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Abstract: Modern urban mobility needs new solutions to resolve high-complexity demands on urban
traffic-control systems, including reducing congestion, fuel and energy consumption, and exhaust
gas emissions. One example is urban motorways as key segments of the urban traffic network that
do not achieve a satisfactory level of service to serve the increasing traffic demand. Another complex
need arises by introducing the connected and autonomous vehicles (CAVs) and accompanying
additional challenges that modern control systems must cope with. This study addresses the problem
of decreasing the negative environmental aspects of traffic, which includes reducing congestion,
fuel and energy consumption, and exhaust gas emissions. We applied a variable speed limit (VSL)
based on Q-Learning that utilizes electric CAVs as speed-limit actuators in the control loop. The
Q-Learning algorithm was combined with the two-step temporal difference target to increase the
algorithm’s effectiveness for learning the VSL control policy for mixed traffic flows. We analyzed two
different optimization criteria: total time spent on all vehicles in the traffic network and total energy
consumption. Various mixed traffic flow scenarios were addressed with varying CAV penetration
rates, and the obtained results were compared with a baseline no-control scenario and a rule-based
VSL. The data about vehicle-emission class and the share of gasoline and diesel human-driven
vehicles were taken from the actual data from the Croatian Bureau of Statistics. The obtained results
show that Q-Learning-based VSL can learn the control policy and improve the macroscopic traffic
parameters and total energy consumption and can reduce exhaust gas emissions for different electric
CAV penetration rates. The results are most apparent in cases with low CAV penetration rates.
Additionally, the results indicate that for the analyzed traffic demand, the increase in the CAV
penetration rate alleviates the need to impose VSL control on an urban motorway.

Keywords: variable speed limit; electric vehicles; connected and autonomous vehicles; reinforce-
ment learning; urban motorway; intelligent transportation systems; fuel consumption; exhaust
gas emissions

1. Introduction

Urban motorways are key traffic roads in routes that provide traffic capacity for
transit and local traffic. They mainly consist of many closely spaced on- and off-ramps.
The problem of urban motorways is derived from the ever-increasing traffic demand that
often leads to congestion and capacity drops. Such situations occur mainly near on-ramps
caused by the local traffic that merges into the motorway mainstream flow during peak
periods with increased traffic demand. This on-ramp traffic flow is characterized by a
lower mean speed than the mainstream flow mean speed. The undoubtedly increased
number of interactions between the mainstream vehicles and on-ramp vehicles influence
the mainstream traffic flow and cause slowdowns. Thus, a bottleneck is created that
decreases the safety and stability of the motorway traffic flow [1]. This disruption of
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motorway traffic flows strongly correlates to the increase in mean travel times (MTT) and
total time spent (TTS) of all vehicles, which also increases the fuel consumption (FC),
electric energy consumption (EEC), and exhaust gas emissions [2].

One traffic control approach that copes with the above problems is a variable speed
limit (VSL) derived from intelligent transportation systems. VSL utilizes variable message
signs (VMS) placed on urban motorways to apply tailor-made speed limits on urban
motorways, which depend on the traffic state measurements, to cope with occurring
congestion. It can reduce the chance of forming congestion and shock waves and can
harmonize the speeds of upstream tree-flow and congested downstream traffic flow [3].
Various methods can be applied for adequately setting up VSL, with the machine-learning
methods being in focus recently [4,5]. Reinforcement learning (RL) is a model-free control
method that can be applied to VSL to compute optimal policies and apply appropriate
speed limits [6,7]. RL performs an action for each state of the environment based on the
previously determined values of the state–action pairs. Traffic states can be discretized by
applying various methods for the spatial and temporal discretization that are determined
by macroscopic traffic parameters’ measurements, including traffic density (ρ), speed (v),
flow (q), and on-ramp queue length. The effectiveness of the learned control policy and the
reward function is commonly evaluated by measuring total travel time (TTT), TTS, MTT,
and total delay time.

The development of autonomous vehicles (AVs) and connected and autonomous
vehicles (CAVs) has been rapidly growing in recent years. The introduction of AVs has
been extensively tested for almost three decades in the fields of transportation, agriculture,
logistics, and surveillance [8–12]. The introduction of those vehicles in traffic flows creates
a new form of traffic flows, often referred to as mixed traffic flows that include AVs and
CAVs with different penetration rates and human-driven vehicles (HDVs). The main
characteristics of CAVs include the ability to receive information from various onboard
sensing technologies, such as sensors, cameras, lidars, and radars. In contrast to HDVs,
they have a high level of traffic law compliance, shorter headways, and the data exchange
aspect that allows communication with the traffic infrastructure and other CAVs.

This study is the extension of our previous work [7], where we proposed a Q-learning
(QL) VSL (QL-VSL) algorithm with the objective function to minimize TTS. For this
research, we developed a centralized QL-VSL traffic-control agent that makes the decisions
to post appropriate speed limits and sends the speed-limit information directly to CAVs to
establish communication with roadside infrastructure. The scope of this article is restricted
to mixed traffic flows that contain only HDVs and CAVs with different penetration rates.
Such mixed traffic flows can be expected in the near future. Furthermore, HDVs emission
classes and the gasoline and diesel engine share are set according to data collected by the
Croatian Bureau of Statistics [13]. Moreover, each CAV is assumed to be an electric vehicle
equipped with an onboard unit (OBU) that receives the posted speed-limit information.
The QL-VSL agent sends the posted speed limit to CAVs by a roadside unit (RSU) when
they enter the VSL area. Therefore, the classical VMS is redundant in mixed traffic-flow
scenarios that contain CAVs. Alternatively, a virtual representation of VMS is placed to
impersonate the beginning of the VSL area. For the purpose of this study, the delay of the
communication network and errors in the information transmission are disregarded.

The main contribution of this study is the application and comparison of two op-
timization criteria of the QL-VSL control strategy to reduce traffic congestion, fuel and
energy consumption, and exhaust gas emissions, utilizing CAVs as the actuators for enforc-
ing the speed limit. The application of QL-VSL for mixed traffic flows, with realistically
parametrized engine models and electric vehicle models, and analysis of two reward func-
tions is emphasized. The ramifications of the proposed QL-VSL with two different reward
function approaches are compared with baseline (no control) scenarios and rule-based
VSL (RB-VSL) strategy results under various CAV penetration rate traffic-flow scenarios to
analyze the effect on macroscopic traffic parameters such as TTS, MTT, speed and density,
and FC, EEC, and exhaust gas emissions.
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This article is organized as follows. Section 2 gives an overview of previous studies on
the subject. Section 3 describes the fundamentals of VSL and an overview of QL. Section 4
provides insights into the QL-VSL application. Section 5 provides an overview of the
simulation model used, and Section 6 presents the results and analysis of our experiments.
In Section 7, a discussion about obtained results is given. The last section presents the
conclusion and possible further work of this study.

2. Related Work

Recent studies [14–18] have made a more comprehensive review of VSL strategies for
HDV flows. On the other hand, the ability to integrate QL-VSL in HDV flows was analyzed
in [6,19–22]. In [19], the motorway traffic flow was optimized with QL applied to VSL by
predicting traffic behavior. A vector with six normalized variables determined the traffic
states. The proportional negative TTS was set as the optimization criteria. The oscillations
of consecutive speed limits were limited not to exceed 20 km/h and were included in
the reward function. In [6], the state description was done by defining features by three
approaches, including the radial basis function and tile and coarse coding. The results of
the QL-VSL problem were compared and analyzed on a synthetic motorway model. An RL-
based approach for VSL control, which had an objective part of potential collision-risk
minimization based on the vehicles’ deceleration trajectory oscillations near the congested
area, was proposed in [20]. Motorway traffic mobility and safety optimization based on a
multi-agent VSL control algorithm were proposed in [21]. The goal was to hold the motor-
way traffic density below the critical density (ρc) value, which was done by cooperative
distributed QL-VSL agents. The authors in [23] proposed the QL-VSL control strategy
intending to reduce travel time (TT) at motorway bottleneck locations that outperformed
the feedback-based VSL in all tested scenarios. In [22], authors analyzed the distributed
spatio-temporal multi-agent VSL control approach that dynamically adjusts the VSL zones
and posts speed limits. Two VSL agents were implemented to cooperatively learn to control
two segments upstream of the congestion area. Each agent has its Q-Learning algorithm to
learn its optimal policy, while the cooperation between VSL agents was performed using
distributed W-learning. The approach outperformed the no-control and rule-based VSL
in all analyzed scenarios by decreasing the TTS and increasing the average speed in the
congested section and reducing traffic density in the congested section. In [24], the authors
conducted the before–after analysis based on the Full Bayes (FB) approach to evaluate the
safety effects of the VSL system on a real motorway model. The effectiveness of the FB
approach was evaluated by comparing the predictive performance on the crash frequency
of the FB approach. The VSL system has effectively reduced the total crash frequency in
the VSL-controlled section. The FB before–after study showed that, after deploying the
VSL system, the total crash count was reduced by 32.23% in the FB model.

In survey [5], a review of various VSL control approaches and applications in mixed
traffic-flow scenarios was made. Studies [7,25–27] analyzed VSL performance in mixed
traffic-flow scenarios containing HDVs and CAVs. A deep RL actor-critic model for
differential VSL control that applies dynamic and distinct speed limits for each lane was
proposed in [25]. The genetic algorithm, which includes data collection, traffic-state
prediction, an optimization process, and the objective function to address the problem of
numerous motorway bottlenecks in mixed traffic flows, was proposed in [26]. A Model
Predictive Control (MPC)-based VSL system was analyzed in [27]. It integrates state
prediction and estimation, optimization of the objective function with the rolling horizon,
and speed limit action computation. The multi-criteria reward function was formulated
using traffic measurements, pollutant emission, and FC measurements. In our previous
study [7], we proposed a QL-VSL-based control algorithm to minimize the TTT on the
congested urban motorway segment in seven mixed traffic-flow scenarios. The QL-VSL-
based approach was compared and outperformed both rule-based and baseline scenarios.
However, the sustainability aspect (influence on pollutant emission, EEC, and FC) of the
approach was not analyzed, leaving an open question.
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Studies [25–31] also evaluated the performance of the proposed strategies based on
fuel consumption and vehicle emissions. Fuel consumption was measured in [27,29,30],
while [25,26,28] measured vehicle emissions such as CO, NOx, and HC. The authors
in [25] proposed the usage of the deep RL (DRL) model for a differential VSL, which
stands for a VSL system that can dynamically impose a speed limit among different lanes.
The model is built on the proposed actor-critic architecture based on learning discrete
speed-limit changes in continuous action space. The proposed model was evaluated on
the simulation with TTS, and the bottleneck speed, the number of emergency braking, and
the vehicular emissions were used as training attributes. The results indicate improvements
in traffic safety, efficiency, and environmental effects with reducing CO, HC, NOx, and PMx.
Different effects of the compliant autonomous vehicles and the non-compliant vehicles
with human drivers, in terms of submission to the implied VSL speed, are studied in [31].
The study [25] is focused on the urban areas with the intersections involved. A multi-class
cell-transition model was proposed to cope with the stop-and-go vehicle’s behavior at
the intersections and to reduce energy consumption. The result shows improvements
in reducing energy consumption on the margin of 10 to 40%. The same model is used
in [26] for CAVs in a motorway environment. The objective function was formulated to
smooth the vehicle speed when transitioning between consecutive cells to harmonize the
speed transition. A genetic algorithm was then adopted to solve the VSL optimization
problem. Improvement in emission reduction was reported in CO2 and NOx with up to
10%. In [27], the authors used the MPC approach for VSL to focus on individual driver
behavior by measuring acceleration and deceleration. The results imply the reduction
in fuel consumption up to 16% with the AVs penetration rate of 100%. The results also
show that even if 100% of the penetration rate of AVs is used, multi-criteria optimization is
crucial to use the full VSL benefits in the scenario with the mixed traffic flow.

In [28], the extension of VSL called C-VSL was proposed and compared to classical
VSL. Infrastructure-to-vehicle (I2V) communication was utilized to set individual AV speed
limits to harmonize traffic flow and reduce exhaust gas emissions. Multiple VMSs were
utilized as RSUs to send each vehicle information about posted speed limits. The approach
was evaluated using traffic simulation showing distinct benefits in lower acceleration
rates, harmonized flow, and reduced emissions of x and HC. In [29], the impact of AVs
on a real motorway system in various motorway traffic-demand scenarios, including free-
flow traffic (≈0.5· capacity), lightly congested traffic (≈0.7· capacity), heavily congested
traffic (>0.95· capacity), and future traffic (3 times greater than heavily congested traffic)
conditions were analyzed. Multiple measures of effectiveness (MoEs) were collected to
analyze the impact on safety, mobility, fuel consumption, and emissions such as speed,
MTT, and lane occupancy. The results indicated gradual MoEs improvement with the
AV penetration rate. The study reports the fuel consumption reduction by using VSL
from 10 to 31% and significant emissions reduction. In [30], the authors analyzed the
impact of speed control of AVs before they enter the controlled segment on an observed
motorway. The Hamiltonian analysis was applied to optimal control to derive each AV’s
optimal acceleration and deceleration. Fuel consumption and emissions were reduced by
minimizing the accelerations or decelerations for each AV entering the controlled segment
until a specified time. The results significantly improved travel time and fuel consumption
by 22% and 30%, respectively. Three varying traffic demands were used to analyze the
effectiveness of the proposed control method. The results were compared to the baseline
scenario, the VSL algorithm (using the shock-wave theory proposed in [32]), and a modified
vehicular-based speed-harmonization algorithm proposed in [33].

The “range anxiety” of electric-vehicle drivers, which refers to the driver’s fear of
consuming all the available electric energy before the trip end, is one of the primary
motivations for research in the field of energy consumption. Electric-energy consumption
was modeled in [34] to obtain a precise range estimation. The model was validated using a
commercial electric vehicle and includes a vehicle powertrain system, longitudinal vehicle
dynamics, transmission, and a battery model. The model achieved an accuracy score
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of 2% to 6% error compared to experimental results. The driving range and electric-
vehicle energy consumption were also studied in [35] by using a microscopic simulation.
The authors developed a model of a pure battery-electric vehicle, which is calibrated
with the experimental dataset. The validation error of the model was below 5%, and the
main influence factors for the energy consumption were extracted. The main factors were
the average vehicle speed, the running time, the braking frequency, and the congested
traffic. The simulation of an electric vehicle on the microscopic level was also conducted
in [36]. In it, the authors focused on the gap between real-world energy consumption and
declared consumption values. The simplified vehicle-specific power model was presented
and evaluated on standard driving cycles. The model showed improvements over other
proposed models by introducing the charging power function for describing energy flow
during braking. The authors in [37] studied the energy consumption and greenhouse-
gas emissions of electric AVs. The case study was conducted on a mid-sized electric
AV taxi dataset based on common driving cycles. The study results showed the energy
consumption from 325 to 397 Wh/km, and the reported energy consumption was 6.5%
larger for cars with human drivers than autonomous ones.

The use of CAVs as the mobile actuators for cooperative VSL and speed control
systems was analyzed in [38,39]. The main goal was to use CAVs to adjust the speed limits
on a motorway by applying the appropriate speed limits to maximize the mainstream flow
and to reduce the delay time of vehicles. Therefore, our research draws the motivation to
utilize CAVs as mobile speed-limit actuators to analyze the impact of applied control on the
total time spent, total energy consumption, fuel consumption, and exhaust gas emissions,
especially in the context of the current dawn of mixed traffic flows with an increased share
of vehicles having some driving automation included as standard equipment.

In all the previous works, the impact of centralized control of CAVs in mixed traffic
flows on total energy consumption, fuel consumption, and exhaust gas emissions was
not analyzed. The motivation and emphasis of this study was to fill in the gap between
previous studies that did not emphasize the reduction in the measures mentioned above.
Finally, this study contributes to sustainable traffic control to improve the overall quality of
life in urban areas.

3. Applied Methodology

This section presents the overview of VSL and QL used for this research.

3.1. Variable Speed Limit

VSL is a control approach that indirectly controls the mainstream traffic-flow speed,
affecting the mainstream flow dynamics. VSL potentially eliminates the need for transport
infrastructure expansion by not adding additional traffic lanes and by effectively increasing
the operational capacity of the existing transport network. The performance of the traffic-
control systems was assessed by measures such as TT expressed in seconds (s), TTT,
and TTS determined by the travel time of all vehicles on the controlled segment of the
motorway, expressed in (veh · h). The flow of incoming vehicles nearing the bottleneck
can be controlled and reduced by posting an appropriate speed limit [40]. By doing so,
the further capacity drop is avoided, and the congestion can be relieved more quickly. VSL
can also be used to achieve traffic flow that is less or equal to the maximum capacity of the
bottleneck area. In addition, VSL can have a preventive effect that can delay the capacity
drop caused by a sudden increase in demand on bottleneck areas. The likelihood of an
incident occurring is also reduced as VSL also contributes to the harmonization of speed
limits [41].

The influence of the VSL on the fundamental traffic diagram was quantitatively
described in the study [42]. It implies that the critical density of traffic flow ρc will increase
with the speed-limit reduction using a fundamental diagram model. Characteristics of a
stable traffic flow are shown in [43], which are described by traffic density ρ less than the
critical density ρc, where stable traffic flow represents the traffic conditions without many
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interactions between vehicles and traffic flows running smoothly. VSL impacts the traffic
flow by reducing mean flow speed and higher density due to more harmonized traffic
speeds than VSL-free traffic flow.

The impact of the VSL on the unstable traffic flow is summarized in [40]. Unstable
traffic-flow conditions occur when traffic density reaches a value above the critical density
(ρ > ρc). As a result, interactions between vehicles become more frequent, and this kind of
disruption could lead to a traffic shock wave, which can propagate in a chain reaction that
can create additional traffic jams. The VSL implementation, spatially placed in front of a
bottleneck area, can reduce or prevent the shock wave by speed harmonization.

Authors in [44] analyzed traffic parameters’ disruption where CAVs penetration rates
were ranging from 0 to 100%. The flow–density relation and speed distributions were
analyzed with two values of time headway. In the case of a time headway of 0.5 s, traffic
flow was increased by 2000 veh/h. In the other example where the headway was set to
1.1 s, traffic flow was increased by up to 500 veh/h. The influence of the CAVs penetration
rate resulted in reducing distributions and speed differences at high penetration rates. The
authors in [45] analyzed the lane capacity for different CAV penetration rates. The lane
capacity was increased by 188.2% with the incremented rates from 0 to 100%. In the
other case, lane capacity was increased from 2046 to 6450 veh/h/ln when the traffic was
composed of CAVs and HDVs, with the CAVs penetration rate of 100%. A similar study
was conducted in [46], where the results showed the increase in the ρc by 37% with the
CAVs penetration rate of 70% and the 42% increase of the operational capacity under ρc.

3.2. Q-Learning Algorithm

QL is an off-policy RL algorithm that learns the best action to apply at any given
environment state. It is considered off-policy because the learning function learns from
actions outside the current policy, like taking random actions, and therefore, a policy is not
needed. The learning ability of the algorithm is based on the hypothesis that by visiting
each state–action pair infinitely many times, the agent’s Q-function converges to an optimal
mapping of states and actions. The agent receives feedback about the effect of the action
taken through rewards or penalties, and each action performed causes a response from the
environment. The main objective of the QL agent is to maximize its received reward for
each state–action pair.

Problems solved using RL algorithms are commonly formulated as Markov Decision
Processes (MDPs). An MDP is composed of a collection of environment states S, a collection
of available actions A, a reward function R(s, a), and a transition function T(s, a, s′)→[0, 1],
which is a probability of moving from one state to another [47]. After the learning pro-
cess has been performed, the obtained Q-function has the highest Q-value in each given
state and is interpreted as the optimal state–action pair. The QL algorithm iteratively
updates the stored Q-values for each state–action pair using the obtained reward from the
environment [48]:

Q∗(st, at)← (1− α)Q(st, at) + α(rt + γ max
a′∈A

Q(st+1, a′)), (1)

where Q(st, at) is the obtained Q-value for the selected state–action pair (st, at) at time step
t; γ is the discount factor that determines the value of the future rewards; rt+1 is the reward
received from the environment for the chosen action at in state st; st+1 is the new state;
and α is the learning rate that determines the update rate of the Q-value in each iteration.

4. Modeling Q-Learning-Based Variable Speed Limit

Modeling of the VSL problem as an MDP can be done by assigning the QL agent to
post proper speed limits [6,7,19,21,23]. The QL agent chooses and activates the calculated
speed limit value for every control time step and is given the feedback (reward) to evaluate
actions that altered the environment state. For each traffic-related environment state st,
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the agent will execute an action at from a set of defined actions A, which are discrete speed
limits to be imposed on the motorway.

This study differs from the classical QL algorithm by implementing two look-ahead
distances (states) that increase the effectiveness of the algorithm application for VSL as
presented in [7,49]. This modification allows the agent to have more insight into how its
actions affect future states and, thus, increases the performance of QL-VSL. This future state
influence is incorporated by using two-step temporal difference λ in the QL algorithm (1)
as shown below:

Q∗(st, at)← (1− α)Q(st, at) + α(st ,at)(rt + λrt+1 + λ2 max
a′∈A

Q(st+2, a′t+2)), (2)

where λ emphasizes distant lookaheads by replacing the γ parameter in the original QL
algorithm. The learning rate α is reduced gradually to deal with the non-deterministic
behavior of traffic while allowing the agent to converge to near-optimal Q-values for each
pair of states and actions [23]. The learning rate α is changed according to:

α(s,a) =

(
1

1 + nv(s,a)

)θ

+ c, (3)

where nv(s,a) represents the number of visits for each state–action pair, and θ is the con-
stant that determines the update rate and is selected by performing a sensitivity analysis.
The larger the θ value is, the more aggressive the learning is for the agent, which in turn
means a lower number of iterations needed to learn the optimal policy, which may affect
the quality of the learning process and calculated Q-values, and c is a constant value of 0.05
to ensure that the learning rate never reaches zero. To allow the agent to balance between
exploration and exploitation, the ε− greedy policy was applied. The parameter ε ranges
from 1 to 0 and was updated using:

ε =

−
25
105 · n2 + 1, if n < 50

e
1−n
30 + c, if n ≥ 50

, (4)

where n represents the current simulation number. During the learning process, the ε
parameter was gradually decreased to allow more exploitation in the later stages. The pa-
rameter ε was modeled to decrease the exploration phase as the Q-values for state–action
pairs are updated. Before the simulations are started, all Q-values are initialized to 0.
Thus, the ε value is very high at the beginning and is decreased by a parabolic formula
from simulation 1 to 50 to maintain a higher probability of exploration. By doing so, we
ensure that all the state–action pair Q-values have at least a starting value after performing
random actions. After 50 simulations, ε was exponentially reduced until it converged
to the value of c (0.05). This allowed the agent to have a slight chance of exploration in
later stages of learning. The parameters of Equation (4) were obtained by performing
multiple simulation scenarios with various ε parameter values and observing the effect on
QL-VSL convergence on our simulation framework and traffic demand. Table 1 shows all
the parameter combinations used in this study.

Table 1. Combination of tested QL values.

λ 0.7 0.8 0.9

θ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

4.1. State–Action Space Description

In the case of applying QL to the traffic environment, the state–action space needs to
be accurately defined. The environment in this study was the simulated urban motorway,
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from which we can derive macroscopic parameters from the microscopic measurements.
More details are available in our previous study [7]. Traffic density (ρ) measured at the
mainstream in the area of interest placed near the second on-ramp r2 was defined as state
representation. By discretizing the measured ρ, 14 possible states were defined, where
ρ ≤ 10 veh/km/ln is state 1, to ρ > 62 veh/km/ln as state 14 (Figure 1). The increment of
discretization was smaller near the ρc, to allow VSL a more fine-tuned control to maximize
the performance and try to retain traffic density near the ρc value since traffic flow (q) has
the highest theoretical value close to ρc.

Figure 1. Discretized state representation [7].

The set of available actions was defined as A = {60, 70, 80, 90, 100, 110, 130} km/h.
The set of actions was additionally limited in a way that did not allow changes exceeding
30 km/h to prevent large oscillations between consecutive imposed speed limits to ensure
safety and stability.

4.2. Analyzed Reward Functions

As mentioned before, the agent receives information about the environment through
rewards or penalties through feedback from the environment. After each action is executed,
the agent waits for the environment to respond in the form of a reward. The goal of
the QL agent is to maximize its received reward for each possible pair of states and
actions. We analyzed two reward functions: proportional TTS and proportional total
energy consumption (TEC).

4.2.1. Proportional Total Time Spent Reward

The first analyzed reward was set to be as measured proportional TTS in the area of
interest according to:

rTTS =
103

N
∑

i=1
TTSi

, (5)

where i is the index of the vehicle that traveled through the area of interest in the control
time step, and N is the total number of vehicles that traveled through the area of interest.
The reward function is proportional to the constant number 103 since the goal is to minimize
the TTS of all vehicles that pass through the area of interest. Setting the reward this
way reduces the time spent on N vehicles in the area of interest, therefore relieving the
congestion as quickly as possible. For this research, we selected θ and λ values of 0.9
and 0.9, respectively, based on the extensive sensitivity analysis made. The results for
each combination of those QL hyper-parameters can be found in Table A1 in Appendix A.
Those selected values provided the best-combined results for all seven CAV penetration-
rate scenarios.
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4.2.2. Proportional Total Energy Consumption Reward

The second analyzed reward was set to be the obtained proportional TEC for the entire
analyzed motorway section measured in kWh. The EEC of CAVs is measured in kWh,
and FC for HDVs is measured in liters, so the reward function includes the conversion of
FC [l] to kWh, and it was calculated according to:

rTEC =
103

m
∑

i=1
(k · FCi) +

n
∑

j=1
EECj

, (6)

where the constant k was set to 10.38 based on the share of gasoline-propelled engines
(0.43), and the share of diesel-propelled engines (0.57) multiplied with the conversion
values of liters of gasoline (9.61) and diesel (10.96) to kWh, respectively, according to to [50].
The value i represents the index of a particular HDV that traveled through the motorway
section, and j represents the index of electric CAV that traveled through the motorway
section. The values m and n represent the total number of HDVs and electric CAVs that
traveled through the motorway section, respectively. The reward function was again set
to be proportional to the constant number 103 since the goal was to minimize the TEC
of all vehicles that passed through the entire motorway section. Setting the reward this
way minimizes the TEC of m and n vehicles in the analyzed motorway section, therefore
reducing both FC and EEC. For this research, we selected θ and λ values of 0.8 and
0.7, respectively. The same sensitivity analysis of QL hyper-parameters can be found in
Table A1 in Appendix A.

5. Simulation Setup
5.1. Simulation Model

The performance of the proposed QL-VSL control approach with both reward func-
tions was verified on a synthetic motorway segment model obtained from [7] and shown
in Figure 2. The constructed model was 8 km long and contained two on-ramps (r1 and r2)
and one off-ramp (s1). Note that Figure 2 is not to scale with the actual model. The func-
tional VSL area was 500 m long, while the acceleration area was 100 m long and placed
downstream and adjacent to the VSL area. The application of the acceleration area was
demonstrated to be useful in [3]. Microscopic traffic-simulator simulation of urban mobility
(SUMO) was used to create and perform microscopic traffic simulations [51]. The TraCI
interface in SUMO was used to connect SUMO with a Python script thatallowed for the
direct control of the simulation while also allowing the required traffic and ecological
measurements to be recorded. Each simulation run lasted for 2 h, while the control time
step was set to a 5 min interval.

Figure 2. Simulation model and framework [7].

The following key HDV and CAV parameters were calibrated in the SUMO simula-
tor [52]. The driving imperfection parameter σ was set to 0.7 and 0 for HDVs and CAVs,
respectively, where the value 0 denotes perfect driving. The SUMO parameter SpeedDev
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represented the speed limit deviation of vehicles and was set to 0.2 and 0.05 for HDVs
and CAVs, respectively. Both vehicle classes parameter SpeedFactor was set to 1, which
determines the desired driving speed multiplied by the speed limit on a given motorway
segment. The parameter τ expressed in [s] was set to 1.1 and 0.5 for HDVs and CAVs,
respectively, which represents each vehicle’s desired (minimum) time headway. The pro-
posed QL-VSL approach was applied separately for each scenario. Therefore, its Q-function
was learned independently for each scenario. The HDVs share in mixed flows were mod-
eled in a constant ratio of 43% of gasoline-propelled vehicles and 57% of diesel-propelled
vehicles with a Euro 4 emission norm, respectively, according to data collected by the
Croatian Bureau of Statistics [13]. CAVs electric propulsion and vehicle parameters were
modeled according to the available data from the mid-ranged electric vehicle from the
car manufacturer Volkswagen model ID3 PRO [53]. Those parameters include the battery
capacity, which was set to 77 kWh; the engine power set to 150 kW; the vehicle mass set
to 1850 kg; and the air-drag coefficient set to 0.27. The in-built SUMO emission model
PHEMlight was adopted to gather the needed vehicle emissions [54,55].

5.2. Traffic Scenarios

Seven simulation scenarios were formulated by increasing the CAV penetration rate
from 0 to 100%, creating various mixed traffic flows. As mentioned, the ratio of gasoline-
and diesel-propelled vehicles in the decreasing share of HDVs was the same in all scenarios.
Traffic demand was designed in such a way to imitate increasing traffic demand during
peak hours, as shown in Figure 3.

Figure 3. Traffic demand on the mainstream and on-ramps during simulation [7].

Traffic measurements of ρm, vm, and MTT used for state representation and controller
evaluation were obtained every 5 (s) during the control-time step. The TTS was measured
cumulatively for every simulation step (0.5 s) during the simulation, while for other
measurements, the mean was calculated for each control time step. TTS and MTT were
measured on the entire modeled motorway segment, while ρm and vm were measured only
in the area of interest shown in Figure 2. FC, EEC, CO2, CO, NOx, and PMx were measured
for each vehicle every simulation step. It is important to note that CO2, CO, NOx, and PMx
were measured only from the exhaust emissions, and other factors that potentially affect
these measurements were not taken into account.

6. Results

This study compared the results to a baseline simulation without any VSL control
(speed limit constant 130 km/h). Then, 2000 simulations for each defined scenario were
performed to learn the QL-VSL policy. The converging trend of the QL-VSL policy was
visible even after 1000 simulations. Additionally, the results were compared with the
RB-VSL algorithm, which was modeled according to the highway capacity manual (HCM)-
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defined Levels of Service (LoS) [56] and density measurements [57]. Thus, the speed limit
values were set according to [7]:

vVSL =



130, 0 < ρ ≤ 16
110, 16 < ρ ≤ 23
100, 23 < ρ ≤ 26
90, 26 < ρ ≤ 30
80, 30 < ρ ≤ 38
70, 38 < ρ ≤ 45
60, ρ > 45

, (7)

where vVSL is the speed limit expressed in km/h, and ρ is density expressed in veh/km/ln.
The set of available actions for RB-VSL in a particular control-time step was also limited not
to exceed 30 km/h between two consecutive control-time steps. For each LoS, the speed
limit was preset so that when the density reached the threshold for a specific LoS, a different
speed limit was set for each control-time step.

For example, the best LoS A had a density threshold of 16 veh/km/ln and a speed
limit of 130 km/h, while the worst LoS F had a density threshold of 45 veh/km/ln and
a minor possible speed limit of 60 km/h. In all of the analyzed control strategies and
baseline, a VMS was used to post speed limits in the scenario with 0% of CAVs since the
traffic flow had HDVs only. The other scenarios that include CAVs in the mixed traffic
flow utilized CAVs as VSL speed-limit actuators without a regular VMS to mimic future
mixed traffic flows. The results summarized in Table 2 show the obtained results for the
reward function being proportional TTS in the area of interest. In contrast, Table 3 shows
the obtained results for the reward function being proportional TEC.

Table 2. TTS reward results.

Scenario
(% CAVs)

Control
Strategy

TTS
(veh·h)

MTT
(s)

Mean vm
(km/h)

Mean ρm
(veh/km/ln)

TEC
(MWh)

EEC
(MWh)

FC
(l)

CO2
(kg)

CO
(kg)

NOx
(kg)

PMx
(kg)

Baseline 790.4 368.7 59.3 38.6 50.64 - 4879.0 11,973.0 139.8 35.32 0.96
0 RB-VSL 779.7 360.9 60.8 37.7 50.03 - 4819.9 11,828.9 139.4 35.13 0.95

QL-VSL 778.2 360.4 59.7 38.1 49.86 - 4803.0 11,786.1 138.7 34.93 0.95

Baseline 725.2 344.0 65.6 35.2 46.03 1.35 4304.7 10,551.5 130.8 31.82 0.86
10 RB-VSL 718.6 343.6 64.5 36.1 45.71 1.34 4274.7 10,478.8 130.7 31.69 0.85

QL-VSL 709.7 342.9 66.1 34.3 45.47 1.34 4252.0 10,422.1 130.4 31.57 0.85

Baseline 687.8 327.4 72.1 33.5 38.32 4.04 3301.9 8087.0 105.8 24.80 0.67
30 RB-VSL 687.8 327.1 72.1 33.5 38.07 4.02 3281.2 8035.3 104.5 24.49 0.66

QL-VSL 656.5 317.3 75.9 30.2 37.31 4.02 3207.4 7851.3 105.5 24.21 0.65

Baseline 618.2 302.4 86.1 25.7 30.01 6.76 2239.8 5478.6 76.2 17.07 0.46
50 RB-VSL 613.9 299.7 86.6 25.4 30.07 6.76 2246.0 5490.2 77.7 17.08 0.46

QL-VSL 611.8 299.4 86.2 25.3 30.00 6.78 2237.2 5468.6 77.5 16.98 0.46

Baseline 574.0 276.0 95.0 23.4 23.36 9.67 1319.7 3224.1 46.7 10.09 0.27
70 RB-VSL 571.9 273.5 94.9 23.6 23.35 9.75 1310.6 3200.8 47.1 10.00 0.27

QL-VSL 560.9 271.0 96.6 22.1 23.13 9.71 1292.7 3157.5 45.9 9.87 0.26

Baseline 489.0 235.7 108.9 18.2 17.17 12.89 412.4 1006.8 14.9 3.14 0.08
90 RB-VSL 491.2 236.6 109.7 17.9 17.13 12.87 410.8 1001.9 15.1 3.09 0.08

QL-VSL 487.5 235.2 109.5 17.8 17.16 12.93 407.8 993.9 15.3 3.06 0.08

Baseline 411.6 206.3 121.2 12.6 14.63 14.63 - - - - -
100 RB-VSL 411.6 206.3 121.2 12.6 14.63 14.63 - - - - -

QL-VSL 411.6 206.3 121.2 12.6 14.63 14.63 - - - - -
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Table 3. TEC reward results.

Scenario
(% CAVs)

Control
Strategy

TTS
(veh·h)

MTT
(s)

Mean vm
(km/h)

Mean ρm
(veh/km/ln)

TEC
(MWh)

EEC
(MWh)

FC
(l)

CO2
(kg)

CO
(kg)

NOx
(kg)

PMx
(kg)

Baseline 790.4 368.7 59.3 38.6 50.64 - 4879.0 11,973.0 139.8 35.32 0.96
0 RB-VSL 779.7 360.9 60.8 37.7 50.03 - 4819.9 11,828.9 139.4 35.13 0.95

QL-VSL 766.8 356.4 60.9 37.0 49.56 - 4774.7 11,717.2 138.9 34.90 0.94

Baseline 725.2 344.0 65.6 35.2 46.03 1.35 4304.7 10,551.5 130.8 31.82 0.86
10 RB-VSL 718.6 343.6 64.5 36.1 45.71 1.34 4274.7 10,478.8 130.7 31.69 0.85

QL-VSL 714.0 341.7 65.2 35.1 45.67 1.33 4271.8 10,468.4 131.6 31.71 0.85

Baseline 687.8 327.4 72.1 33.5 38.32 4.04 3301.9 8087.0 105.8 24.80 0.67
30 RB-VSL 687.8 327.1 72.1 33.5 38.07 4.02 3281.2 8035.3 104.5 24.49 0.66

QL-VSL 659.3 319.3 75.4 30.7 37.30 4.04 3204.4 7858.2 105.7 24.16 0.65

Baseline 618.2 302.4 86.1 25.7 30.01 6.76 2239.8 5478.6 76.2 17.07 0.46
50 RB-VSL 613.9 299.7 86.6 25.4 30.07 6.76 2246.0 5490.2 77.7 17.08 0.46

QL-VSL 613.1 299.6 86.7 25.2 29.94 6.78 2232.1 5458.1 76.1 16.99 0.46

Baseline 574.0 276.0 95.0 23.4 23.36 9.67 1319.7 3224.1 46.7 10.09 0.27
70 RB-VSL 571.9 273.5 94.9 23.6 23.35 9.75 1310.6 3200.8 47.1 10.00 0.27

QL-VSL 551.5 266.9 101.4 19.4 23.13 9.75 1289.0 3146.7 46.8 9.87 0.26

Baseline 489.0 235.7 108.9 18.2 17.17 12.89 412.4 1006.8 14.9 3.14 0.08
90 RB-VSL 491.2 236.6 109.7 17.9 17.13 12.87 410.8 1001.9 15.1 3.09 0.08

QL-VSL 481.6 233.1 110.8 17.1 17.12 12.93 403.4 983.2 14.8 3.02 0.08

Baseline 411.6 206.3 121.2 12.6 14.63 14.63 - - - - -
100 RB-VSL 411.6 206.3 121.2 12.6 14.63 14.63 - - - - -

QL-VSL 411.6 206.3 121.2 12.6 14.63 14.63 - - - - -

Figure 4 shows the convergence of the main objective for respective reward functions:
proportional TTS (Figure 4a) and proportional TEC (Figure 4b). Both figures show the
representative scenario of 30% of the CAV penetration rate, while all other scenarios behave
similarly regarding the convergence of analyzed reward functions. The TTS for the QL-VSL
control strategy converged to 657.8 veh·h after approximately 1500 training episodes and
continued to drop slowly. On the other hand, the TEC for the QL-VSL control strategy
converged to 37.3 MWh after 1600 training episodes but was still fluctuating and could be
potentially reduced further after more training episodes were performed.

(a) TTS (b) TEC

Figure 4. The convergence of TTS and TEC during simulations.

The results for QL-VSL with rTTS reward function shown in Table 2 indicate that
both TTS and MTT decreased significantly by just introducing electric CAVs that in-
herently have better driving characteristics. For the low CAV-penetration-rate values,
the improvements in QL-VSL were more pronounced. The results indicate that for the
0% CAV penetration rate scenario, both TTS and MTT improved by 1.55% and 2.27%,
respectively. Compared to the baseline scenario, RB-VSL improved TTS and MTT by 1.36%
and 2.32%, respectively. The mixed traffic-flow scenario with a low 10% CAV penetration is
highlighted since it is more probabilistic to appear in the near future. Both TTS and MTT
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improved in the 10% CAV scenario by 2.13% and 0.33%, respectively, compared to baseline.
The largest improvements for QL-VSL were measured for the scenario with a 30% CAV
penetration rate. QL-VSL managed to reduce TTS and MTT by 4.55% and 3.1% compared
to the baseline scenario, respectively. Furthermore, mean ρm was significantly improved
by 9.89%, while FC and EEC were improved by 2.86% and 0.51%, respectively, compared
to the baseline scenario. Emissions of CO2, CO, NOx, and PMx were reduced by 2.91%,
0.27%, 2.4%, and 2.3%, respectively.

The results for QL-VSL with the rTEC reward function shown in Table 3 also managed
to improve all macroscopic traffic parameters and exhaust gas emissions, despite the focus
of the reward function being TEC, FC, and EEC. For the low CAV-penetration-rate values,
the improvements in QL-VSL were more pronounced. As the results indicate for the 0%
CAVs, TEC and FC were improved by 2.14%, while RB-VSL improved TEC and FC by
1.21% compared to the baseline scenario. The QL-VSL for the mixed traffic-flow scenario
with 10% of CAVs improved TEC, FC, and EEC by 0.78%, 0.76%, and 1.22%, respectively,
compared to baseline. The largest improvements for QL-VSL were measured for the
scenario with a 30% CAV penetration rate. QL-VSL managed to reduce TEC, FC, and EEC
by 2.65%, 2.95%, and 0.04% compared to the baseline scenario, respectively. Furthermore,
the mean ρm was significantly improved by 8.44%, while TTS and MTT were improved by
4.14% and 2.47%, respectively, compared to the baseline scenario. Emissions of CO2, CO,
NOx, and PMx were reduced by 2.83%, 0.12%, 2.58%, and 2.3%, respectively.

7. Discussion

The improvements in TTS, MTT, mean vm, and mean ρm under different CAV-
penetration-rate scenarios are shown in Figure 5. The results indicate that both TTT and
MTT decreased significantly by introducing CAVs into the existing traffic flow, creating
mixed traffic flows (visible in Figure 5a,b). This is due to the improved driving charac-
teristics of CAVs compared to HDVs. The results for QL-VSL with rTTS performed better
regarding the reduction in TTS for scenarios with 10%, 30%, and 50% CAV-penetration
rates, while QL-VSL with rTEC performed better in the rest of the scenarios, excluding the
scenario with 100% CAVs. The results for QL-VSL with rTTS performed better regarding the
reduction in MTT for scenarios with 30% and 50% CAV penetration rates, while QL-VSL
with rTEC performed better in the rest of the scenarios, excluding the scenario with 100%
CAVs. On the other hand, RB-VSL managed to outperform QL-VSL with both reward
functions in mean vm for scenario 0% CAVs and QL-VSL with rTTS reward function in
scenarios with 50% and 90% CAV penetration rates (visible in Figure 5c).

The results for QL-VSL were most significant for the measured mean ρm in the area of
interest. The obtained mean ρm results for QL-VSL with reward function rTTS for a scenario
with 30% CAVs was 30.2 veh/km/ln, while the baseline measurement was 33.5 veh/km/ln,
with an improvement of 9.89%. QL-VSL with the reward function rTTS managed to improve
mean ρm significantly for the scenario with 90% CAVs by 17.22% from 23.4 veh/km/ln to
19.4 veh/km/ln compared to the baseline scenario (visible in Figure 5d).

The results of QL-VSL for both reward functions regarding EEC, FC, CO2, CO,
NOx, and PMx under different electric CAV-penetration-rate scenarios are shown in
Tables 2 and 3. The results indicate that all exhaust gas emissions inherently decreased sig-
nificantly by introducing CAVs into the mixed traffic flow since they have an electric motor
rather than gasoline or diesel fuel. The results for QL-VSL with rTEC performed better
regarding the reduction in TEC for scenarios with 0%, 30%, 50%, and 90% CAV penetration
rates, while QL-VSL with rTEC performed better in the scenario with 10% CAVs, excluding
the scenarios with 70% and 100% CAV penetration rates. It is important to note that TEC
decreased significantly just by introducing electric vehicles (CAVs) since they have greater
energy efficiency (≈93% [58]) as opposed to gasoline and diesel HDVs (≈40–50% [59]).
The result ofthe TEC measurements for the baseline no-control strategy was reduced from
50.66 MWh for the 0% to 14.63 MWh for 100% CAV-penetration-rate scenario.
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Figure 5. Comparison of QL-VSL reward functions rTTS and rTEC impact on macroscopic traffic
parameters.

The results for QL-VSL with rTEC performed better regarding the reduction in FC
for scenarios with 0%, 30%, 50%, 70%, and 90% CAV penetration rates, while QL-VSL
with rTEC performed better in a scenario with 10%, excluding the scenario with a 100%
CAV penetration rate. On the other hand, the EEC was worsened in scenarios with 50%,
70%, and 90% CAV penetration rates for both reward functions, which means that the
QL-VSL with reward function rTEC prioritized the reduction in FC rather than EEC, which
correlates well with the general rTEC reward function calculation according to Equation (6).
This is due to the energy value of one liter of gasoline and one liter of diesel having a high
energy value. HDVs have much lower energy efficiency than electric CAVs.

The QL-VSL results for exhaust gas emissions of CO2, NOx, and PMx were all im-
proved for all scenarios, excluding the scenario with a 100% CAV penetration rate. Both
QL-VSL reward functions outperformed baseline scenarios and RB-VSL, with QL-VSL
with reward function rTEC having slightly better performance. The exception for exhaust
gas emissions can be seen for CO measurements, where QL-VSL with reward function
rTEC under-performed for scenarios with 10%, 30%, 50%, 70%, and 90% CAV penetration
rates compared to the RB-VSL. QL-VSL with reward function rTTS under-performed for
scenarios with 30%, 50%, and 90% CAV penetration rates compared to the RB-VSL.

One key observation is that for a scenario with a 100% CAV penetration rate, all
the analyzed combinations of QL hyper-parameters, reward functions, and the RB-VSL
achieved the same results as the baseline scenario with no control. This indicates that the
introduction of any kind of VSL control for this simulated traffic demand is obsolete.

Regarding the convergence of both reward functions, it was observed that the QL-VSL
with reward function rTTS converges faster than the rTEC criteria. Furthermore, QL-VSL
with reward function rTTS seems to be more stable and less fluctuating than the rTEC, which
could indicate that even more training episodes are needed to stabilize and converge.
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8. Conclusions

In this study, we analyzed QL-VSL with two different reward functions rTTS and
rTEC impact on macroscopic traffic parameters, total energy consumption, and exhaust
gas emissions for different CAV-penetration-rate traffic scenarios. We used a synthetic
motorway model, calibrated engine models, and electric-vehicle models based on real-
world data. Furthermore, vehicle parameters were modeled to behave realistically with
adequate simulation parameters in the SUMO microscopic simulator. The obtained re-
sults indicate that the importance of separate VSL control may become obsolete under a
very high CAV-penetration-rate scenario. At least for the simulated traffic demand and a
general conclusion, further analysis is needed. Furthermore, the significance of any kind
of VSL control approach was more influential with low CAV-penetration-rate scenarios.
Both QL-VSL reward functions managed to outperform the baseline no-control scenar-
ios and managed to improve macroscopic traffic parameters, total energy consumption,
and exhaust gas emissions.

The main objective that was achieved in this study was the overall reduction inTEC,
FC, and exhaust gas emissions using QL-VSL that help to move towards sustainable
traffic in urban areas. Furthermore, introducing emerging technologies like connected
vehicles, AVs, and CAVs that form mixed traffic flows takes momentum and drives the
implementation of fully autonomous driving. In that sense, the results of this study
contribute to the development of control methods that are contributing to energy efficiency
and lead to more sustainable traffic for future mixed traffic flows.

One limitation of this study is, as mentioned before, that the posted speed limit
information was received only by CAVs. At the same time, HDVs have to adapt the
speed according to the surrounding CAVs, which may cause the degradation of traffic
safety. The safety aspect will be examined in future work by determining the traffic-flow
speed-harmonization level. Furthermore, multiple control-time step intervals will also be
considered as they can significantly influence the QL-VSL performance and robustness.
Additionally, various traffic-demand scenarios will be analyzed from the collected real-
world data.
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Abbreviations
The following abbreviations are used in this manuscript:

AV Autonomous Vehicle
CAV Connected Autonomous Vehicle
DQL Deep Q-Learning
EEC Electric Energy Consumption
FB Full Bayes
FC Fuel Consumption
HDV Human-Driven Vehicle
I2V Infrastructure-to-Vehicle
LoS Level of Service
MDP Markov Decision Process
MTT Mean Travel Time
OBU On-Board Unit
QL Q-Learning
QL-VSL Q-Learning Variable Speed Limit
RB-VSL Rule-Based Variable Speed Limit
RL Reinforcement Learning
RSU Road Side Unit
SUMO Simulation of Urban Mobility
TEC Total Energy Consumption
TT Travel Time
TTS Total Time Spent
TTT Total Travel Time
VMS Variable Message Sign
VSL Variable Speed Limit

Appendix A

The following Table A1 represents the results of all combinations of QL hyper-
parameters θ and λ obtained for the reward functions rTTS and rTEC. The best combination
of those hyper-parameters is chosen based on the sum of improvements of TTS for QL-VSL
with reward function rTTS and TEC for QL-VSL with reward function rTEC compared to
baseline for all CAV penetration rate scenarios.

Table A1. Sensitivity analysis of TEC reward results.

θ λ Scenario (% CAVs) rTTS
TTS (veh·h)

rTEC
TEC (MWh)

0 759.5 49.565

10 727.7 45.482

30 678.9 37.742

0.7 50 608.7 29.984

70 560.2 23.145

90 479.1 17.114

100 411.6 14.630

0 779 50.003

10 717.3 45.487

30 673.1 37.523

0.7 0.8 50 606.2 29.977

70 552.4 23.342

90 484.9 17.121

100 411.6 14.630
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Table A1. Cont.

θ λ Scenario (% CAVs) rTTS
TTS (veh·h)

rTEC
TEC (MWh)

0 771.3 50.170

10 728.8 45.474

30 664.2 37.450

0.9 50 613.6 29.982

70 552 23.223

90 487.3 17.108

100 411.6 14.630

0 778.1 49.561

10 722.5 45.671

30 682.8 37.301

0.7 50 611.1 29.945

70 559.8 23.133

90 484.9 17.122

100 411.6 14.630

0 777.8 49.460

10 714.3 45.691

30 669.6 37.412

0.8 0.8 50 616.6 29.988

70 549.1 23.127

90 484.9 17.132

100 411.6 14.630

0 773.9 49.378

10 724.8 45.489

30 675.1 38.031

0.9 50 612.8 29.990

70 559.5 23.122

90 485.8 17.108

100 411.6 14.630

0 771.3 50.074

10 723.6 45.479

30 671.5 37.428

0.7 50 613.5 29.985

70 560.3 23.165

90 482.9 17.091

100 411.6 14.630

0 737 49.932

10 724.7 45.480

30 671.2 37.677

0.9 0.8 50 614.4 29.986

70 571.5 23.401

90 480.4 17.085

100 411.6 14.630
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Table A1. Cont.

θ λ Scenario (% CAVs) rTTS
TTS (veh·h)

rTEC
TEC (MWh)

0 770.6 50.660

10 709.7 45.494

30 656.5 37.777

0.9 50 611.8 29.988

70 560.9 23.119

90 487.5 17.104

100 411.6 14.630
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16. Gregurić, M.; Ivanjko, E.; Korent, N.; Kušić, K. Short Review of Approaches for Variable Speed Limit Control. In Proceedings

of the International Scientific Conference on Science and Transport Development (ZIRP 2016), Zagreb, Croatia, 4 April 2016;
pp. 41–52.

17. Abdel-Aty, M.; Yu, R. State-of-practice of variable speed limit systems. In Proceedings of the 20th ITS World Congress, Tokyo,
Japan, 14–18 October 2013.

18. Tafti, M. An investigation on the approaches and methods used for variable speed limit control. In Proceedings of the 15th World
Congress on Intelligent Transport Systems and ITS America’s 2008 Annual Meeting, New York, NY, USA, 16–20 November 2008;
pp. 901–912.

19. Walraven, E.; Spaan, M.T.; Bakker, B. Traffic flow optimization: A reinforcement learning approach. Eng. Appl. Artif. Intell. 2016,
52, 203–212. [CrossRef]

http://doi.org/10.1186/s12544-018-0294-8
http://dx.doi.org/10.1061/(ASCE)0733-947X(2007)133:2(96)
http://dx.doi.org/10.1109/TITS.2014.2374167
http://dx.doi.org/10.3390/app10144917
http://dx.doi.org/10.3390/app11062574
http://dx.doi.org/10.1109/MED.2018.8442986
http://dx.doi.org/10.1109/MED51440.2021.9480215
http://dx.doi.org/10.1016/j.trc.2018.02.012
http://dx.doi.org/10.1109/TIV.2018.2804161
http://dx.doi.org/10.3965/j.issn.1934-6344.2009.03.001-016
http://dx.doi.org/10.1109/TITS.2017.2766682
http://dx.doi.org/10.1109/UPINLBS.2018.8559744
https://www.dzs.hr/Hrv/publication/FirstRelease/results.asp?pString=Transport%20i%20komunikacije&pSearchString=%Transport%20i%20komunikacije%
https://www.dzs.hr/Hrv/publication/FirstRelease/results.asp?pString=Transport%20i%20komunikacije&pSearchString=%Transport%20i%20komunikacije%
http://dx.doi.org/10.1179/1942787514Y.0000000053
http://dx.doi.org/10.3141/2423-03
http://dx.doi.org/10.1016/j.engappai.2016.01.001


Sustainability 2022, 14, 932 19 of 20

20. Li, Z.; Xu, C.; Pu, Z.; Guo, Y.; Liu, P. Reinforcement Learning-Based Variable Speed Limits Control to Reduce Crash Risks near
Traffic Oscillations on Freeways. IEEE Intell. Transp. Syst. Mag. 2020, 13, 64–70. [CrossRef]

21. Wang, C.; Zhang, J.; Xu, L.; Li, L.; Ran, B. A New Solution for Freeway Congestion: Cooperative Speed Limit Control Using
Distributed Reinforcement Learning. IEEE Access 2019, 7, 41947–41957. [CrossRef]
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