-LSTM model
has important application value and practical significance.

In addition, the AT-LSTM prediction model proposed in this paper has room for
further optimization, and subsequent research work can be carried out from the following
aspects. Firstly, this paper used only the water quality data of one monitoring point,
whereby the water quality monitoring data of other sites in the study area can be added.
The correlation of their geographical location can also be taken into account, such that
not only the dimensionality of the data but also the amount of data will increase, thus
enhancing the accuracy of water quality prediction and better improving the predictive
performance of the model. Secondly, the feature screening method used in this study is
a relatively simple Pearson correlation test algorithm which is a linear feature screening
algorithm. For future studies, we will try data preprocessing and feature engineering
methods, such as the use of nonlinear feature screening methods to find the impact of
predictive indicators as more effective factors, hoping that the model’s prediction accuracy
can be further improved.
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