Supplementary Materials: Proofs of the Propositions
Lemma 1:

Proof. It is easy to show that the coefficients of Y in e’ and w5 are positive when m >
1 1 :
Zyz. Moreover, as we assume m > gyz, so the coefficients of eS and w® are always

positive for the rest of our paper.
Proposition 1:

Proof. Let the retailer’s profit under the information sharing case be less than that without
information sharing, i.e., my > X ; it is easy to derive that the condition m < Eyz must be

satisfied. Similarly, we can derive the conditions where information sharing benefits the
manufacturer and supply chain by comparing the manufacturer’s and supply chain’s profits
under the two cases, respectively.

Proposition 2:

Proof. It is easy to prove proposition 2 by comparing the optimal investment level of the
manufacturer under the two cases.

Proposition 3:

Proof. As the demand becomes more variable, that is, a larger o, we can obtain the following
results by taking derivations of the retailer’s, manufacturer’s and supply chain’s profits under

the information sharing or non-information sharing cases with respect to o2, respectively, as
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Proposition 4:
1 . .

Proof. (a) When m < 5}/2, we have 3 >l and my > ml. Hence, the retailer will share
the private information voluntarily without any payment, and X* =S is the equilibrium
decision.

3+y5
(b) When %yz <m< (:Jyz, we have my < 7w}, and my — (T} —m3) = mhy, so the

manufacturer will offer 7=} — 75 to obtain the retailer’s private information, and X* =S
is the equilibrium decision.
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(c) Whenm > #yz, we have 3 < nf, my — (nf — m§) < mly. The manufacturer will

not pay for the information, and X* = N is the equilibrium decision.



Lemma 2:
Proof. For Cournot competition, when the information sharing arrangement is (X1, X,), we can

i

XiX; XX _ . XiX; . ;
prove that ¢ "7 = qi(q.""") by substituting the equations of ¢.’ ' into g, where
: e g the eq q; q;

qix ‘(q ;) is given by (26) and (30), X =S or N and i # j, respectively. Similarly, we can

verify that wi}(in = a)i){i(qj).(jxi) and el.Xixj = eiX "(qj.(jxi), where wiX “(q ;) is given by (24)

Xin

and (28), and the ei(q;) is given by (25) and (29). Thus (q; "7, w; "7,e; "7} is an

equilibrium. The proof of the uniqueness of the equilibrium is similar to that of Ha et al. (2011)
and is omitted.

Lemma 3:
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Proof. For part (a), we can verify C; "/ <1.So, @,/ >0 and B,/ >0 if and only if
1 1 o - . .
m > Zyz. Moreover, as we assume that m > 5)/2 to ensure interior equilibrium solutions; in

. XiX;j XiX;j . . .
this case, we can say el. and (I.)L- are creasing in Yl

For part (b), we can derive the following:
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As a result, information sharing in supply chain i makes q; less responsive to Y; and makes
. 1
q; more responsive to ¥; when m > 5}/2.

Proposition 5:

Proof. For part (a), we have the following:
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For part (b), we have the following:
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Proposition 6:
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Proposition 7:

. . 2 2
Proof. For part (a), we can show that ﬁl.SXJ - ,BiNX’ > 0 and ,BiSX’ — ,Bl.NX’ > 0 regardless
of X; =S or N; For part (b), we can show that AE[IL-S] — AE[IL-N] > 0 when m < %yz.

Proposition 8:

Proof. Information sharing benefits supply chain i when V;* > 0, which is equivalentto g >

0, where
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Let x = Treon Ve have 0 < x < 1;rewrite g as g(x) = m3x? —8m3x — 2(4m —

Y3 (—6my? + 4m? + y*), and g(x) has two roots, as follows:
1
x,(m) = W(ﬁlm?’ +v2/2m3(6m — y2) — 2my/2m3(6m — y2))
1
x,(m) = $(4m3 —y2J/2m3(6m — y2) + 2m./2m3(6m — y2))

We can prove that when m > gyz, x,(m) > 1, and x;(m) is decreasing with m.

Therefore, we do not need to consider x,(m) when 0 < x < 1. Given t and A, we have the
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unique m> such that x;(m5) = We can prove that g > 0 if and only if m < m5.
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(Zi ¥?2, we can obtain that

Since x;(m) > 1 when m < %yz and x;(m) >0 when m >

. . . . . d S
. Note that x;(m®%) is increasing in t, A and y (ie., dra(m?) _
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2 ) = _rdamy) 0), x;(m) is decreasing with m, so mS is
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decreasing in t, A, and increasing in .

We can also prove that V¥ > 0 if and only if h > 0, where
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16m?x — 8(—6my? + 4m? + y*), and h(x) has two roots as follows:

x3(m) = m(4m 2)(8m + 2y2y/2m(6m — y2) — 4m./2m(6m — y2))
x,(m) = m(4m yz)(8m —2y22m(6m — y2) + 4m./2m(6m — y2))

We can prove that when m > %yz, x,(m) > 1 and x3(m) is decreasing with m.

Therefore, we do not need to consider x,(m) when 0 < x < 1. Given # and A, we have the
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unique m" such that x;(m") = We can prove that h > 0 if and only if m < m".

Since x3(m) >1 when m < %yz and x3(m) >0 when m > @yz. We can obtain
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that %yz <mV . Note that x3(m) is increasing in t, A and y (ie.,
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Therefore, m" is decreasing in t, A, and increasing in y. In addition, mY < m® because

> 0), x3(m) is decreasing with m.

x,(m) > x3(m) if %yz <m< (3:—\/—5))/2.

Proposition 9:

.. . SX; _NXj . . XjN
Proof. For part (a), we divide the expression 7, S — g, ' into two parts, i.e., g, (C. / ) —
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af (C) + 3 () = mf (") . We find that (V) - (V) =
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>0 when m <-y?. Therefore, we can prove that
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< nRi’ (i=1,2) when m< 5)/2, so retailer { will share the information with

T[RL

manufacturer { without any payment, and the (S,S) is the unique equilibrium; For part (b),
when éyz < m < m", we can obtain both that V¥ >0 and V¥ >0 for i =1, 2,50 S is

the dominant strategy for both manufacturers and (S,S) is the unique equilibrium; For part
(c), when m" < m < mS, we can obtain that VN <0 and V >0 for i =1,2,s0 (N,N)
and (S,S) are possible equilibria. However, we can show that nﬁf + V5> nﬁ{v for i =
1,2. Hence, (S,S) is optimal; For part (d), when m > mS, we can show that V;* < 0 and

VN < 0. Therefore, (N,N) is the unique equilibrium.



