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Abstract: Although electric vehicles (EVs) play a vital role in realizing remarkable features, however,
the integration of a huge number of EVs leads to grid congestion as well. As a result, uncontrolled
charging might give rise to undervoltage and complex congestion in the electric grid. The reasons
for the uncontrolled charging of EVs have been investigated in the recent past to mitigate the effects
thereof. It is very challenging to achieve controlled charging due to different constraints at the
customer end; therefore, it is better to take the benefits of power prediction schemes for the charging
and discharging of EVs. The power prediction scheme is based on a practical power forecast system
that exploits the needs of various patterns, and the current research focuses on considering users’
demands. The primary objective of this study is to develop an effective and efficient coordination
system for the charging and discharging of EVs by exploiting a smart algorithm that intelligently
tackles the possible difficulties to attain optimum power requirements. In this context, a model is
proposed based on stochastic methods for analyzing the impact of vehicle-to-grid (V2G) charging
and discharging in the microgrid environment. A Markov model is used to simulate the use of EVs.
This method works well with the Markov model because of its ability to adjust to random changes.
When considering an EV, its erratic travel patterns suggest a string of events that resemble a stochastic
process. The proposed model ensures that high power requirements are met during peak hours in
a cost-effective manner. In simpler words, the promising features of the proposed scheme are to
meet electricity/power demands, monitoring and the efficient forecasting of power. The outcomes
revealed an effective power system, EV scheduling, and power supply without compromising the
electric vehicle’s presentation of the EV owner’s tour schedule. In terms of comprehensiveness, the
developed algorithm exhibits a significant improvement.

Keywords: electric vehicles; controlled charging; vehicle to grid; probability distribution function;
Monte Carlo simulation; state of charge

1. Introduction

The transportation sector is one of the biggest sources of carbon dioxide (CO2) emis-
sions. Particularly, in developing countries such as Pakistan, almost one-third of CO2
emissions are anticipated from the transportation sector. Similarly, one-third of all CO2
emissions are realized in the United States as well [1], and one-quarter of all CO2 emissions
globally. Although most of the transportation sector around the world still depends on
traditional energy resources, the use of electric vehicles (EVs) has also extraordinarily
increased and has received a lot of attention from researchers and scientists. EVs have a
major role in reducing CO2 emissions in the transportation sector. The promising features
of EVs are their ability to reduce tailpipe emissions and pollutants, which ensures a green
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energy concept, and are three times more energy-efficient and easier when compared to
internal combustion engine vehicles (ICV) [2]. Both the short- and long-term economic
goals of Pakistan also consider this primary and inevitable transportation sector problem
and incorporate the use of EVs into the system, considering the growing importance of
EVs. Renewable energy (RE) generation and energy consumption are essential for CO2
emission reduction. Therefore, new EV charging strategies must be incorporated into the
current power system to accommodate RE sources. It must be able to incorporate new
decentralized energy sources while also meeting the increasing demand caused by the
growing usage of EVs [3].

The rapid adoption of EVs is anticipated to have an impact on local electric networks
and grids. According to recent studies, EV charging is possible even at low penetration
rates; however, it can lead to grid/electric network congestion and undervoltage [4]. As a
result, EV charging accelerates distribution transformer deterioration and increases elec-
tric network/grid losses [5]. The prior “Fit-and-Forget” approach in this new situation
necessitates transmission and distribution companies to change their current electric net-
works to accommodate the unique, ever-expanding necessity. This would entail enormous
investments on the part of transmission and distribution companies [6].

As a result, a large percentage of scholars have recommended a variety of techniques to
mitigate the negative impacts of EV charging. Controlled charging of EV batteries prevents
extremely congested peak load hours and undervoltage [7,8]. If EV charger capability for
vehicle-to-grid (V2G) charging is extensively employed, the batteries might be used as
short-term energy storage (ES). Distribution operators could use this short-term energy
storage to diminish the congestion on the grid due to conventional loads [9]. The life of
the battery can be maximized by enabling controlled charging [10], although regulated
EV charging is difficult to achieve since it includes numerous users, each with its own set
of priorities.

The primary goal of research on EV fleet aggregators was to reduce energy acquisition
costs for charging electric vehicles. The year that saw the lowest charging costs was a
globally flattened load profile, obtained by optimizing the EV power of charging and
time under the cost signal [11,12]. One advantage is that optimal charging periods and
wattages reduce EV charging-related losses on the electric grid [13,14]. The control of EV
charging using load shifting and valley filling while taking EV battery energy limits was
recommended in [15].

Additionally, several strategies addressed the diverse consumer demands as well
as the higher power requirements brought on by the simultaneous charging of many
EVs [16]. In these scenarios, the main entity collects the information from each sub-entity
and organizes authority utilization to fulfill the overall EV charging goals. Because the
study neglected EV driving characteristics, the developed technique is computationally
costly when applied to flexible and advanced systems [17,18].

The charging loads for plug-in EVs were calculated using the Monte Carlo (MC)
approach after forecasting the system’s initial level of SOC [19]. According to the study,
numerous criteria such as metrological circumstances, market charging pricing, and emis-
sion reduction may be easily classified in order to predict the charging time and initial
state. The certain probability distribution function (Pr) was used with the help of a MC
method to estimate how an EV user would drive [20,21]. This approach, however, is not
optimal for forecasting load due to the arbitrary selection of distributed elements and
incorrect prediction. Moreover, these approaches can only depict the first and final trip of
the day [22]. The demand impact of EV rapid charging was explored using MC models [23].
The study’s major problem is that it fails to take into consideration the different methods of
EV charging [24,25]. Similarly, the work carried out in [26,27] does not consider variable
EV charging patterns.

According to the literature review, a practical charging strategy should be made, with
EV fleet aggregators and transmission and distribution companies acting as independent
legal entities. The design of EV charging must consider the needs of all parties involved.
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A strategy for forecasting the power of EV charging and discharging is proposed to ac-
complish this. The primary goal of this article is to simulate, calculate, and estimate the
grid impact of electric vehicles while also determining storage requirements for EVs to con-
tribute to energy service delivery. First, the charging techniques and charging-discharging
patterns of EVs are studied, which will be required for future predictions. Furthermore, two
distinct approaches for assessing EV usage and developing load profiles are investigated.
Moreover, critical aspects that influence the load profile for EV charging are also considered.
Stochastic methods are used to simulate the behavior of EVs on a wide scale, predict peak
energy consumption, and anticipate peak load periods.

One of the major contributions of this article is to establish a new practical pricing
method that considers the various stakeholders’ needs. The study calculates the charging
impact of EVs by designing several EV charging models, relying on charging routines
promoted by EV owner behavior, in order to work with the innovative charging technique.
In the new charging strategy, distribution corporations and charging station operators
(CSOs) are classified as distinct entities. Electric vehicle CSOs merely know the positions of
various EVs in the power grid, and the distribution operators have no problem dealing with
EV data. The novel method employs stochastic algorithms with a maximized extensive
index and considers a standard battery to simulate the traveling behavior of big-scale EVS
over extended time periods. Moreover, the previous charging techniques are compared
and evaluated against the new charging approach.

The proposed algorithm also helps us to reduce the EV owner’s electricity costs. Profit
is guaranteed by the differential between peak hours and off-peak hours’ electricity costs.
This revenue might be divided between EV owners and electricity supplier companies.
To strike a balance between the profit of the EV owners and the advantage of the energy
suppliers, we should utilize a portion of the income to compensate EV owners or reg-
ular consumers to encourage them to use power wisely. Furthermore, power suppliers
must receive a portion of the profit in order to cover the costs of maintenance as well as
other services. To sum up, the key contributions of the proposed model are summarized
as follows:

• The primary goal of the proposed system is to provide an algorithm for EV charging
and discharging that adequately addresses the issue of peak power demand.

• To forecast EVs use, the proposed stochastic techniques were applied to charging and
discharging algorithms.

• The novel method employs stochastic algorithms with a maximized extensive index
and considers a standard battery to simulate the traveling behavior of big-scale EVS
over extended time periods.

• The proposed algorithm intends to use V2G technology to control excessive power
consumption during peak hours.

• The study calculates the charging impacts by creating several EV charging scenarios
dependent on charging patterns promoted by vehicle travel behavior in order to
incorporate the new charging approach.

• When compared to traditional pricing schemes, the proposed algorithm demonstrates
a considerable improvement.

The paper continues with a summary of existing charging schemes that highlight
forecast challenges. Section 2 explains the features of aggregated EVs integrated with
the grid, as well as the major elements that influence EV charging behavior. Section 3
develops two separate models to apply stochastic approaches for predicting EV utilization.
The developed models are subjected to simulation, resulting in findings and discussions
in Section 4: Calculate peak energy demand, anticipate peak load hours, and reduce
peak power consumption by utilizing stored energy in electric vehicle batteries. Section 5
discusses the conclusions.
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2. Features of Aggregated EVs Integrated with the Grid

The power sectors are facing difficulty in dealing with unpredictable electricity con-
sumption as a result of an abrupt growth in the private EV fleet and considering them to
be the vehicle-to-grid (V2G) system. The functioning of the EV appears to have a stronger
influence on establishing charging patterns. Variations in a load of EV charging behavior
have been observed by several studies and calculated in a variety of load profiles. The
majority of these load profiles are dependent on the vehicle’s available charging options.
The EV is charged immediately due to an uncontrollable charging event. Once it has been
parked and charging is possible during this time, occurrence-only unidirectional charging
is considered to be possible. This is feasible when it comes to grid-to-vehicle (G2V) power
transfer. Certain outermost components were able to manage the discontinued one-way
charging, owing to the advancement of alternate charging techniques. Bidirectional charg-
ing exists in the addition of grid-to-vehicle (G2V) charging, which considers the probability
of power transfer from vehicle to grid.

In order to study the influence of EV charging on the microgrid/power grid, the char-
acteristics of the EV charging station and charging strategy must be investigated. Figure 1
depicts a generalized plan for grid-connected EV charging stations and charging strategy.

Figure 1. An overview of a V2G charging station linked to the grid.

Major Factors Affecting Charging Load Patterns for Electric Vehicles

In addition to charging strategies, three factors are taken into account when the behav-
ior of EVs is studied in a V2G environment: the location of the charging, the requirement
for charging, and the timing of the charging. These three critical parameters are required
to measure the load patterns of EVs and the impact of electric vehicle charging (EVC)
on the electrical network. Figure 2 depicts some of the key elements of an EV charging
system and EV charging schedule. The charge required is the amount of electricity required
for an EV to travel a particular distance, which is supplied by the grid/microgrid or the
batteries [28,29]. Estimating the amount of vehicle-used electricity can be performed on a
daily or per-drive-event basis. Assumptions are made about the requirement for charging
in time, distance traveled, and duration of the journey, among other aspects [30,31]. It is
considered that time-based mobility modeling is essential. Time-dependent state-of-charge
(SOC) information is accessible, and the amount of charge required is calculated when the
EV enters any parking lot with charging stations.

The charging of an EV battery represents its charge. There are two modeling ap-
proaches available: plug-in time and plug-out time. The precise start time can alternatively
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be specified as the pattern of the EV’s charging [32] or as a probability distribution of
certain samples [33,34].

Figure 2. Impact of EV charging strategy and charging scheduling factors on the grid.

These strategies are only useful for determining when to charge for the day’s last or
initial visit. The charged moment is calculated based on the time of stopping information
supplied for a visit, whether it is for commuter or non-commuter travel [35,36]. External
charging approaches or personal charging might be employed to delay the charging timing.
Another constraint to consider when modeling EV charging behavior is the use of secondary
fuel. External charging techniques may be altered to arrange parameters such as cost, grid
loss, load fluctuation, and income by maximizing the essential aspects of charging location,
charging moment, and charging requirement. Taking into consideration V2G services,
external pricing strategies are required to carry out different activities to achieve the goals
of external charging strategies. The performance of stochastic discrete driving is produced
by individual charging techniques with an unregulated charging pattern, which can change
the load-charging profile. Due to their versatility, EV chargers can affect charging behavior
based on user preferences. EV charging modeling is presently needed to estimate load
profiles in connection to the introduction of electric vehicles into the power supply. The
primary components of the model can be built in a variety of ways, depending on the
model’s goal, which might be external EV charging techniques, individual EV charging
tactics, or uncontrolled EV charging.

3. Performance of Electrical Vehicle Charging

The Monte Carlo method is a broad category of computing algorithms in which
numerical results are obtained through random sampling. The Monte Carlo approach can
be used to address any problem with a probabilistic interpretation. Furthermore, with a
large enough sample size, the law of large numbers permits a simple mean to be used to
estimate probability standards (or any integral, for that matter). For example, [37,38] can
be used to estimate the following integral:

∫ a

b
f (x)dx =

b− a
N

N

∑
i=1

f (xi) (1)
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The required samples are denoted by N. This fundamental can be used to find one
finite-dimensional integral (FDI) above a volume, as follows:

∫
Ω

f (x)dx =
V(Ω)

N

N

∑
i=1

f (xi) (2)

where V denotes the volume this holds true in any dimension and has a negligible impact on
computation time. In this study, high-dimensional integrals (HDI) are derived numerically;
hence, this technique has an advantage.

3.1. Monte Carlo Simulation Markov Chain (MCSMC)

A MC is a set of states x0 ; x1, . . . . . . .xn in which any state xi _ + 1 depends solely on
the state xi _immediately before it, a condition known as memoCrylessness.

Establishing such a purpose enables the modeling of a Markov chain. The transition
amplitude is the probability of moving from state xi to state xi _ + 1. Each model in this
study is memoryless and has a Markov chain representation. Additionally, any model can
be modeled using MCSMC techniques. Solving the symmetry of a many-state scheme can
be challenging, if not impossible. Instead, opening from an initial state x0, the organization
will reach equilibrium, or fulfill the objective allocation at the state xn for some large
organizations. The reason for this is that the algorithms presented in this research maintain
a high degree of detailed balance and ergodicity, guaranteeing that they ultimately meet
the precise possibility distribution. The starting state x0 is arbitrary, despite the fact that
knowing the equilibrium distribution beforehand can help convergence proceed more
quickly. Although the equilibrium distribution was previously unknown, it may now be
roughly determined by growing the Markov chain until the resulting distribution meets
the equilibrium state conditions within an error. The Monte Carlo simulation can also
be utilized for mathematical modeling to resolve the outcomes index of various charging
methods based on EV travel and charge statistics.

3.2. Model-1 for Electric Vehicle Charging

The discrete temporal load profile serves as the foundation for the EV charging model
discussed in this work. The energy utilization of the vehicle, which results in a charging
demand, and the profile of load at the time of charging, determine the EV charging pattern.
In Figure 3, I stands for each time instant for the ‘n’ EVs, where I = 1, . . . . . . T and T is the
largest time step. The input system is provided in the model 1 initial step. When an electric
vehicle has been parked and incorporated at the connecting time (Tc

n), the moment of
charging begins, and it lasts until the fully charged battery. The amount of time it takes an
EV to connect is mostly influenced by how long it takes to leave a parking space (Ln), how
far the vehicle is from a place (An), or how long it takes to drive (Dn). When the connecting
time (Tc

n) is the time of arriving at the destination and the leaving time (Ln) is the time of
departure, this phenomenon is seen in five different scenarios. In Case 1, the user of the car
is allowed to leave the parking space, be gone for a predetermined amount of time, and still
use the vehicle because the variables Ln, An, and the energy expended En

u are all sampled
separately. These factors ensure that there is no highest energy consumption En

umax during
the shortest possible time away. In this scenario, it is supposed that the electric vehicle
is initially charged at the charging station (CS), and the connection time is Tc

n1, which is
computed as follows:

Tcn
1 = Ln + An (3)

In the second scenario, sampled drive time Ds
n, velocity Vs, and utilization Cs, represent

the energy utilized En
u while driving:

En
u = Ds

nVSCS (4)
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Figure 3. Evaluation of the effect of load on the grid.

The EV is assumed to be beginning from either an office or a commuting parking spot,
and the time of connecting Tc

n2 is calculated as follows:

Tcn
2 = Ln + Dn (5)

A significant amount of Cases 1 and 2 are combined to estimate the connection time in
example 3. A late-starting automobile is the subject of Case 4. There will be an hour’s delay
in Case 1. In this instance, the connection time Tc

n4 is quite close to the present. Case 5 is
about Tc

n5 distributed electric vehicle charging, where the CSO controls how many vehicles
are connected to each charging point.

Prediction of Load Demand
The electric vehicle charging load for EV n is determined at instantaneous I as depicted

in Figure 3. Based on the charging power Cp, Vi,n
p calculates the expected load. Ci n is

the time it takes for each car to fully charge its battery. The car n’s charging time Cn
i is

computed as:

Cn
i =

En
u

Cp
(6)

The formula for charging power Cp, load Vi
p, and n for motor vehicle n at moment I is

as follows:

Vn,1
p =

{
Cp I f Charging

0 Else
(7)

Using MCS for k samples, the predicted power E
[
Vi

p

]
at the instant I is given by:

E
[
Vi

p

]
=

1
k

k

∑
n=1

Vi,n
p (8)

The total (EV) charging load Vi
pTotal for N vehicles at the instant I is given by:

Vi
ptotal = N.E

[
Vi

p

]
(9)

The mean of the other loads is computed in segment 3 of Figure 3. Other loads Oi
p.

are determined as the creation of the normalized load curve Oi
c,p and the load number. On,

with a usual consumption of Co kWh/day/load, at instant i.

Oi
p = On.Oi

c,p.Co (10)
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The overall load profile is calculated in the final stage as the sum of the EV load plus
further critical loads. The total load means is calculated as follows:

Pi
L = Vi.t

p + Oi
p (11)

The whole analytical algorithm is shown in Figure 4.

Figure 4. Simulation algorithm for model 1.

Figure 3 can be adjusted as illustrated in Figure 5 for a specific instance of EV scenario
1, where household loads are present and the vehicle has to be charged at residence.

Figure 5. EV charging at home.
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With the exception of taking into consideration domestic operations and electric
vehicle routines Api,n

z , where Ap is the is denoted as the pattern of activity and Z is denoted
as the activity at instant I for EV n, the imitation algorithm is the same as for model 1. In
addition, the length of the instant I, the charging power Cp, the charging time Ci, and the
depth of discharge Dd. Dd is taken into consideration. The algorithm for charging demand
calculation is displayed in Figure 6.

Figure 6. Electric vehicle home-charging demand calculation by using MCS.

3.3. EV Mobility and Recharging Flexibility

This article’s suggested EV charging model replicates erratic charging and unique
charging techniques based on charging price compassion. Based on driving habits and
movement of the vehicle, it modifies time dependency to estimate charge profiles. The
starting and finishing periods of a trip are used to simulate the mobility of EVs. The demand
for charging is mostly determined by the vehicle’s energy usage and velocity during a
journey. When the car is moving, we may estimate the requirement for charging, the state
of charge, and the position of the CS with respect to time by using temporal dependency.
It must be understood that all of the preceding factors are interdependent. Based on the
necessity of charging, postulations were made that EV charging could take place anywhere
once the trip was completed. As illustrated in Figure 7, the above-mentioned charging
model has eight steps.



Sustainability 2022, 14, 13211 10 of 22

Figure 7. Electric vehicle mobility and charging flexibility for model 2.

3.4. Electrical Vehicle Model 2

A Markov model was used to simulate the use of EVs. This method works well with
the Markov model because of its ability to adjust to random changes. When considering an
EV, its erratic travel patterns suggest a string of events that resemble a stochastic process.
According to the widely acknowledged Markov process, given this series of events, an
object’s future states depend only on its present state and not on its past occurrences.
At each moment I each happening is explained as the probabilistic parameter, Xi as{

Xi; i ∈ τ
}

, where τ is a discrete-time interval and τ = {0, . . . . . . ., T}, is the beginning
value, and the mathematical symbol for this random process. The process of a Markov
chain has a collection of states G = {1, . . . . . . ., Q}, for Xito reside. Xi,nprovides the status
of an EV at the instant I. A matrix of transition Ti of dimension Q × Q with transition
probability Pµ,v with µ, v ∈ G, and µ, v as matrix elements representing the progress to
Pi

µ, v in a single instant. The complete sum of progress (movement) for each instance is
given by ∑ µPt

µ, v = 1.
Step 1 concerns the mobility of a collection of explanations that an EV Xi,n in Figure 7

can dwell on. Model 2 specifies these explanations as the inherent patterns connected to
any vehicle. The natural states of the set G = {Pa, Dr} are the parking state (Pa) and the
driving state (Dr). If the automobile is in state Pa, based on the battery’s state of charge,
it can charge. If the battery has enough capacity and the automobile is in state Dr, it is
using energy.

The state of an electric vehicle’s n is evaluated in the second step using a transition
matrix Ti. At any given time, only one state of that exact electric vehicle may exist.

Ti =

[
Pi Pa Pa
Pi Dr Pa

PI Pa Dr
Pi Dr Dr

]
(12)

For electric vehicle n, the initial state probabilities P0,n
s are shown by:

P0,n
s =

[
P

0
n
pa P0,n

Dr

]
(13)

Equation (13) treats the X0,n first state for EVn. Step 3 of Figure 7 shows each time-
dependent event sampling process EVn. There is a possibility Pi+1,n

s that vehicle n is in states
Pa or Dr at the instant i + 1. A line in the matrix transition Ti, that shows the condition at
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the instant I is represented by Pi+1,n
s The first row in T0 and the anticipated next state in

the line can both be treated if the initial state is X0,n = Pa.

Electrical Vehicle Profile Estimation

Step 5 calculates the electric vehicle’s charging load Vi,n
p for car n at instant i.

Vi,n
p =

{
Cp If Charging

0 else
(14)

The mean result of MCS for samples k was used for evaluation of the load profile
E
[
Vi

p

]
for one electric vehicle in step 6.

E
[
Vi

p

]
=

1
k

k

∑
i=1

Vi,n
p (15)

The standard deviation σi
v is evaluated as:

σi
v =

√
1

k− 1

k

∑
i=1

(
Vi.n

p −Vi
p

)
(16)

Step 7 calculates a total load of charging Vi
p for Nt vehicles at an instant i.

Vi
ptotal = Nt ∑

[
V̂pi
]

(17)

The entire load profile is estimated in the last stage by adding the daily load (overall)
Oi

p and charging load (total) of vehicles.

Pi
L = Vi

ptotal + Oi
p (18)

4. Results and Discussions

The presented methods aim to reduce peak power needs by utilizing stored power in
an EV’s battery. Depending on the EV battery’s state of charge and the desired power for
the travel, the charging procedure may occur during peak hours or off-peak hours. Table 1
shows the EV battery characteristics that were used for this study.

Table 1. Characteristics of EV battery.

Features Specifications

Battery Lithium-ion Battery
Capacity of EV batter 72 Volt (100Ah)

Battery nominal voltage 72 Volt
Nominal capacity of battery 112 Ah

Distinctive capacity of EV battery 116 Ah
Accomplished charging voltage 85.5 Volt + 0.05 Volt

Accomplished discharging voltage 65.5 Volt
Battery charging time of EV 4.5 h (0.33C)

Method of EV battery charge Standard
(85.5 Volt and CV at 0.333 C.A)

Fast EV charging method (85.5 Volt and CV at 1.0 C.A)
Maximum discharging current 240 amperes

Moreover, if the EV leaves the house without enough state of charge to achieve the
needed power for the drive, EV owners can charge the EV at a charging station (CS).
Meanwhile, EV discharging procedures will happen between the hours of 8:00 am to 8:00
p.m. The charging/discharging times of an electric vehicle are highly influenced by the
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initial SOC, daily miles, EV discharge period, and power provided. The Monte Carlo
simulation (MCS) random sampling approach was used to alleviate these impacts on
EVs. The MATLAB/Simulink tool was used to perform the empirical analysis of the data
considering power requirements, user mobility, trip plans, and the cost of consumed power
and lost grid electricity.

4.1. Model Fitting Using a Probability Distribution for Traveling Parameters

The probability density function (PDF), as well as its values of the driving variables,
may be calculated by investigation of electric vehicle driving statistics on business days, as
shown in Figure 8.

Figure 8. Flowchart for selecting the best distribution function.
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The PDFs were chosen depending on the data set and stochastic functions. Further-
more, the data was divided into five categories: frequency, electric vehicle travel, dura-
tion, distance, and times of trip (morning hours (12.00 am–12.00 pm) and evening hours
(12.01 pm–12.00 am)). The best probabilistic distribution functions derived for variables
were then implemented in the simulation model, such that the input parameters satisfy
particular probabilistic distributions that correspond to the actual EV traveling patterns.
Although there are certain distortions when negotiating with trip time, multiple hypothesis
testing procedures were used to ensure that these variations were admissible with large
enough statistic samples. As a result, the developed MCS model is highly trustworthy
and credible.

4.2. Case Studies 1 and 2: The Number of Daily Trips Made and Their Intervals

The everyday traveling frequency Tf and the trip interval Ti are presented as random
variables x, distributed with the size and shape variables, k and θ, accordingly, using Erlang
distribution. When θ is big, the Erlang distribution prefers positive actual numbers and
resembles the normal distribution. The PDF is presented for k > 0 and > 0:

1
Γ(k)θk xk−1e−(

x
θ ) (19)

where Erlang or Gamma function is denoted with Γ is and is given by:

Γ(k) =
∫ ∞

0
tk−1e−tdt (20)

As a result, the size, geometry, median, and variance variables were calculated us-
ing maximum likelihood estimation (MLE), and the relevant graphs were produced and
compared empirical findings with genuine fitting data. The parameter estimate plots for
activities 1 and 2 are shown in Figures 9–11, accordingly.

Figure 9. The daily travel pattern of an electric vehicle.
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Figure 10. An electric vehicle’s frequency of daily travel.

Figure 11. Daily mileage for each journey.

4.3. Case Study 3: Each Trip’s Mileage

The driving miles per trip Dm is generated by applying the fatigue life distribu-
tion to predict the failure durations with the use of shaped k, dimension, and position
characteristics.

The PDF is provided for x > and k > 0:

fx; k, θ, µ =

√
(x− µ)/θ + θ/(x− µ)

2k(x− µ)
φ

√
(x− µ)/θ + θ/(x− µ)

k
(21)

where φ is denoted as standard normal distribution’s probability distribution function
PDF. The fatigue life distribution has the benefit of being able to fit skew better than
current distributions, such as the minimum and maximum distributions and the classic
beta distribution. As a result, MLE was used to estimate the size, mean, shape, and variance
variables, as well as the relevant graphs, which were generated by correlating statistically
with the real fitting data. Figure 12 shows the graphs for parameter estimates using Case 3.
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Figure 12. Everyday driving mileage for each trip.

4.4. Case Study 4: Daily Departure Time

There are two options for predicting the daily departure time of the trip.
Case A: Consider that the travel begins in the middle of the night to the morning

hours (12.00 am–12.00 pm) of the day TE
s . The destination distributions are modified

in this scenario. The PDF is provided for any random variable x, shaped k, size, and
positioning parameters:

f TE
s (x; k, θ, µ)= Γ

(
(k+1)

2

)
θ
√

kπ.Γ
(

k
2k

)
 k +

(
(x−µ)

θ

)2

k


− (k+1)

2

(22)

where the gamma function is denoted by ‘Γ′.
Case B: Suppose that the travel begins in the evening time of the day (12.00 pm–

12.00 am) TL
s . The Gaussian distribution is used in this example. The probability distribution

function for each random variable x is given by:

f TL
s

(
x; µσ2

)
=

1√
2πσ2

e−(
(x−µ)2

2σ2 ) (23)

where the median is denoted with x and σ2 denotes the variance. Moreover, the statistical
parameters were calculated using MLE, and the relevant graphs were produced by correlat-
ing statistical values with the real fitting data. Figures 13 and 14 show the charts for the
parametric tests with activities.

It is clear from the preceding actions that estimating the EV charging/discharging
power may be conducted in three distinct scenarios—EV charging, EV traveling, and EV
parking—by combining five separate activities. By using the MCMC approach, several
simulations were performed to predict the system’s behavior. To assess the system’s
dependability, several statistical measures computed were examined with MLE, and the
relevant findings are shown in Table 2.
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Figure 13. The trip’s start time.

Figure 14. Trip departure time on a daily basis.

Table 2. Five different scenarios’ statistical parametric values for MCSMC and the standard statistical
estimate technique.

Scenario Forecast Value Skewness Kurtosis Variance

M.L.E MCSMC M.L.E MCS.MC M.L.E MCSMC M.L.E MCS.MC

i 12.08 7.50 2.6 1.60 8.40 2.88 91.12 73.90
ii 25.10 20.87 1.54 0.53 1.32 0.80 230.08 143.88
iii 9.96 5.25 3.78 1.74 16.50 2.92 131.35 51.00
iv 24.82 15.10 1.76 0.52 2.00 0.50 195.98 188.96
v 19.06 13.52 1.94 0.90 3.05 0.15 224.98 148.05

The variation in the parametric values was achieved by modifying the conditions used
for this simulation’s estimate procedure. The change in kurtosis parametric values was
found to be higher than the variation in predicted values. The variance readings for the
MCMC approach were lower in comparison to the SE approach, indicating that it was
closer to the weighted mean and minimal risk.

Additionally, the skewness and kurtosis values for the MCMC scenario show higher
benefits with the estimating technique. It has also been discovered that the calculation time
of MCMC is six times better than that of existing techniques.
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New EV charging and discharging mechanisms can be established based on the sample
methodologies adopted through examining data to construct a charging/discharging
method and create an innovative scenario. For simulation studies, numerous factors and
possibilities were considered:

• The daily use of private EVs is distributed using a log-normal distribution.
• It is anticipated that the state of charge of the EV’s battery should be more than 0.2 at

all times.
• As illustrated in the image, specific time periods were selected for performing the EV

charging/discharging operations.
• It is anticipated that equal distribution meets with the initial condition of the EV

charging and discharging process.
• Time restrictions were not considered while charging.
• The electric vehicle’s battery will keep charging until the state of charge is ≥ 0.9.

The EVs battery’s charging and discharging capacity was estimated by equally parti-
tioning 24 h into 72 periods of 20 min each. For example, the EV charging and discharging
power is given as instance ‘i’:

Pi= ∑n
k=1 Pik (24)

where Pikis represented as EV charging and EV discharging capability of the kth electric
vehicle at instant I and n represents the number of EVs used in G2V or V2G mode.

Assuming all of the above limitations, let us suppose that the EV is already completely
charged. The initial charging condition is restricted.

Where EV charging and discharging capacity is denoted as Pik of the kth EVs at the
instant I, and n are a fleet of electric vehicles employed in G2V or V2G mode.

Assume, given all of the above-mentioned constraints, that the EV has been initially
fully charged. Because of this, the initial charging state is constrained:

∆Ijk =

(
1− SOCintjk

)
Qj

Pjk
(25)

Ioε
[

Ioj, Ioj,+∆Ijk

]
(26)

where ∆Iik represents the maximum charging duration for the kth electric vehicle, the
time instant is denoted by Ioj at which the Jth type of electric vehicle is aggregated at a
charging station (CS), and the initial EV battery capacity is denoted as SOCintjk for the kth
electric vehicle of the jth type. This pertains to everyday traveling distance; io is represented
as the time necessary for a fully charged EV to reach the CS under each EV’s charging
requirements. As stated previously, this designed and controlled a normal distribution
within a limit of: [

Ioj, Ioj,+∆Ijk

]
(27)

The battery characteristics used for sampling are given by:

µi=

√
Va(e)
ei

=
σi(e)√

xei
(28)

where µi represents the variance coefficient, Va represents the variance, e represents the
expectation, σi represents the standard deviation, and xisrepresents the time count.

In general, EV charging/discharging times vary based on the original state of charge,
daily travel, and recharging. After obtaining the charging/discharging patterns of various
EVs, the charging/discharging capability in 72 h sessions was computed. Furthermore,
charging time was calculated based on demand during the set timeframe and the charging
power. Given the limitations connected with EV critical charging time, the option of
reducing the starting charging time exists. Typically, EVC hours are focused in the morning
hours of 8:00 to 12:00 PM and at night from 6:00 to 10:00 PM. Despite hybrid and EV
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optimization, there has been a significant increase in the personal EV fleet in recent times.
As an outcome, the EV charging demand on the power network has increased, resulting in
uneven demand and supply ratios. The statistics focus on EV charging periods between 8
AM and 6 PM. Figure 15 depicts the state distribution of EV throughout each day.

Figure 15. Electric vehicle distribution in 24 h.

As illustrated in Figure 16, an expansion in EV charging, power, and discharge capa-
bility of 90,000 electric vehicles per day is anticipated in 2020.

Figure 16. Total load and electric vehicle discharge capacity in 2020.

Given the expansion of the electric vehicle industry, Figure 17 uses established modes
to illustrate the power needed for V2G operation and EVs, with 300,000 EVs by 2022.

Figure 17. Total load and electric vehicle discharge capacity in 2022.
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The simulated substantial electric vehicle operating method using MCMC computation
is shown in Figure 18. It is based on PD modeling of the EV traveling patterns and types of
EV charging techniques. In comparison to electric vehicle users’ travel patterns, electric
vehicle charging practices are more manageable with specific coaching. As a result, amongst
the most realistic optimization tasks is the charging approach.

Figure 18. MCMCS flowchart for estimating EV charging/discharging behavior.

According to the results of the model, massive EV charging stations may result in
power network stability problems. Additional peak load units are needed to achieve the
charging demand, resulting in a cost increase. It is vital to provide an inexpensive and safe
power grid in order to efficiently guide the charging process of electric vehicles.

The proposed estimating and electric vehicle charging approaches were evaluated
using the framework decision-making for the experimental study. According to electric
vehicle owners, the assessment indices are: Ccost, representing EV charging cost; Cmaxcost,
representing the highest amount paid for maximum EV charging capacity; Rs, representing
saving rate; and Rm representing as pa percentage of the average distance to planned
mileage. A comprehensive index analysis of several pricing techniques is represented in
Table 3. Consequently, the assessment indices necessary for analyzing performance from
the standpoint of electricity suppliers are: Lp, representing 24 h charging peak value; Lt,
entire load provided for a specific time span; Lapr, representing average peak ratio; and
Lcgr, representing the ratio of regular charging peak level to grid peak.

Lapr, Rs, and Rmare the primarily important indices for both entities used in the
compilation of the overall indexing Cx:{

Cx = α.ILaprI+ βI RsIRmI
1.0 = α + β + γ

(29)
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where the positivity value coefficients α, β, γ can be varied. The values used here were
about 0.4, 0.3, and 0.3. The greater the score of the holistic index, the better the system’s
performance.

When compared to the other charge approaches, the recommended charging approach
had a higher comprehensive index.

Table 3. A comprehensive index analysis of several pricing techniques.

Parametric Symbols Existing Charging Strategy Proposed Charging Strategy

Load 5358.30 5354.45
Peak Load 308.32 302.18

Saving 0.152 0.642
Average Load 54.18 54.95

Daily Trip 0.985 0.982
CI 0.533 0.645

5. Conclusions

This study presents stochastic methods to analyze the impact of vehicle-to-grid (V2G)
charging/discharging on the microgrid environment. The peak load shaving approach
used by EV users and grids/microgrids was presented and examined using a real-time
simulation environment against two electric vehicle charging models of EV mobility and
charging patterns produced. The MCMC approach was used to create charging algorithms.
The impact of EVs on load profiles were calculated by using Monte Carlo simulation and
Markov chain strategies by considering power requirements, user mobility, trip plans, and
the cost of consumed power and better management of grid electricity. The simulation
results clearly indicate in Table 3 that the proposed models can result in considerable
charging cost reductions for EV users as compared to normal estimation and charging
techniques. The proposed algorithm demonstrates a considerable improvement in the
comprehensive index with a value of 0.645 as compared to existing charging strategies.
Moreover, the proposed model predicts power requirements and facilitates reducing peak
power consumption by scheduling EV charging and discharging procedures and utilizing
surplus power in the electric vehicles’ battery to optimize grid/microgrid demands.
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Abbreviations

V2G Vehicle to Grid
G2V Grid to Vehicle
EV Electric Vehicle
EVC Electric Vehicle Charging
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MCS Monte Carlo Simulation
SOC State of charge
HDI High-dimensional integral
MCSMC Monte Carlo Simulation Markov chain
FDI Finite-dimensional integral
PDF Probability distribution function
PDF Probability density function
MLE Maximum likelihood estimation
CSO Charging station operator
CS Electric Vehicle operator
EVA Electric vehicle aggregator
EV V2G Electric vehicle Vehicle to Grid
RER Renewable energy resources
DGs Distributed generations
DGRs Distributed generations resources
CSS Charging station system
BES Battery storage system
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