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Abstract

:

To achieve sustainable economic growth, a significant amount of private capital must be invested in green industries. However, risk management in the green industry stock market has drawn much attention recently due to the uncertainty and high risk present in this market. By applying the spillover index model of Diebold and Yilmaz, the frequency-domain spillover approach developed by Baruník and Křehlík, and the dynamic conditional correlation (DCC) model, this paper focuses mainly on the heterogeneity of the volatility spillovers among six green industry equities and other financial assets in China, under various market economy situations. Based on the empirical results obtained in this paper, we find that the green industry stock markets have the least impact on the gold and energy futures markets. Additionally, based on asymmetric analyses, it can be concluded that the green bond market has experienced the smallest shocks from the six green industry stock markets. By utilizing frequency-domain analyses, the energy futures market experiences the least amount of volatility from green stocks. Additionally, the COVID-19 pandemic affects the interconnectedness of markets. Prior to the COVID-19 pandemic, energy futures were the most suitable portfolio instrument for green industry stocks. When the COVID-19 pandemic occurred, however, gold proved to be the most advantageous portfolio asset. The research findings of this paper demonstrate the impact of COVID-19 on the selection of the best investment instruments for green industry stocks, which is beneficial for reducing the investment risk of green financial market participants and increasing the demand for green stock markets, while also providing practical advice for environmentally conscious investors and policymakers.
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1. Introduction


With its rapid industrialization and modernization, China has achieved both economic growth and financial development targets [1], succeeding in becoming the world’s second-largest economy [2]. However, from the perspective of energy consumption, China still ranks the first and is currently the largest carbon emitter worldwide [3]. To address ecological imbalances and environmental pollution in China, the proposal to develop green industries emphasizing energy conservation, low pollution, and low emissions has been widely recognized. Meanwhile, under the carbon neutrality commitment, affected by investor sentiment and profitability, investors will favor green companies, which leads to more capital inclined to green industries and promotes their sustainable development [4]. Compared with developed countries, whose green industry advancement relies on market leadership, China’s green sector development is driven mainly by the government. According to the forecast of the National Climate Strategy Center, CNY 3 to 4 trillion must be invested in green industries each year to achieve carbon emission reduction targets (the data can be obtained from China’s Policies and Actions for Addressing Climate Change (2020), available at http://www.ncsc.org.cn/yjcg/cbw/, accessed on 6 September 2022). Nevertheless, due to fiscal budget constraints, the government can provide only approximately 10–15% of the funds needed for green investments. As a result, a large amount of private capital must be invested in green industries.



In this context, in 2019, China published the “Green Industry Guidance Catalogue” (see https://en.ndrc.gov.cn/policies/, accessed on 6 September 2022). Based on the country’s economic and social development state, industrial stage, resources, and ecological environment features. The catalog divides China’s green industries into six major sectors—namely, the energy conservation and environmental protection industry (EPI), clean production industry (CPI), clean energy industry (CEI), ecological environment industry (EEI), green infrastructure industry (GII), and green service industry (GSI)—and puts forward the key points of green industry development. The document is of great significance for clarifying the boundaries of green industries, establishing a national unified green standard system, and guiding funds to focus on the most critical green industries and projects.



There are two basic types of private capital investment modes, namely, indirect financing modes such as green credit and direct financing modes such as green bonds and stocks. In comparison to green credit and bonds, the green stock market is always characterized by higher investment risk [5,6], leaving investors with difficult options. By 2020, the scale of China’s green credit stock was close to CNY 12 trillion, making the country first in the world on this indicator, and the cumulative quantity of green bond issuance had reached CNY 1.15 trillion, putting China second globally. However, the amount of financing obtained by green companies through the stock market is less than 10 percent of that secured through the bond market, indicating that China’s green industry is still in its infancy, and few funds are invested directly in the form of green stocks. Therefore, given the massive gap in private investment in China’s green industries, it is crucial for green stock investors to study risk management strategies that provide them with advice for reasonable asset allocation and combinations, thus reducing portfolio risk and ultimately promoting green development [7].



To the best of our knowledge, the research on risk management in the green stock market considers mainly the global clean energy market as a representative case. In addition, in terms of portfolio choices, frequently considered assets include crude oil [8,9,10], gold [11], the volatility index (VIX) [5], nonferrous metals [12], the carbon price index [13], and coal [14]. With the advancement of the green bond market, several investigations have concluded that the performance of green bonds is weakly associated with that of stocks and clean energy in general [15,16,17,18,19,20], which suggests that green bonds might have the potential to be used as a portfolio instrument for risk diversification by clean energy shareholders. Since green bonds and stocks of green industries both offer environmental benefits from emission reduction, environmentally friendly investors are more likely to add green bonds to their green stock portfolios than other assets [20]. Due to their higher average yield than traditional bonds [21], green bonds are considered a stable and sustainable investment for long-term projects, making them favored among green investors [18].



Since China has issued the “Green Industry Guidance Catalogue”, which classifies green industries into six broad categories (including not only the generally perceived clean energy industry but also other green industries, namely, the energy conservation and environmental protection industry, clean production industry, ecological environment industry, green infrastructure industry, and green service industry), how to manage the risks of these green industries is a concern for environmentally conscious investors and policymakers. However, little attention has been paid to exploring the most suitable safe-haven assets for green industries other than the clean energy industry. In addition, there is evidence that uncertainty in market spillovers is becoming more pronounced and that system connectedness increases significantly under extreme conditions [22,23,24]. The COVID-19 epidemic, one of the most destructive global events in recent years, triggered a global economic crisis and led to extreme market conditions, ranking among the most significant crisis events in history. Moreover, in recent decades, as the concept of green economy has become increasingly popular around the globe, the influence of COVID-19 on the relationship between green financial markets and conventional financial markets has become increasingly prominent. In light of the COVID-19 crisis, it is also essential to conduct an analysis of the risk management of various green industry stocks.



With these considerations in mind, this paper employs the data on China’s green bond and green stock markets from 2016 to 2022, aiming to address the following questions. What is the correlation between green industry stocks and other financial assets? Which asset performs the best as a portfolio instrument to manage the stock market risks of different green industries? How has the COVID-19 pandemic affected the portfolio choices of green stock investors? The main contributions of this paper can be summarized as follows. First, this paper applies the spillover index model of Diebold and Yilmaz [25] to explore the volatility spillover relationship between China’s six major green industry stock markets and other financial markets. We find that the energy futures market receives the fewest shocks from the EPI, CPI, EEI, and GII, while the gold market receives the fewest shocks from the CEI and GSI. Second, this paper illustrates asymmetric connectedness by decomposing the series of returns into positive and negative returns, then calculating their volatility, respectively, and finds that the shocks received from the six green industry stock markets to the green bond market are the lowest. Third, by employing the frequency-domain spillover approach developed by Baruník and Křehlík [26], this paper analyzes the frequency-domain connectedness in their volatility and obtains the difference in spillovers across different periods. Fourth, this paper divides the sample into three stages: before, during, and after the COVID-19 outbreak. The dynamic spillover results further show the dynamic differences in the correlation between green stocks and other markets. Finally, through portfolio weights analysis, it is found that in the full sample period, pre-COVID-19 period as well as post-COVID-19 period, energy futures is the most suitable portfolio tool for green industry stocks, while the occurrence of crisis events makes gold to be the best portfolio instruments.



This paper focuses on the risk spillover effect between China’s green industry stocks and other financial markets under different market conditions, particularly the COVID-19 epidemic, in order to provide effective recommendations for environmentally friendly investors and policymakers to reduce the risks of investing in the green stock market and to stimulate the demand for the development of China’s green industry.




2. Literature Review


2.1. Portfolio Diversification of Green Stock Markets


The literature on the risk management of green stocks mainly takes the global clean energy markets as representative cases. In terms of combining clean energy and traditional energy commodities such as oil, the existing investigations analyze the correlation relationships between these assets through vector autoregression (VAR) under the causality framework. For instance, the authors of [27] find that clean energy stock prices are significantly affected by oil prices. Furthermore, the authors of [28] employ the generalized autoregressive conditional heteroskedasticity (GARCH) model and concludes that a portfolio of clean energy stocks and oil futures is appropriate, where oil futures act as a hedge against the risk of clean energy stocks. Ref. [29] applies three indices of global renewable energy stocks and three clean energy sectoral indices to represent renewable energy markets and concludes that oil markets offer limited hedging opportunities for clean energy investors. Additionally, the authors of [30] discover that the clean energy index can provide a profitable hedging opportunity in combination with crude oil futures. Moreover, the authors of [31] argue that compared with long-term investors, short-term investors could use oil as a hedge for renewable energy investments to achieve portfolio volatility reductions. Ref. [32] finds that under bearish market conditions, investors should increase their clean energy investment to hedge against high negative oil returns.



As the above-mentioned literature review would suggest, scholars pay attention mostly to clean energy markets and seldom consider stocks of other green industries. Additionally, the current research rarely examines the differences in portfolios and risk management strategies across different green industries. With these considerations, this paper studies the relationship between a variety of green industry subsectors and low-risk financial assets to develop effective diversification strategies.




2.2. The Effect of Green Bonds on Green Stock Markets


With the rapid development of the green bond market, there is a growing body of literature investigating the relationship of spillovers between the stock markets of the six green industries and the green bond market. Ref. [33] notes that although green bonds and green stocks share common climate-friendly characteristics, there is hardly any evidence about the relationship between these two assets. The results of [20] indicate a negligible relationship between green bond and clean energy market performance, which means that these assets can be combined into portfolios under normal circumstances. In addition, the authors of [34] find that extreme upside or downside risks in the clean energy market are transmitted to the green bond market, with downside risk exerting a greater spillover effect. Ref. [35] explores the relationship between green bond indices and clean energy indices during the COVID-19 pandemic, concluding that this relationship was often stronger than usual during the pandemic period. To establish a more synthetic measure for the green stock market, the authors of [19] employ not only the clean energy index but also the green building index, the green transportation index, and the global water index. In doing so, the authors of [19] argue that green stocks and green bonds are relatively unconnected under normal market conditions but that the connectedness becomes stronger during periods of extreme market volatility. These preceding studies primarily study the relationship between green stocks and other markets, with little attention paid to distinctions in portfolio choices with other traditional safe-haven assets.



Additionally, in the literature, green stocks are often represented by global indices such as the NASDAQ OMX Green Economy family, MSCI Global Environment, and Dow Jones Sustainability World Index. Due to the considerable investment demand and policy support in China, the associations with the stock market performance of China’s six green industries are worth discussing. To the best of our knowledge, few studies have yet been conducted based on data for China. Nevertheless, there are several exceptions. Ref. [36] uses Chinese data from 2015 to 2020 and finds that the green bond market is affected by unidirectional risk spillovers from green stocks, industrial stocks, and industrial commodities. Ref. [14] examines the static and dynamic connectedness between China’s carbon, traditional energy commodities (oil and coal), new energy and materials markets, and finds that China’s carbon market is more correlated with energy markets. This paper uses the CSI Green Economy family of indices to represent the stock markets of China’s six green industries and focuses on not only the differences in risk diversification between green bonds and other assets with respect to green stocks but also the coordinated movement of green industry stock prices at the subsector level and the heterogeneous volatility of low-risk financial assets.




2.3. The Effect of Special Conditions on Green Stock Markets


Crisis events and negative market impacts in one market may spill over into other markets in different ways, making the special conditions in the green stock market critical for investors. First, only a few papers have included asymmetric volatility, especially the asymmetry in volatility of China’s green financial markets, in the study of risk management. Ref. [37] identifies that the contribution of fossil energy price changes to renewable energy returns has a strong time-varying pattern and that the total connectedness of the positive return network slightly outweighs that of the negative return network. Similarly, the authors of [18] report that green bonds exhibit asymmetric volatility and behave differently from the stock market. Meanwhile, recent studies show that market spillovers are stronger during bear market periods than during normal or bullish periods [38,39,40], which is crucial for investors. From this perspective, this paper applies data on China’s green stock markets and compares the performance of green bonds and traditional safe-haven assets under negative returns on green stocks to explore the viability of portfolios under asymmetric risk.



Second, regarding crisis situations, the authors of [11] observe that gold has a positive impact on clean energy stock returns in extreme cases. Ref. [33] examines the dependence between green financial products and traditional asset classes during various crisis situations and conclude that during turbulent periods, the relationship between green and traditional asset classes is frequently stronger than that during the entire sample period. Ref. [41] examines the nature of the time-varying market risk of investment in green stocks across the US, Europe, and the Asia-Pacific region during the periods of two recent global crises and find that for the Asia-Pacific green stocks, there is no spillover from the local market. The COVID-19 pandemic is an extreme crisis and a source of systemic risk (Sharif et al., 2020) that is regarded as one of the most disruptive global events since the Great Depression and the 2008 global financial crisis (GFC) [42]. Ref. [43] finds that due to the impact of the COVID-19 pandemic, volatility spillovers between global financial markets have increased. Ref. [44] further proves stronger effects on the connectedness of the COVID-19 outbreak than of the financial crisis. Ref. [45] finds that the return spillover effects between oil and agricultural products have been more pronounced during the COVID-19 pandemic than in normal times. The authors of [42] discover that during the COVID-19 period, the connectedness between climate-friendly investments and traditional stocks may have been augmented. Ref. [14] observes a strengthened connectedness between carbon, traditional energy, and new energy stocks after the outbreak of COVID-19. According to [19], the performance of green bonds and green stocks has been more closely linked during the COVID-19 pandemic.



The COVID-19 crisis has undoubtedly negatively impacted the stability of global financial markets [46], and investors and portfolio managers are facing unprecedented challenges in the face of this catastrophic event. In this context, this paper employs the [25] spillover approach to analyze the connectedness between green stocks and bonds and other safe-haven assets. To investigate the impact of the COVID-19 emergency on the correlation between markets, this paper further subdivides the sample into three periods: before, during, and after the COVID-19 outbreak. Moreover, by conducting the portfolio weights analysis, this paper studies the portfolio weight and its effectiveness between green stocks and other financial markets under different market conditions. In doing so, this paper captures the respective spillovers under the circumstances of downside risks and provides suggestions for investors and policy implications specific to the different periods of the COVID-19 pandemic.





3. Theoretical Research and Practical Implications


3.1. Mechanism between Green Stocks and Other Financial Markets


According to modern portfolio theory, when there is a strong correlation between financial markets, there is a significant trend of changes in the same direction or opposite direction between financial assets, so the decentralized investment strategy cannot play a risk aversion role when the market plummets. Conversely, if the correlation between financial markets is low, the impact of abnormal fluctuations in one market on other markets is limited. The systemic risk can be avoided by diversifying an investor’s investment portfolio in order to increase their overall income.



Currently, as a result of the development of economic globalization and the improvement of financial deepening, the interaction between financial markets is intensifying, and there is a certain degree of market integration, resulting in a more complex correlation between markets due to the price linkage mechanism. Regarding the green bond market, green industry stocks and green bonds have developed rapidly over the past few years, becoming an integral part of the green financial system and the primary green asset allocation component for financial institutions. As an important lever for low-carbon enterprises to obtain financial support, when the green bond market is generally good, investors expect that the low-carbon industry stock market will also strengthen under the influence of economic fundamentals, forming a linkage effect between markets. As far as the traditional stock market is concerned, there is a convergence of ups and downs between the traditional stock market and the green stock market, meaning that when the green stock market is in crisis, the risk impact will be transferred significantly to the highly correlated traditional stock market, resulting in a high correlation between markets. Concerning the gold market, as a unique precious metal commodity, gold possesses the triple attributes of commodity, currency, and finance on the gold market. As a traditional hedge asset, it possesses the currency attribute and the ability to hedge, and is less vulnerable to the risk associated with other markets. It can also provide risk diversification for green stock investments. For the energy futures market, the relationship between the energy futures market and the financial market is gradually strengthened as the financial characteristics of energy increase. As an essential basic means of production, energy has a rigid demand in social and economic development, and its price fluctuations impact the real economy, influencing the performance of the stock market and forming a risk spillover relationship between markets. Based on the above analyses, this study proposes Hypothesis 1.



Hypothesis 1.

There is a correlation between the green stock market and other financial markets, and different financial assets have varying risk impacts on green stocks. Diversified investment strategies may reduce the investment risk of green industries.





Based on the aforementioned research assumptions, this paper also incorporates traditional hedge assets gold, energy futures with weak correlation with the stock market, emerging green bonds, and traditional stocks with high-risk characteristics into the research system, analyzes their differential impact on green industry stocks. Moreover, this paper explores the most appropriate hedge assets in the green stock market, so as to provide effective recommendations for green industry stock investors to effectively invest in the green stock market.




3.2. Impact Mechanisms of Asymmetric Risks, Special Events, and Different Frequency Domains


According to the investor sentiment theory, positive and negative market information will elicit different responses from investors, with the risk spillover resulting from negative market information typically being greater. When the price of the green stock market falls as a result of negative information, investors tend to increase their risk perception and aversion to uncertainty, adjust their portfolios, and demand higher risk premiums, thereby increasing the risk of the market. In a negative income environment, the green stock market consequently has a greater spillover effect. Nonetheless, unexpected events may also directly contribute to a decline in investor sentiment, thereby exacerbating market risk. As a significant special event in recent years, the COVID-19 epidemic has a significant effect on the economy as a whole. Consequently, the impact of the epidemic will have a multiplier effect on the market for the green industry. In addition, when investors in green stocks establish portfolios in various markets, they will pay close attention to the portfolio’s components with varying cycle lengths and use expected utility for asset valuation. Therefore, the market’s cyclical factors will generate heterogeneous shocks, resulting in varying short- and long-term spillover effects in the green stock market. Based on this, this paper proposes Hypothesis 2.



Hypothesis 2.

China’s green stock market demonstrates an asymmetric risk spillover effect. Sudden special events will exacerbate the risk spillover effect in the market, and the risk spillover effects vary depending on the cycle frequency.





According to the aforementioned research hypotheses, it is possible to conclude that the correlation between the green stock market and other financial markets varies based on market conditions, and that portfolio management is more important in extreme market conditions. When allocating assets, investors should not only consider single-period investment decisions, but also pay more attention to dynamic portfolio selection, as investors’ investment behavior is frequently long-term. This paper then offers effective recommendations for investors’ long-term dynamic risk management.





4. Methodology


4.1. Time-Domain Spillover Index Model of Diebold and Yilmaz


Spillovers are a widely employed characterization of interdependence and connectedness in a dynamic system that measures the transmission of information across assets or markets. The time-domain spillover index model is constructed based on the generalized version of the variance decomposition of forecast errors of a VAR system proposed by [47,48], which provides a practical framework to quantify the magnitude and direction of spillover effects across different time scales. Although several methods have been proposed to estimate return and volatility spillovers [5,9,29,49,50], the Diebold–Yilmaz (DY) approach [25] has become popular for researchers and has many merits over other previously developed spillover measurement techniques.



Compared to the conventional model, the DY spillover index model offers the following benefits: first, it eliminates the results’ dependence on the lag order. It can also determine the net disseminator of risk spillovers and the role mechanism of various assets in the transmission of market information. In addition, when combined with rolling window technology, we can calculate the dynamic spillover index and track the dynamic changes of the market spillover effect.



Initially, the p-order VAR model of covariance stability can be mathematically described as


   V t  =  ∑  i = 1  p    ψ i   R  t − i   +  ε t   ,  



(1)




where   V t   represents the n-dimensional variance sequence,   ψ i   is the   n × n   coefficient matrix, and   ε ∼ ( 0 , ∑ )   is a vector of independently and identically distributed disturbances with zero and ∑ covariance matrix. The moving average expression of   V t   is given by


   V t  =  ∑  i = 1  p    A i   ε  t − i    ,  with   A i  =  ψ 1   A  i − 1   +  ψ 2   A  i − 2   + ⋯ +  ψ p   A  i − p   ,  



(2)




where   A i   is the   n × n   coefficient matrix of the vector moving average (VMA), while   A 0   is the   n × n   identity matrix that satisfies    A i  = 0   for   i < 0  . In addition, the generalized forecast error variance decomposition can be written as


   θ  i j    ( H )  =    σ  j j   − 1     ∑  h = 0   H − 1      (  e i ′   A h  ∑  e j  )  2      ∑  h = 0   H − 1     (  e i ′   A h  ∑  A h ′   e i  )    .  



(3)







In Equation (3),   θ  i j    represents the contribution of the   j t h   variable of the system to the variance of forecast error of the element i, and   σ  j j    represents the standard deviation of the error term of variable j. Notably,   e i   is an   N × 1   vector, with one as the   i t h   element and zero otherwise. Additionally, ∑ represents the covariance matrix of the vector of errors  ε . Given that    ∑  j = 1  N   θ  i j    ( H )  ≠ 1  , a normalization of Equation (3) can thus be obtained as follows:


    θ ˜   i j    ( H )  =    θ  i j    ( H )      ∑  j = 1  N     θ  i j    ( H )     .  



(4)







Obviously, we find that Equation (4) can be applied to estimate pairwise connectedness from j to i at time horizon H. In addition, in Equation (4), we must, respectively, have


   ∑  i , j = 1  N     θ ˜   i j    ( H )  = N  ,  



(5)






   ∑  j = 1  N     θ ˜   i j    ( H )  = 1  .  



(6)







Accordingly, the total spillover index, the directional spillover index, and the net spillover index can be derived. First, we add up the influence of the cross-variance share in the error variance to construct the total spillover index, which can be given by


  T S I  ( H )  =     ∑  i , j = 1 , i ≠ j  N      θ ˜   i j    ( H )       ∑  i , j = 1  N      θ ˜   i j    ( H )     × 100 =  1 N   ∑  i , j = 1 , i ≠ j  N     θ ˜   i j    ( H )   × 100 .  



(7)







Specifically, the total spillover index explains the proportional contribution of the spillover effect between N markets and the total forecast error variance and averages the off-diagonal elements. In relation to Equation (7), the closer the values of   T S I ( H )   are to 1, the stronger the connections across the variables in the VAR system. Through the generalized VAR model, the DY spillover index model can be further employed to quantify the size of the directional spillover effect between different markets. Consequently, the spillover index from market i to j and that from market j to i can be expressed as


  D S  I  i ← j    ( H )  =     ∑  j = 1 , i ≠ j  N      θ ˜   i j    ( H )       ∑  i , j = 1  N      θ ˜   i j    ( H )     × 100 ,  



(8)






  D S  I  j ← i    ( H )  =     ∑  j = 1 , i ≠ j  N      θ ˜   j i    ( H )       ∑  i , j = 1  N      θ ˜   j i    ( H )     × 100 .  



(9)







Furthermore, we use the net spillover index to measure the net spillovers of a single market to all other markets, based on which we can deduce which market may act as the risk receiver and which as the risk transmitter. Specifically, the net spillover index can be given by


  N S  I  i j    ( H )  = D S  I  j ← i    ( H )  − D S  I  i ← j    ( H )  .  



(10)







In Equation (10), a positive   N S  I  i j    ( H )    suggests that market i is a net transmitter of shocks. Nevertheless, a negative   N S  I  i j    ( H )    might imply that market i is a net receiver of shocks.




4.2. Frequency-Domain Spillover Method of Baruník and Křehlík


As a supplement to the Diebold and Yilmaz index quantifying the spillover effect in the time domain, the authors of [26] propose a methodology to analyze the connectedness in the frequency domain. Under this framework, the directional spillovers are decomposed across different frequencies (e.g., the short term, medium term, and long term). We consider a frequency response function including   Ψ h   that captures the coefficients of the Fourier transform, with    i 2  = − 1  , given by


  P s i  (  e  − i ω   )  =  ∑  h = 0  ∞   e  − i h ω    Ψ h  ,  



(11)




where  ω  denotes the frequency. Thus, the generalized causation spectrum over frequencies,   ω ∈ ( − π , π )  , can be defined as follows:


    ( f  ( ω )  )   j , k   ≡    σ  k k   − 1       Ψ   e  − i ω    Σ   j , k    2     Ψ   e  − i ω    Σ  Ψ ′    e  + i ω      j , j    ,  



(12)




where   Ψ (  e  − i ω   )   represents the Fourier transformation of the impulse response function  Ψ  and    ( f  ( ω )  )   j , k    is the proportion of the spectrum of the   j t h   variable at frequency  ω  based on the shocks in the   k t h   variable. To obtain a natural decomposition of the original generalized forecast error variance decomposition (GFEVD) into frequencies, we can simply weight    ( f  ( ω )  )   j , k    by the frequency share of variance of the j variable, where the weighting function is given by


   H j  ≡    Ψ   e  − i ω    ∑  Ψ ′    e  + i ω      j , j     1  2 π    ∫  − π  π    Ψ   e  − i λ    ∑  Ψ ′    e  + i λ      j , j   d λ   .  



(13)







As shown in Equation (13), it represents the   j t h   variable power at the given frequency  ω , which must satisfy sums of the frequencies to a constant value of   2 π  . It should be noted that the Fourier transform of the impulse response is a complex valued quantity, although the generalized spectrum is the squared coefficient of the weighted complex numbers, hence producing a real valued quantity. Therefore, we can obtain a frequency band as   d = ( a , b ) : a , b ∈ ( − π , π ) , a < b  , and the GFEVD on a specific frequency band d is computed as


     θ d    j , k   =  1  2 π    ∫  d  ∞   H j   ( ω )    ( f  ( ω )  )   j , k   d ω .  



(14)







Moreover, the generalized variance decomposition is scaled under the frequency band as follows:


      θ ˜  d    j , k   =    θ d    j , k   /  ∑ k     θ ∞    j , k   .  



(15)







In the following analysis, we consider three frequency bands: 1∼5 days (the short term), 5∼30 days (the medium term), and 30 or more days (the long term). These frequency bands also correspond to different horizons from an investment perspective.




4.3. DCC-GARCH Model


The dynamic conditional correlation (DCC) model estimates the correlation matrix directly by utilizing the standardized residuals which reduces the number of parameters to be estimated and makes inferences regarding the hedging effectiveness. Traditional models, such as the COPULA function, have considerable difficulties in defining dependency structures above two dimensions when describing time-varying dependencies because of the multiple parameters and increasing computational complexity. DCC-GARCH, on the other hand, can be utilized to represent the volatility spillovers between various financial time series as well as the high-dimensional dynamic correlation between them. The advantage of this is that it eliminates the requirement to comprehend the distribution of model errors in order to estimate model parameters consistently. Therefore, to find effective diversified portfolio tools for green industry stocks, this paper uses the dynamic conditional correlation multivariate GARCH model (DCC-GARCH model) from [51] to calculate the dynamic conditional correlation coefficient series between two assets.



The DCC-GARCH model is implemented in two steps. Firstly, the univariate GARCH process of each asset return series is estimated. Secondly, the parameters of the dynamic correlation structure are estimated by the standardized residual of the obtained conditional variance. From a bivariate perspective, the DCC process is as follows:


   r t  =  μ t  + ω  r  t − 1   +  ε t  ,  



(16)






   ε t  =  H t  1 2    z t  .  



(17)







In Equation (16),   r t   is a matrix of logarithmic returns for the commodity implied volatility and clean energy stock indexes,   μ t   designates a matrix of fixed parameters,   r  t − 1    indicates potential serial correlation,   ε t   indicates the noise term, and   z t   indicates that the error term follows the Student-t distribution. Moreover,   H t  1 2    refers to the matrix of conditional volatilities. The covariance matrix is expressed as:


   H t  =  D t   R t   D t  ,  



(18)






   D t  = d i a g  (   h   t ′   i     h t j   )  ,  



(19)




where   h   t ′   i   and   h t j   are the conditional volatilities of asset of the i market and the j market, respectively.   D t   is a diagonal of time-varying standard deviations and   R t   is the conditional correlation matrix of the standardized returns. It is expressed as:


   R t  = d i a g   (  Q t  )   −  1 2     Q t  d i a g   (  Q t  )   −  1 2    ,  



(20)




where   Q t   is the time-varying conditional correlation of residuals. According to the authors of [51],   Q t   is defined as:


   Q t  =  ( 1 − a − b )   Q ¯  + a  z  t − 1      z ′    t − 1   + b  Q  t − 1   ,  



(21)




where a and b are non-negative scalar parameters,   Q ¯   refers to the matrix of unconditional correlations for the standardized innovations   z t  .



In order to further analyze the dynamic portfolio, the conditional variance and covariance estimates extracted from the above DCC-GARCH model are used to calculate the dynamic optimal portfolio weight, hedge ratio and hedge effectiveness. At time t, the optimal weight ratio of asset j in the portfolio of “asset i/asset j” of each unit is:


   w  i j , t   =    Σ  i i , t   −  Σ  i j , t      Σ  i i , t   − 2  Σ  i j , t   +  Σ  j j , t     ,  



(22)




where   w  i j , t    refers to conditional covariance between asset i and asset j at time t,   Σ  i i , t    and   Σ  j j , t    are the conditional variances of asset i and asset j at time t, respectively. When the market does not allow short selling, there are restrictions on   Σ  i j , t   :



Therefore, at time t, the optimal weight proportion of asset i in the portfolio of “asset i/asset j” of each unit is   1 −  w  i j , t    . Further, we refer to the method of Antonakakikis et al. (2020b) to evaluate the time-varying effectiveness of portfolio and hedging, as follows:


  H  E i  = 1 −   var (  r p  )   var (  r i  )   ,  



(23)




where   var (  r p  )   represents portfolio variance and   var (  r i  )   refers to variance of asset i.   H  E i    indicates that asset i is the percentage of variance reduction of hedging positions. The higher the value, the more risk reduction.




4.4. Asymmetric Spillover Measure


To examine the asymmetric spillovers among green stocks, green bonds and other financial assets, this paper follows the common decomposition approach in [52,53,54] and decomposes the returns series into negative and positive returns to construct the asymmetric connectedness network. Specifically, the negative returns series are calculated as follows:


   r −  =       r i  ,  if   r i  < 0 ,       0 ,  otherwise  .       



(24)







In Equation (24),   r i   represents the overall returns series. The positive returns series are given as follows:


   r +  =       r i  ,  if   r i  > 0 ,       0 ,  otherwise  .       



(25)







In the following analysis, we should note that we focus mainly on the differences between the spillovers calculated based on the total returns and those based on the negative ones.





5. Data Description


5.1. Data


To investigate the connectedness among China’s six green industry stock markets, green bond market and several other conventional financial markets, this paper utilizes the data of the daily closing prices of the corresponding assets. The sample period ranges from 1 January 2016 to 24 June 2022, with the initial date of this sampling period determined by the availability of data on the green bond market in China. The data used in this paper come mainly from the Wind database and China Securities Index Co., Ltd.



Table 1 describes the variables used in the analysis. This study determines six categories of green industries according to the green industry guidance catalogue, considers the degree of match between the index and green industry companies, and then selects representative market segments under each category. Finally, this paper selects the green indexes of various industries in Wind Green Economy family, including the Energy Saving Lighting Concept Index and the Charging Pile Concept Index under the Energy Conservation and Environmental Protection Industry (EPI), the Air Governance Concept Index and the Wastewater Treatment Concept Index under the Clean Production Industry (CPI), the Power Concept Index and the Pv Concept Index under the Clean Energy Industry (CEI), the Smart Agriculture Concept Index and the Forest Industry Index under the Ecological Environment Industry (EEI), the Building Energy Efficiency Concept Index and Intelligent Transportation Concept Index under the Green Infrastructure Industry (GII), and the Contract Energy Management Concept Index under the Green Service Industry (GSI). The ChinaBond Green Bond Index (CGB) (although there are several other green bond indices, e.g., the ChinaBond China Green Bond Select Index and the ChinaBond China Climate-Aligned Bond Index, they all belong to the ChinaBond index, the volatility difference of which is less than 0.0015) is used as a proxy for the green bond market. For the sake of comparison, we further introduce several traditional assets to test their safe-haven characteristics, namely, the China Securities Index 300 (HS300), SHFE Aurum Commodity Index (AU), and China Securities energy futures composite index (EF).




5.2. Trend of Market Index Returns


Figure 1 displays the trend of China’s green industry as well as the results from other financial market indexes. The yield of the standard stock market index and the green stock market index both exhibit noticeable long-term volatility. Financial markets, such as the ones for gold and green bonds, exhibit less volatility in comparison, indicating greater stability and the potential for usage as a diversified risk management tool for green stocks. The yield of each market significantly changed at the same time when the COVID-19 epidemic broke out in early 2020, indicating that the occurrence of crisis events will exacerbate the anomalous oscillations in market returns.





6. Empirical Results


6.1. Preliminary Analysis


Table 2 reports the descriptive statistics for submarket returns. As shown in Table 2, the average returns of all markets are close to 0, and the fluctuation ranges are similar. From the kurtosis and skewness coefficients, it can be seen that the kurtosis of all returns series is high, indicating that they show leptokurtic distributions. Additionally, the returns of markets are negatively skewed, Furthermore, the Jarque–Bera test rejects the null hypothesis of normal distributions. In terms of the augmented Dickey–Fuller (ADF) test and the Phillips and Perron (PP) test, the results clearly show that all return series have stationarity at the 1% significance level. Finally, based on Akaike information criterion (AIC), this paper determines that the optimal lag order of VAR model with volatility spillover effect is 1 according to the criterion of minimum information value.




6.2. Static Spillover Connectedness


Table 3 reports the description of the static spillover index for the volatility of the six green industry stock markets, green bond market and major traditional financial markets. Specifically, the diagonal of the matrix demonstrates the proportion of risk carried by each submarket. The off-diagonal row sums (termed “From”) and column sums (termed “To”) show the entire directional connectedness from and to the corresponding market, respectively. Moreover, the bottom right corner presents the total connectedness. In general, we may safely conclude that approximately 73.79% of the forecast error variances can be attributed to volatility spillovers, indicating high interdependence between the volatility of the various markets. With respect to directional connectedness, this paper focuses mainly on green industry stock markets, and special attention is paid to their risk spillovers with other markets.



First, a strong correlation among green stocks can be observed in Table 3, and the traditional stocks are strongly connected as well. Specifically, the spillovers from the green industry stock markets to the general stock markets are 8.97%, 6.42%, 8.44%, 7.01%, 5.57%, 6.66%, 8.78%, 7.80%, 7.88%, 8.00%, and 7.51%, which are all greater than those from the general stock markets. The results indicate that the development of China’s green industry is still in its infancy and that the stock markets of this industry are more volatile than the general stock market. Moreover, the return spillovers of green industry stocks to green bonds, gold, and the energy futures market appear to be relatively weaker. Notably, the shocks transmitted from the six green industry stocks to green bonds are, without exception, significantly lower than the volatility spillovers transmitted from the green industry to the traditional stock market, indicating that green bonds and green stocks have different return characteristics. Therefore, investors are advised to consider green bonds as fixed-income investments and green stocks as equity investments.



Moreover, as seen in Table 3, the spillover effect of green stocks on energy futures and gold is weak. We further find that there is heterogeneity in the volatility spillover effect of different green industry stocks, among which, the energy futures market receives the fewest shocks from the EPI, CPI, EEI, and GII, while the gold market receives the fewest shocks from the CEI and GSI.




6.3. Asymmetric Spillover Analysis


In this subsection, we conduct asymmetric spillover analysis by decomposing the returns into positive and negative returns and calculating volatility, respectively. Since investors are more susceptible to bad news, we mainly analyze the differences between the overall system and the negative system. As we compare the results shown in Table 3 and Table 4, we can generally conclude that the total connectedness in the negative returns system (72.62%) is not greater but in fact lower than that in the overall system (73.79%).



First, we are concerned about the spillover relationship between green industry stock markets and traditional stock markets. In the negative volatility system, the green industry stocks are still strongly correlated with the traditional stock market.



Second, we concentrate on the connectedness between the green industry stock markets and the green bond market. To be specific, we can observe from Table 4 that the shocks received from the six green industry stock markets to the green bond market are the lowest, which is significantly lower than the total spillover index in the overall system.



Third, from the results shown in Table 4, we can see that when green stocks fall, the spillover effect of each green stock market on gold decreases, and the result is no more than 0.6%, that is, gold is relatively less affected by the decline of green stock market.



Finally, the spillover effect of each green stock market on energy futures is stronger than that of the overall spillover in the negative volatility system, even more than 2%, indicating that energy futures are vulnerable to the fluctuation spillover effect of green stocks in the downwind direction.




6.4. Frequency-Domain Spillover and Network Connectedness


The connectedness between the stock markets of the six green industries and other financial markets could vary across different frequency domains. Based on the frequency domain decomposition spillover index model proposed in [26], the original sequence frequency domain is decomposed into high frequency and low frequency, where the frequency band of high frequency is 3.14 to 0.63, representing the period of 1 to 5 days, the frequency band of intermediate frequency is 0.63 to 0.10, representing 5 to 30 days, and the frequency band for low frequencies is 0.10 to 0, representing 30 or more days.



Figure 2 demonstrates the network connectedness among markets at different frequencies. In Figure 2, the green node represents a receiver, while the red node represents a transmitter. The edge colors rank the strength of the pairwise directional connectedness from blue (strongest) to purple, pink, and light yellow (weakest). Additionally, the arrow thickness reflects the strength of the pairwise directional connectedness. Figure 2a illustrates the pairwise directional connectedness during the whole sample period, echoing the results in Table 3. It is noted that there are reasonably solid pairwise spillovers between similar markets. For instance, strong connectedness can be observed between green stock markets and traditional stock markets. These findings suggest that the time-domain spillovers seem to be more relevant to the classification of markets.



By comparing Figure 2a,c,d, we can see that in the long term, the connectedness between the stock markets of the six green industries and traditional stocks market is the largest, and in the short run, the connectedness of variables in the system decreases, which can be explained by the fact that the information transmission is more rapid in the long term than in the intermediate and the short term.




6.5. Dynamic Spillover and the Impact of COVID-19


Considering the time-varying characteristics of the return spillover index, we further estimate the volatility spillover movements between the stock markets of the six green industries and other financial markets using a rolling time window. The forecast horizon is 10 and the window width is 200. Figure 3 plots the total volatility spillovers estimated by the rolling-window analysis. It is evident that around January 2020, the volatility spillover indices experienced an abnormal rise. The COVID-19 pandemic might be the major cause of the 2020 fluctuations that negatively affected global stock markets. In turn, the negative emotions caused by the abnormal fluctuations in the financial markets further strengthened the dynamic spillovers in the corresponding submarkets. Since the effects of the epidemic have gradually diminished in China, the correlation between markets has gradually returned to the normal level. This further verifies that major emergencies in various financial submarkets are highly contagious.



In addition, to further investigate the impacts of the COVID-19 pandemic, the sample period is subdivided into three subperiods: the pre-COVID-19 period (1 January 2016 to 31 December 2019), the COVID-19 period (1 January 2020 to 30 September 2020), and the post-COVID-19 period (1 October 2020 to 24 June 2022). (On December 31, 2019, Wuhan Municipal Health Commission reported a cluster of cases of novel pneumonia, which was eventually identified as Coronavirus disease 2019 (COVID-19) by the WHO. Therefore, the start date of the COVID-19 is therefore assumed to be December 31, 2019, and the COVID-19 epidemic period is defined as the daily data from January 1 to September 30, 2020.) The selection of the subperiods is based on Figure 2, and then, we calculate the directional spillovers in the pre-COVID-19, COVID-19, and post-COVID-19 periods. This may provide some detailed insights into spillover effect transmission trends across the markets under investigation. As shown in Table 5, Table 6 and Table 7, the total connectedness is 73.76%, 83.99%, and 64.99% in the three periods, respectively. The total spillovers increase, which could be explained by the stronger market interaction following the COVID-19 outbreak.



More specifically, from Table 5 it can be concluded that before COVID-19 the spillovers of green stocks to energy futures were the smallest. According to Table 6, during the COVID-19 pandemic, not only did the total connectedness increase, but the spillover effect of green stocks on green bonds and energy futures has also increased significantly. In contrast, the volatility spillover effect between green stocks and gold is relatively low. Moreover, gold exerted the least impact on other markets.




6.6. Portfolio Weights Analysis


To deepen our understanding further on the investment implications of our study, we report in Table 8 the summary statistics of the bilateral portfolio weights (weight) and portfolio effectiveness (HE) of the first and second assets, in which weight refers to the proportion of safe-haven assets in the investor’s portfolio and HE indicates how much risk can be reduced adding risk averse assets to the portfolio. The greater the HE value, the stronger the effectiveness of the portfolio. Table 8 reports the statistics for the whole sample period and sub period, including pre-COVID-19 period, COVID-19 period, and post-COVID-19 period.



During the whole sample period, the HE value of EF is the largest, which means that incorporating EF into the portfolio of green industry stocks can effectively reduce investment risk, namely, EF is the most suitable tool for diversified portfolio of green industry. At the same time, the weight proportion of almost all hedging assets is greater than 50%, which means that investors should hold more green bonds, gold and energy futures than green industry stocks, so as to reduce the risk of green stock investment. Specifically, in the portfolio of green stocks and energy futures, the average optimal weight of EPI2 and EF is the highest, which is 0.5759, indicating that for the portfolio of CNY 100, CNY 57.59 will be invested in EF, and the remaining CNY 43.41 will be invested in EPI2.




6.7. Robustness Checks


To further verify the robustness of the above-mentioned results, we change the H-step-ahead forecasting period to 2 and 5 days and adjust the rolling windows to 100 to 180 days. Figure 4 and Figure 5 show the time-varying spillover graphs of the total spillover index under different forecast horizons and rolling window size combinations. It can be observed that there are comparable trends, indicating that the main empirical results are robust.





7. Discussion


Using the spillover index model of Diebold and Yilmaz and the frequency-domain spillover approach developed by Barun’ik and Kvrehl’, this paper aims to examine the risk spillovers and the asymmetric connectedness between the green industry stock markets, green bond market, and other traditional financial markets in China. Using rolling time windows, this paper captures the dynamic risk spillovers between six green industry stock markets and other financial markets and investigates the impact of COVID-19. In addition, the DCC-GARCH model is used to analyze the optimal portfolio tool for green industry stocks under various market economy conditions. The following is a summary of the key findings of this paper.



First, this paper demonstrates through a static spillover analysis that the correlation between the six green industry stocks and various financial markets varies. Specifically, for EPI, CPI, EEI, and GII, the energy futures market experiences the fewest shocks, whereas the CEI and GSI have the smallest effect on the gold market’s volatility.



Second, by decomposing the returns into positive and negative returns and calculating volatility, this study concludes that under the downside risk of the green stock market, the spillover effects between green stocks and green bonds are the smallest.



Third, using the frequency-domain spillover approach developed by Barun’ik and Kvrehl’ and demonstrating network connectedness, this paper concludes that the correlation between green industry stocks and other financial assets fluctuates over time. In addition, a segmented analysis is used to examine the impact of the COVID-19 pandemic on the volatility spillover effect of stocks in the six green industries. In this regard, the final conclusion of this paper is that the spillovers of green stocks to energy futures were smallest prior to COVID-19. During the COVID-19 outbreak, gold experienced the fewest shocks. The spillover effects between the green stock market and other financial markets are heterogeneous in the post-COVID-19 era.




8. Conclusions, Implications, and Limitations


A considerable amount of private capital must be invested in green industries in order to achieve sustainable economic growth. As the primary source of direct financing, investors who hold a substantial number of equity assets are exposed to relatively high risk. In order to reduce the investment risk of participants in the green financial market and stimulate the demand for the green stock market, this paper focuses on the impact of the COVID-19 epidemic on the dynamic risk spillover and the selection of optimal investment tools between China’s green industry stock market and other financial markets, and offers effective recommendations for environmentally friendly investors and policymakers.



First, static spillover results indicate that the correlation between green stocks, gold, and energy futures markets is relatively weak. Therefore, investors can construct diversified portfolios of green stocks using the two asset classes. In order to maximize the benefits of each market and to achieve the coordinated development of the green industry and other financial markets, policymakers should simultaneously consider the differences in the relevance between markets. Moreover, when the green industry stock market presents downside risks, investors should increase their green bond holdings and decrease their energy futures holdings. Moreover, the risk contagion between markets is stronger over the long term, so environmentally conscious investors should diversify the investment risk of long-term financial assets appropriately.



Second, based on the results of different stages of time under the influence of the COVID-19 epidemic, investors should invest more in the energy futures market prior to the epidemic, i.e., during periods of relative economic stability. When the epidemic and other crises occur, investors should reduce their investments in energy futures and green bonds, but increase their investments in the gold market to ensure the security of their assets and mitigate the negative impact of crisis events on their investments. Policymakers should thoroughly consider the impact of extraordinary events and market fluctuations on the risk contagion of the green industry, and provide support for the effective risk management of China’s green industry by establishing an effective risk early warning mechanism.



In future research, if the data can be subdivided and quantified more precisely, and if the time interval can be extended, more precise and timely conclusions and policy recommendations will be obtained. Concerns for future research include, for instance, further analysis of the impact of sudden crisis events, such as the Russian–Ukrainian war, on green industries, as well as research on more detailed green industry markets and more diverse financial markets, so as to more effectively promote the development of various types of green industries.
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Figure 1. Time series diagram of different market returns. 
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Figure 2. Network connectedness. (a) The whole sample period; (b) 26 March 2018 to 31 December 2019; (c) 1 January 2020 to 31 December 2020; (d) 1 January 2021 to 5 November 2021. 
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Figure 3. Rolling-window estimation of total connectedness. 
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Figure 4. Robustness checks by applying the 2-day forecast horizon: (a) 100-day rolling windows; (b) 150-day rolling windows; (c) 180-day rolling windows. 
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Figure 5. Robustness checks by applying the 5-day forecast horizon: (a) 100-day rolling windows; (b) 150-day rolling windows; (c) 180-day rolling windows. 
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Table 1. Descriptions of variables.






Table 1. Descriptions of variables.











	Primary Market
	Secondary Market
	Index
	Abbreviation





	Green Stock Market
	Energy Conservation

andEnvironmental

Protection Industry
	Energy Saving Lighting Concept Index
	EPI1



	
	
	Charging Pile Concept Index
	EPI2



	
	Clean Production

Industry
	Air Governance Concept Index
	CPI1



	
	
	Wastewater Treatment Concept Index
	CPI2



	
	Clean Energy Industry
	Power Concept Index
	CEI1



	
	
	Pv Concept Index
	CEI2



	
	Ecological Environment

Industry
	Smart Agriculture Concept Index
	EEI1



	
	
	Forest Industry Index
	EEI2



	
	Green Infrastructure

Industry
	Building Energy Efficiency Concept Index
	GII1



	
	
	Intelligent Transportation Concept Index
	GII2



	
	Green Service Industry
	Contract Energy Management Concept Index
	GSI



	Green Bond Market
	Green Bond
	ChinaBond Green Bond Index
	CGB



	Traditional Stock Market
	General Stock
	China Securities Index 300
	HS300



	Safe-Haven Asset Market
	Gold
	SHFE Aurum Commodity Index
	AU



	Energy Market
	Energy Futures
	China Securities Energy Futures Composite Index
	EF
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Table 2. Summary descriptive statistics.






Table 2. Summary descriptive statistics.























	
	EPI1
	EPI2
	CPI1
	CPI2
	CEI1
	CEI2
	EEI1
	EEI2
	GII1
	GII2
	GSI
	CGB
	HS300
	AU
	EF





	Mean
	−0.0022
	−0.0021
	−0.0085
	−0.0331
	0.0156
	0.0413
	−0.0143
	−0.0321
	0.0228
	−0.0240
	0.0199
	0.0168
	0.0151
	0.0348
	0.0996



	Median
	0.0700
	0.1000
	0.1000
	0.0600
	0.0800
	0.1100
	0.0600
	0.0800
	0.1200
	0.0600
	0.1400
	0.0200
	0.0500
	0.0300
	0.1100



	Maximum
	5.7500
	7.6100
	5.3500
	5.3900
	9.3300
	7.8700
	5.2100
	6.6600
	5.1300
	6.4900
	6.1800
	0.8000
	5.7800
	5.4000
	8.1700



	Minimum
	−10.8100
	−10.4400
	−9.6800
	−10.2200
	−10.3600
	−10.2600
	−10.5500
	−10.2800
	−10.1400
	−10.5200
	−10.5600
	−0.8200
	−8.2100
	−4.8100
	−8.6000



	Std.Deviation
	1.8219
	1.9508
	1.7271
	1.6721
	1.8873
	1.8959
	1.6114
	1.8412
	1.6983
	1.9323
	1.8087
	0.0817
	1.2471
	0.8349
	1.7353



	Skewness
	−0.8291
	−0.6900
	−0.9165
	−0.8751
	−0.4129
	−0.5600
	−0.9021
	−0.8022
	−0.8225
	−0.8285
	−1.0356
	−0.4673
	−0.6737
	−0.0882
	−0.3013



	Kurtosis
	6.5911
	6.4032
	6.7140
	6.7482
	6.6558
	6.1228
	7.7485
	6.5796
	6.3977
	6.7573
	7.4203
	23.4844
	7.4842
	7.8138
	5.3293



	Jarque-Bera
	1025.47 ***
	883.93 ***
	1124.26 ***
	1121.54 ***
	920.64 ***
	721.38 ***
	1691.19 ***
	1008.50 ***
	933.98 ***
	1105.22 ***
	1561.80 ***
	27,559.22 ***
	1436.91 ***
	1520.81 ***
	379.40 ***



	ADF
	−38.57 ***
	−40.30 ***
	−39.22 ***
	−39.98 ***
	−40.06 ***
	−39.23 ***
	−37.72 ***
	−37.82 ***
	−38.81 ***
	−38.81 ***
	−39.31 ***
	−16.43 ***
	−40.85 ***
	−39.43 ***
	−40.58 ***



	PP
	−38.57 ***
	−40.27 ***
	−39.22 ***
	−39.98 ***
	−39.99 ***
	−39.18 ***
	−37.69 ***
	−37.84 ***
	−38.81 ***
	−38.80 ***
	−39.26 ***
	−27.53 ***
	−40.92 ***
	−39.74 ***
	−40.58 ***







Notes: Jarque–Bera tests for the null hypothesis of a normal distribution. ADF tests the estimates of the augmented Dikey–Fuller (1979) unit roots tests. *** denotes significance at the 1% levels.
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Table 3. Total volatility spillover matrix.
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	EPI1
	EPI2
	CPI1
	CPI2
	CEI1
	CEI2
	EEI1
	EEI2
	GII1
	GII2
	GSI
	CGB
	HS300
	AU
	EF
	FROM



	EPI1
	11.67
	8.23
	9.73
	7.83
	5.72
	7.27
	8.68
	6.92
	9.04
	9.31
	8.61
	0.18
	6.69
	0.1
	0.02
	88.33



	EPI2
	9.42
	11.7
	9.36
	7.95
	6.39
	8.04
	8.38
	6.67
	8.48
	8.4
	9.28
	0.13
	5.66
	0.1
	0.06
	88.3



	CPI1
	9.33
	8.26
	11.93
	9.44
	5.93
	6.32
	8.86
	7.31
	8.57
	8.44
	8.61
	0.15
	6.69
	0.13
	0.04
	88.07



	CPI2
	8.61
	7.99
	10.45
	11.82
	6.16
	6.21
	9.09
	7.36
	8.86
	8.11
	8.47
	0.24
	6.38
	0.15
	0.1
	88.18



	CEI1
	8.05
	8.48
	8.28
	7.44
	12.92
	9.97
	8.64
	6.26
	7.71
	6.95
	8.79
	0.17
	6.18
	0.03
	0.14
	87.08



	CEI2
	9.17
	8.5
	8.31
	6.98
	7.97
	12.88
	8.44
	6.62
	8.07
	7.64
	8.81
	0.1
	6.35
	0.04
	0.12
	87.12



	EEI1
	8.97
	7.86
	9.21
	8.17
	6.19
	6.83
	12.7
	7.59
	8.18
	8.28
	8.28
	0.35
	7.11
	0.2
	0.07
	87.3



	EEI2
	8.65
	7.67
	9.39
	8.08
	5.94
	6.53
	9.29
	13.18
	7.91
	8.11
	7.67
	0.19
	7.2
	0.13
	0.06
	86.82



	GII1
	9.39
	7.99
	9.29
	8.65
	5.93
	6.95
	8.77
	7.3
	11.48
	8.48
	8.8
	0.18
	6.62
	0.09
	0.05
	88.52



	GII2
	10.09
	8.2
	9.34
	7.99
	5.87
	6.85
	8.73
	7.2
	8.53
	11.88
	8.58
	0.19
	6.42
	0.09
	0.03
	88.12



	GSI
	9.22
	8.74
	9.32
	8.14
	6.73
	7.58
	8.68
	6.72
	8.74
	8.17
	11.49
	0.15
	6.21
	0.06
	0.07
	88.51



	CGB
	3.84
	2.57
	2.93
	3.74
	2.02
	1.81
	3.24
	2.63
	3.03
	3.74
	2.6
	63.22
	3.48
	0.49
	0.66
	36.78



	HS300
	8.97
	6.42
	8.44
	7.01
	5.57
	6.66
	8.78
	7.8
	7.88
	8
	7.51
	0.36
	16.34
	0.18
	0.06
	83.66



	AU
	1.19
	1.07
	1.2
	1.13
	0.34
	0.33
	1.98
	1.22
	0.57
	1.13
	0.19
	0.24
	1.82
	86.4
	1.2
	13.6



	EF
	0.12
	0.36
	0.2
	0.39
	1.35
	0.59
	0.53
	0.21
	0.35
	0.21
	0.36
	0.12
	0.18
	1.49
	93.56
	6.44



	TO
	105
	92.33
	105.46
	92.94
	72.12
	81.94
	102.11
	81.81
	95.9
	94.97
	96.56
	2.75
	76.97
	3.28
	2.68
	1106.82



	NET
	16.67
	4.03
	17.39
	4.76
	−14.97
	−5.17
	14.81
	−5.01
	7.38
	6.85
	8.06
	−34.04
	−6.69
	−10.32
	−3.75
	73.79







Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike information criterion) and generalized variance decompositions of 10-day-ahead forecast errors..
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Table 4. Total spillover matrix for negative volatility.
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	EPI1
	EPI2
	CPI1
	CPI2
	CEI1
	CEI2
	EEI1
	EEI2
	GII1
	GII2
	GSI
	CGB
	HS300
	AU
	EF
	FROM



	EPI1
	10.64
	8.3
	8.15
	8.36
	7.79
	8.36
	8.08
	7.6
	9.27
	8.34
	8.24
	0.01
	6.65
	0.03
	0.18
	89.36



	EPI2
	8.68
	10.38
	8.89
	9.03
	7.58
	7.83
	8.27
	7.93
	8.33
	8.84
	8.56
	0
	5.53
	0.01
	0.13
	89.62



	CPI1
	8.12
	8.54
	9.96
	9.19
	7.54
	7.39
	8.82
	8.3
	8.31
	8.91
	9
	0
	5.81
	0.01
	0.1
	90.04



	CPI2
	8.39
	8.59
	9.05
	10.52
	7.88
	7.42
	8.27
	8.44
	8.58
	8.44
	8.53
	0
	5.7
	0.01
	0.17
	89.48



	CEI1
	8.61
	8.04
	8.16
	8.52
	11.07
	9.29
	7.69
	7.85
	8.64
	7.52
	8.01
	0.01
	6.28
	0.01
	0.29
	88.93



	CEI2
	8.86
	8.05
	7.96
	8.02
	9.01
	11.27
	7.6
	7.7
	8.77
	7.62
	7.79
	0.01
	7.06
	0.01
	0.26
	88.73



	EEI1
	8.21
	8.07
	9
	8.57
	7.27
	7.08
	10.73
	8.63
	8.03
	8.8
	9.04
	0.01
	6.46
	0
	0.11
	89.27



	EEI2
	8.05
	7.99
	8.54
	8.93
	7.58
	7.46
	8.71
	11
	8.22
	8.57
	8.18
	0.02
	6.48
	0
	0.26
	89



	GII1
	9.2
	8.05
	8.39
	8.48
	8.02
	8.35
	7.75
	7.67
	11.25
	7.86
	8.47
	0.02
	6.26
	0.02
	0.22
	88.75



	GII2
	8.6
	8.56
	9.09
	8.67
	7.07
	7.14
	8.88
	8.34
	8.04
	10.79
	8.99
	0
	5.74
	0.01
	0.08
	89.21



	GSI
	8.4
	8.18
	9.22
	8.64
	7.48
	7.45
	8.96
	7.98
	8.65
	8.89
	10.52
	0.01
	5.52
	0.01
	0.08
	89.48



	CGB
	0.14
	0.06
	0.02
	0.02
	0.06
	0.02
	0.01
	0.02
	0.08
	0.08
	0.09
	98.5
	0.04
	0.16
	0.71
	1.5



	HS300
	8.4
	6.9
	7.1
	7.36
	7.75
	8.29
	7.97
	8.03
	8.1
	7.22
	7.02
	0.01
	15.58
	0.01
	0.25
	84.42



	AU
	0.31
	0.29
	0.35
	0.16
	0.24
	0.41
	1.08
	0.56
	0.29
	0.35
	0.41
	0.32
	0.69
	94.48
	0.07
	5.52



	EF
	1.44
	1.01
	1.03
	1.48
	2.06
	1.3
	0.94
	1.65
	1.42
	0.69
	1.09
	0.01
	1.45
	0.41
	84.04
	15.96



	TO
	95.42
	90.62
	94.94
	95.44
	87.34
	87.79
	93.05
	90.69
	94.73
	92.14
	93.43
	0.43
	69.66
	0.69
	2.92
	1089.29



	NET
	6.05
	1
	4.9
	5.96
	−1.59
	−0.94
	3.78
	1.69
	5.99
	2.93
	3.94
	−1.08
	−14.76
	−4.84
	−13.04
	72.62







Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike information criterion) and generalized variance decompositions of 10-day-ahead forecast errors.
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Table 5. Spillover matrix in pre-COVID-19 outbreak.
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	EPI1
	EPI2
	CPI1
	CPI2
	CEI1
	CEI2
	EEI1
	EEI2
	GII1
	GII2
	GSI
	CGB
	HS300
	AU
	EF
	FROM



	EPI1
	10.4
	7.98
	9.18
	7.3
	8.06
	8.76
	8.62
	7.79
	8.18
	8.31
	8.68
	0.01
	6.59
	0.1
	0.04
	89.6



	EPI2
	8.78
	10.54
	8.71
	7.74
	8.12
	9.16
	8.57
	7.91
	7.99
	7.87
	8.76
	0
	5.74
	0.07
	0.01
	89.46



	CPI1
	8.8
	7.82
	10.7
	8.58
	7.84
	8.18
	8.69
	7.92
	8.34
	7.79
	8.42
	0.01
	6.76
	0.13
	0.02
	89.3



	CPI2
	8.13
	7.88
	9.54
	10.79
	7.94
	8.36
	8.23
	8.04
	8.4
	7.58
	8.57
	0.01
	6.38
	0.13
	0.03
	89.21



	CEI1
	8.59
	8.3
	8.6
	7.72
	9.53
	9.06
	8.44
	8.13
	8.31
	7.52
	9.09
	0.01
	6.6
	0.06
	0.02
	90.47



	CEI2
	8.83
	8.68
	8.58
	7.55
	8.52
	10.19
	8.4
	7.86
	8.21
	7.71
	8.69
	0
	6.67
	0.09
	0.02
	89.81



	EEI1
	8.74
	8.02
	8.86
	7.35
	8.06
	8.54
	10.83
	8.24
	7.89
	7.64
	8.58
	0.01
	7.05
	0.15
	0.02
	89.17



	EEI2
	8.42
	7.88
	8.82
	7.61
	7.95
	8.38
	8.93
	11.24
	8.03
	7.43
	8.16
	0
	7.08
	0.06
	0
	88.76



	GII1
	8.48
	7.93
	8.88
	8.07
	8.2
	8.62
	8.26
	8.09
	10.09
	7.65
	9.02
	0.01
	6.62
	0.08
	0.01
	89.91



	GII2
	9.38
	8.16
	8.8
	7.54
	7.98
	8.53
	8.48
	7.74
	8.05
	10.02
	8.67
	0.01
	6.51
	0.12
	0.01
	89.98



	GSI
	8.58
	8.04
	8.6
	7.83
	8.34
	8.54
	8.69
	8.02
	8.23
	7.59
	10.79
	0
	6.65
	0.07
	0.04
	89.21



	CGB
	1.98
	1.36
	1.54
	2.06
	1.27
	1.12
	1.12
	0.9
	1.36
	2.42
	1.56
	79.95
	0.95
	0.37
	2.05
	20.05



	HS300
	8.46
	6.58
	8.45
	6.96
	7.65
	8.07
	8.17
	8.15
	7.79
	7.22
	8.05
	0
	14.26
	0.17
	0.02
	85.74



	AU
	0.7
	0.8
	0.97
	0.76
	0.26
	0.63
	1.58
	0.26
	0.6
	0.56
	0.31
	0.22
	1.68
	89.83
	0.85
	10.17



	EF
	0.7
	0.17
	0.43
	0.35
	0.61
	0.64
	0.58
	0.16
	0.23
	0.41
	0.23
	0.02
	0.4
	0.65
	94.41
	5.59



	TO
	98.6
	89.61
	99.96
	87.42
	90.78
	96.59
	96.75
	89.22
	91.62
	87.69
	96.8
	0.31
	75.66
	2.24
	3.13
	1106.4



	NET
	8.99
	0.16
	10.66
	−1.78
	0.32
	6.78
	7.59
	0.46
	1.71
	−2.29
	7.58
	−19.73
	−10.08
	−7.93
	−2.45
	73.76







Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike information criterion) and generalized variance decompositions of 10-day-ahead forecast errors.
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Table 6. Spillover matrix during-COVID-19 outbreak.
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	EPI1
	EPI2
	CPI1
	CPI2
	CEI1
	CEI2
	EEI1
	EEI2
	GII1
	GII2
	GSI
	CGB
	HS300
	AU
	EF
	FROM



	EPI1
	10.52
	7.46
	9.6
	8.78
	5.82
	6.08
	5.83
	5.05
	10.14
	10.2
	8.14
	2.77
	9.01
	0.04
	0.56
	89.48



	EPI2
	9.58
	9.74
	9.17
	7.96
	6.31
	7.73
	5.64
	4.23
	9.81
	9.38
	9.55
	1.8
	8.23
	0.02
	0.84
	90.26



	CPI1
	9.39
	7.37
	11.57
	9.37
	5.41
	4.94
	6.44
	5.85
	9.99
	9.47
	7.7
	2.82
	8.89
	0.02
	0.77
	88.43



	CPI2
	8.5
	6.84
	9.93
	10.7
	6.25
	4.96
	7.43
	5.25
	10.37
	8.74
	7.84
	3.43
	8.85
	0.08
	0.82
	89.3



	CEI1
	8.01
	7.57
	7.89
	7.6
	9.58
	8.67
	6.53
	5.74
	8.92
	7.9
	8.82
	2.31
	8.96
	0.35
	1.13
	90.42



	CEI2
	8.83
	7.75
	7.61
	7.15
	7.69
	10.14
	6.81
	5.4
	8.99
	8.46
	9.26
	1.84
	8.29
	0.19
	1.6
	89.86



	EEI1
	8.02
	6.53
	8.03
	7.98
	6.89
	5.74
	10.77
	6.01
	8.27
	9.11
	8.21
	4.49
	9.19
	0.1
	0.67
	89.23



	EEI2
	8.13
	6.26
	9.08
	6.97
	6.86
	6.19
	6.82
	12.03
	7.74
	9.64
	6.4
	2.49
	10.08
	0.89
	0.42
	87.97



	GII1
	8.87
	6.8
	9.28
	9.6
	5.93
	5.46
	6.72
	5.05
	12.49
	8.73
	8.46
	3.09
	8.85
	0.03
	0.63
	87.51



	GII2
	9.83
	7.31
	8.82
	7.5
	6.29
	6.72
	6.75
	5.33
	8.11
	11.94
	8.09
	3.21
	9.48
	0.12
	0.49
	88.06



	GSI
	9.06
	7.87
	8.67
	8.4
	6.28
	6.97
	6.5
	4.34
	10.48
	8.79
	10.36
	3.28
	8.08
	0.06
	0.86
	89.64



	CGB
	7.35
	5.16
	7.62
	7.22
	6.22
	4.5
	7.31
	5.6
	7.59
	7.99
	7.43
	15.82
	9.05
	0.17
	0.99
	84.18



	HS300
	8.6
	6.62
	8.79
	7.11
	6.65
	6.11
	6.22
	6.64
	7.88
	9.59
	7.29
	3.92
	13.71
	0.47
	0.4
	86.29



	AU
	5.53
	1.24
	2.08
	0.5
	0.21
	1.1
	1.91
	1.96
	0.52
	5.28
	2.46
	10.04
	2.02
	63.28
	1.89
	36.72



	EF
	6.11
	6.17
	5.92
	4.62
	5.32
	7.25
	5.74
	4.14
	6.73
	6.58
	7.02
	1.79
	5.02
	0.13
	27.45
	72.55



	TO
	115.82
	90.96
	112.5
	100.76
	82.12
	82.42
	86.65
	70.58
	115.54
	119.85
	106.67
	47.29
	114.01
	2.67
	12.06
	1259.91



	NET
	26.34
	0.7
	24.07
	11.46
	−8.3
	−7.43
	−2.57
	−17.39
	28.03
	31.79
	17.03
	−36.89
	27.71
	−34.05
	−60.49
	83.99







Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike information criterion) and generalized variance decompositions of 10-day-ahead forecast errors.
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Table 7. Spillover matrix in post-COVID-19 outbreak.
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	EPI1
	EPI2
	CPI1
	CPI2
	CEI1
	CEI2
	EEI1
	EEI2
	GII1
	GII2
	GSI
	CGB
	HS300
	AU
	EF
	FROM



	JNHB1
	18.26
	6.52
	12.19
	8.99
	0.56
	3.74
	10.12
	3.9
	12.23
	11.79
	6.37
	0.01
	5.27
	0.03
	0.02
	81.74



	JNHB4
	12.08
	17.51
	12.52
	8.16
	1.85
	5.37
	8.97
	2.35
	9.35
	7.56
	9.04
	0.02
	5.08
	0.06
	0.08
	82.49



	QJSC1
	11.12
	6.61
	19.83
	14.37
	1.43
	1.69
	11.24
	5.29
	6.64
	7.31
	6.83
	0.07
	7.37
	0.07
	0.16
	80.17



	QJSC2
	9.84
	4.84
	15.46
	19.94
	2.19
	1.44
	13.86
	5.53
	7.81
	6.9
	5.77
	0.08
	6.14
	0.09
	0.11
	80.06



	QJNY1
	4.65
	6.28
	7.42
	8.52
	30.92
	13.14
	13.06
	1.04
	3.46
	2.4
	4.92
	0.72
	2.82
	0.07
	0.59
	69.08



	QJNY2
	13.53
	5.83
	8.22
	6.33
	4.99
	24.86
	9.89
	1.81
	8.05
	5.35
	6.62
	0.75
	3.59
	0.13
	0.06
	75.14



	STHJ1
	10.03
	4.32
	11.86
	13.11
	1.16
	2.22
	25.11
	4.43
	9.07
	7.03
	5.37
	0.25
	5.23
	0.62
	0.17
	74.89



	STHJ3
	9.73
	3.19
	11.36
	10.43
	1.26
	1.51
	11.19
	24.07
	6.46
	9.03
	4.31
	0.02
	6.88
	0.47
	0.09
	75.93



	JCSS1
	13.23
	5.62
	10.39
	10.29
	0.92
	3.03
	11.93
	5.03
	16.91
	11.08
	5.39
	0.04
	6.05
	0.02
	0.08
	83.09



	JCSS2
	13.41
	4.84
	10.47
	8.56
	1.06
	2.48
	7.91
	5.66
	12.47
	22.57
	5.5
	0.16
	4.87
	0.02
	0.01
	77.43



	LSFW
	11.63
	8.13
	12.83
	9.31
	2.61
	4.47
	11.44
	3.35
	8.06
	7.34
	14.67
	0.13
	5.55
	0.21
	0.29
	85.33



	GB
	0.11
	0.13
	0.72
	2.3
	0.49
	0.83
	0.49
	0.09
	0.45
	0.55
	0.88
	92.09
	0.24
	0.56
	0.07
	7.91



	STOCK
	8.92
	3.56
	7.59
	5.71
	0.41
	2.33
	10.08
	3.94
	7.53
	8.27
	4.34
	0.2
	34.55
	2.17
	0.42
	65.45



	GOLD
	0.24
	0.5
	0.32
	0.06
	0
	0.62
	1.02
	0.45
	0.14
	0.69
	1.13
	5.16
	1.4
	84.8
	2.36
	14.09



	EF
	0.71
	1.9
	0.58
	0.07
	3.78
	0.65
	0.53
	2.25
	0.04
	0.06
	0.87
	0.03
	0.52
	8.97
	79.04
	20.96



	TO
	119.22
	62.26
	121.92
	106.21
	22.71
	43.52
	121.74
	45.12
	91.75
	85.35
	67.35
	7.62
	61.02
	13.5
	4.49
	974.87



	NET
	37.49
	−20.23
	41.75
	26.15
	−46.37
	−31.62
	46.85
	−30.82
	8.66
	7.93
	−17.99
	−0.29
	−4.43
	−1.71
	−16.47
	64.99







Notes: This table is based on vector autoregressions of order 1 (as determined by the Akaike information criterion) and generalized variance decompositions of 10-day-ahead forecast errors.
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Table 8. Bilateral portfolio weights and effectiveness.
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Whole Period

	
Pre-COVID-19 Period

	
COVID-19 Period

	
Post-COVID-19 Period




	

	
Weight

	
HE (%)

	
Weight

	
HE (%)

	
Weight

	
HE (%)

	
Weight

	
HE (%)






	
JNHB1/GB

	
0.9964

	
1.75

	
0.9968

	
0.59

	
0.9912

	
7.86

	
1.0000

	
0.29




	
JNHB2/GB

	
0.9966

	
1.74

	
0.9969

	
0.61

	
0.9919

	
6.66

	
1.0000

	
0.46




	
QJSC1/GB

	
0.9962

	
1.90

	
0.9968

	
0.58

	
0.9905

	
6.03

	
1.0000

	
0.62




	
QJSC2/GB

	
0.9957

	
2.04

	
0.9973

	
0.49

	
0.9887

	
7.46

	
1.0000

	
0.34




	
QJNY1/GB

	
0.9960

	
2.05

	
0.9963

	
0.68

	
0.9913

	
6.46

	
1.0000

	
0.60




	
QJNY2/GB

	
0.9961

	
1.86

	
0.9961

	
0.67

	
0.9927

	
5.56

	
1.0000

	
0.26




	
STHJ1/GB

	
0.9959

	
1.57

	
0.9963

	
0.49

	
0.9930

	
3.95

	
1.0000

	
0.27




	
STHJ2/GB

	
0.9966

	
1.45

	
0.9968

	
0.59

	
0.9922

	
5.46

	
1.0000

	
0.18




	
JCSS1/GB

	
0.9951

	
2.18

	
0.9955

	
0.90

	
0.9915

	
5.74

	
1.0000

	
0.33




	
JCSS2/GB

	
0.9968

	
1.63

	
0.9975

	
0.52

	
0.9913

	
6.86

	
1.0000

	
0.32




	
LSFW/GB

	
0.9958

	
4.37

	
0.9960

	
0.78

	
0.9901

	
7.38

	
1.0000

	
0.43




	
JNHB1/GOLD

	
0.7993

	
23.00

	
0.8105

	
23.73

	
0.7852

	
18.79

	
0.7944

	
23.56




	
JNHB2/GOLD

	
0.8194

	
20.60

	
0.8254

	
22.15

	
0.7855

	
18.65

	
0.8406

	
17.21




	
QJSC1/GOLD

	
0.7811

	
25.71

	
0.8007

	
25.66

	
0.7090

	
24.48

	
0.7883

	
25.03




	
QJSC2/GOLD

	
0.7686

	
27.63

	
0.7999

	
25.98

	
0.6746

	
28.39

	
0.7504

	
30.22




	
QJNY1/GOLD

	
0.8033

	
22.42

	
0.7961

	
25.65

	
0.7561

	
21.22

	
0.8658

	
14.10




	
QJNY2/GOLD

	
0.8082

	
21.35

	
0.7938

	
25.29

	
0.7907

	
17.90

	
0.8707

	
13.18




	
STHJ1/GOLD

	
0.7521

	
27.21

	
0.7631

	
29.28

	
0.7392

	
20.63

	
0.7426

	
26.71




	
STHJ2/GOLD

	
0.8062

	
21.38

	
0.8025

	
24.25

	
0.7915

	
14.96

	
0.8262

	
18.82




	
JCSS1/GOLD

	
0.7785

	
1.41

	
0.7967

	
25.94

	
0.7412

	
27.46

	
0.7668

	
26.95




	
JCSS2/GOLD

	
0.8123

	
21.75

	
0.8359

	
21.55

	
0.7601

	
19.93

	
0.7866

	
23.80




	
LSFW/GOLD

	
0.7924

	
23.67

	
0.8007

	
25.24

	
0.7240

	
24.63

	
0.8256

	
18.57




	
JNHB1/EF

	
0.5412

	
39.85

	
0.5209

	
43.66

	
0.8503

	
7.28

	
0.3939

	
54.30




	
JNHB2/EF

	
0.5759

	
37.03

	
0.5475

	
40.44

	
0.8487

	
7.58

	
0.4704

	
50.91




	
QJSC1/EF

	
0.5181

	
40.91

	
0.5107

	
43.24

	
0.7415

	
14.71

	
0.3866

	
54.41




	
QJSC2/EF

	
0.5044

	
42.54

	
0.5124

	
42.78

	
0.6881

	
21.07

	
0.3514

	
59.62




	
QJNY1/EF

	
0.5586

	
37.35

	
0.5004

	
43.95

	
0.8273

	
8.49

	
0.5388

	
42.58




	
QJNY2/EF

	
0.5576

	
37.78

	
0.4932

	
45.02

	
0.8786

	
5.56

	
0.5223

	
44.43




	
STHJ1/EF

	
0.4614

	
45.86

	
0.4461

	
48.77

	
0.7586

	
14.61

	
0.2926

	
61.57




	
STHJ2/EF

	
0.5452

	
36.89

	
0.5090

	
42.53

	
0.8618

	
5.12

	
0.4217

	
47.36




	
JCSS1/EF

	
0.5141

	
41.23

	
0.5034

	
42.97

	
0.7730

	
13.56

	
0.3653

	
57.72




	
JCSS2/EF

	
0.5650

	
38.11

	
0.5727

	
38.03

	
0.7802

	
13.71

	
0.3781

	
58.46




	
LSFW/EF

	
0.5351

	
39.34

	
0.5117

	
42.66

	
0.7690

	
13.31

	
0.4315

	
51.03








Notes: This table summarizes the results of the optimal portfolio weights and the corresponding effectiveness.
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