
����������
�������

Citation: Gocheva-Ilieva, S.; Ivanov,

A.; Stoimenova-Minova, M.

Prediction of Daily Mean PM10

Concentrations Using Random

Forest, CART Ensemble and Bagging

Stacked by MARS. Sustainability 2022,

14, 798. https://doi.org/10.3390/

su14020798

Academic Editors: Baojie He,

Ayyoob Sharifi, Chi Feng and

Jun Yang

Received: 8 December 2021

Accepted: 7 January 2022

Published: 11 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Prediction of Daily Mean PM10 Concentrations Using Random
Forest, CART Ensemble and Bagging Stacked by MARS
Snezhana Gocheva-Ilieva * , Atanas Ivanov and Maya Stoimenova-Minova

Department of Mathematical Analysis, Faculty of Mathematics and Informatics, Paisii Hilendarski University of
Plovdiv, 4000 Plovdiv, Bulgaria; aivanov@uni-plovdiv.bg (A.I.); mstoimenova@uni-plovdiv.bg (M.S.-M.)
* Correspondence: snow@uni-plovdiv.bg

Abstract: A novel framework for stacked regression based on machine learning was developed to
predict the daily average concentrations of particulate matter (PM10), one of Bulgaria’s primary health
concerns. The measurements of nine meteorological parameters were introduced as independent
variables. The goal was to carefully study a limited number of initial predictors and extract stochastic
information from them to build an extended set of data that allowed the creation of highly efficient
predictive models. Four base models using random forest, CART ensemble and bagging, and their
rotation variants, were built and evaluated. The heterogeneity of these base models was achieved
by introducing five types of diversities, including a new simplified selective ensemble algorithm.
The predictions from the four base models were then used as predictors in multivariate adaptive
regression splines (MARS) models. All models were statistically tested using out-of-bag or with
5-fold and 10-fold cross-validation. In addition, a variable importance analysis was conducted. The
proposed framework was used for short-term forecasting of out-of-sample data for seven days. It
was shown that the stacked models outperformed all single base models. An index of agreement IA
= 0.986 and a coefficient of determination of about 95% were achieved.

Keywords: air pollution; machine learning; stacking; rotation ensemble; bagging; selective ensemble;
diversity strategy

1. Introduction

Nowadays, environmental protection is one of the main problems that require complex
solutions. Air pollution by harmful aerosols and particulates has a strong negative impact
on human health, causing various diseases, according to a number of medical studies [1–3].
In particular, the concentrations of particulate matter with a diameter of 10 microns or less
(PM10) can harm the lung tissues and throat, aggravate asthma, and increase respiratory
illness. To reduce pollution in the European Union, regulations and measures were adopted
in 2008 to control the concentrations of the most harmful air pollutants [4,5]. As a member
of the EU, Bulgaria implements legal measures for the preservation of atmospheric clean
air. Even though the last 3–4 years have seen a good reduction in harmful pollution, it is
still above the prescribed limits in many cities. Further improvement requires continued
monitoring and careful study of the air quality state in order to achieve the sustainable
development of a healthy urban atmosphere on a global and local scale.

The availability of a large volume of data regarding pollutants over time enables the
performance of analyses to extract essential information about the interactions between
various factors that determine the level of pollution. Meteorological changes are among the
important conditions for the formation and transport of pollution and cannot be ignored in
this type of analysis [6,7]. Hence, mathematical and statistical modeling of the respective
time series data has an important function in providing reliable tools for analysis and
forecasting.

Two types of regression models for forecasting time series data can be systematized
from the available literature: parametric and nonparametric, with the latter covering
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mainly computer-based methods with machine learning (ML). Parametric methods include
multiple linear regression (MLR), the linear mixed model, the Box–Jenkins autoregressive
integrated and moving average (ARIMA), numerical sensitivity analysis, and more. These
methods provide global models, simultaneously describing all data with a common preset
and fixed dependence type. The publications in this field for univariate and multivariate
time series, including those for Bulgaria, can be found in [8–15].

The ML methods are based on a data-driven approach. The algorithm of a given
ML method extracts a model closely related to the specific empirical data and can vary
significantly from one dataset to another. Widely popular among ML-based methods for
time series of air pollutants are as follows: artificial neural network (ANN), autoregressive
neural network, deep learning, random forest (RF), support vector machine (SVM), decision
trees, and more. The applications of this group of methods for time series of air pollutants
and different hybrid applications are numerous. Of these, we will specify [7,15–20] and
review papers [21,22]. Sophisticated models of time-series of air pollutants are built using
deep learning, including the long short-term memory (LSTM) approaches, which involve
deep layers and massive neurons to achieve superior descriptive ability on the training set
(see for instance [23,24]).

Over the years, in the field of ML, growing attention has been directed towards
ensemble methods for regression. These are characterized by the construction of numerous
ensemble component learners using the same algorithm and combination of the resulting
outcomes. The most frequently used techniques include resampling, bagging, and boosting.
When bagging, the trees in the ensemble are parallel and independent, and when boosting,
they are sequential. The main advantage of the ensemble methods is that they lead to a
dramatic decrease in test set errors and a significant reduction in variance [25]. In particular,
ensemble tree methods, such as RF and bagged classification and regression trees, were
used in [16] to study the spatial distribution of PM10 concentrations, and bagged trees and
RF models for PM2.5 forecasting were built in [26]. More ensemble methods, including the
tree-based, are considered in [26–31].

Despite the good qualities of ensemble methods based on weak learners, random
subspaces, and randomness in the algorithms, the created models can be unstable and
lacking in predictive power [27,32,33]. Selective ensemble algorithms are suggested to
improve the generalization ability of the ensemble models. Overall, the goal is to identify
and remove the weak learners, which reduces the performance of the ensemble. This allows
the creation of a new ensemble that is not only smaller in size, but also more accurate
than ensembles generated by non-selective algorithms. Under development are different
approaches for the construction of selective ensembles in the case of decision trees, for
ANN, or for other types of learners that use multi-objective techniques, statistical measures,
pruning techniques, etc. [27,32–34].

Recently, a special class of ML approaches applying the stacked generalization paradigm
has gained popularity. Stacked generalization (stacking) is a type of meta-modeling used
to combine the predictions of several heterogeneous ML models using another learning
algorithm to learn and predict which combinations of the models generally give better
performance. The idea to combine the predictions of the regression models of time series
data dates back to the 1970s in papers [35,36]. In 1992 Wolpert [37] introduced the term
“stacking” for classification problems, which was also adopted for regression by Breiman
in [38].

In environmental science, stacking methods are still applied relatively rarely. For exam-
ple, time series data of air pollutants are modeled with weighted support vector regression
(SVR), boosting, and chance theory in [39], with Lasso, AdaBoost, XgBoost, and multi-layer
perceptron (MLP) stacked by SVR in [40], and with bagged trees, random subspaces, and
selective techniques in [26]. The current state of ensemble methods, including stacking
approaches, is presented in review papers [27,31].

The main goal of this study was to develop a new approach to the stacked generaliza-
tion paradigm for the prediction of the time series of an air pollutant based on a limited
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number of predictors. A novel stacking framework was designed using the ensemble
methods RF and CART ensemble and bagging (CART-EB) and their rotation variants as
base learners, and multivariate adaptive regression splines (MARS) as a meta-learner. The
proposed approach was applied to model and forecast the average daily concentrations of
PM10, the main ambient air pollutant and concern of health in Bulgarian cities and also in
other European cities and worldwide. The stacking framework was developed as a part of
the cloud Internet of Things (IoT) platform EMULSION [41].

2. Materials and Methods
2.1. Initial Datasets

In the empirical study, time series were used for PM10 and accompanying time series
for the region of the town of Burgas, a typical Bulgarian urban area. The data were taken
from official measurements of the certified automated monitoring station in Dolno Ezerovo
(42.518892, 27.375144) [42] and meteorological time series from [43]. The study area is
located in the large Burgas Bay on the Black Sea, eastern Bulgaria, and includes several
islandless lakes. Lukoil, the largest oil refinery in the Balkans, the Southern industrial zone,
and the Pan-European corridor VIII are in close proximity. The Burgas region has a humid
subtropical climate (Köppen climate classification Cfa) with continental influences. The
average air temperature during the high season is 24 ◦C and the average winter temperature
is about 4–5 ◦C.

An analysis of the status of air quality in the studied area of Burgas shows that the
only problematic pollutant is PM10, reporting exceedances of the established limits. Its
corresponding mean values over the last several years are (in µg/m3): 49.1 (2015), 45.5
(2016), 45.8 (2017), 41.8 (2018), 33.0 (2019), and 36.8 (2020). The mean levels of other harmful
aerosols in the last five years have been relatively low (O3: 48.0 µg/m3; NOx: 9.7 µg/m3

NO: 3.8 µg/m3; NO2: 13.1 µg/m3; CO: 0.4 mg/m3; SO2: 10.6 µg/m3). The PM2.5 values
were measured with a mobile station, and no exceedances were reported. For Bulgaria, this
indicator was relatively low—less than 19 µg/m3 per year [42,44].

The initial data consisted of daily mean concentrations of PM10 over six years and four
months, from 1 January 2015 to 28 April 2021, or a total of N = 2310 days. In addition to
variable PM10, nine meteorological time series were taken into consideration as follows:
MaxT, (◦C)—maximum daily air temperature, MinT, (◦C)—minimum daily air temperature,
WindSpeed, (m/s)—wind speed, Humidity, (%)—relative air humidity, Pressure, (mbar)—
atmospheric pressure, Cloud, (%)—cloud conditions, Rain (cm), Weather$ (categorical), and
WindDir$, (categorical)—wind direction (The categorical variable WinDir$ takes 16 different
values, corresponding to the geographical wind direction. Weather$ assumes the standard
string notions, such as sunny, light rain shower, overcast, blizzard, etc.

The analyses considered the permissible official European and national upper limits
for PM10. They are as follows: average daily mean up to 50 µg/m3, which must not be
exceeded more than 35 times within one calendar year, and 40 µg/m3 on average per
year [4,5]. The prescribed upper limits by the World Health Organization (WHO) for PM10
are 50 µg/m3 daily and 20 µg/m3 annually.

Table 1 shows the descriptive statistics of the initial continuous type data.



Sustainability 2022, 14, 798 4 of 26

Table 1. Descriptive statistics of the initial data for PM10 and meteorological variables.

Statistics
Variable PM10

(µg/m3)
MaxT
(◦C)

MinT
(◦C)

WindSpeed
(m/s)

Humidity
(%)

Pressure
(mbar)

Cloud
(%)

Rain
(cm)

N valid 2175 2310 2310 2310 2310 2307 2310 2310
N missing 135 0 0 0 0 3 0 0

Mean 41.91 17.33 10.79 13.93 70.61 1016.73 34.67 2.02
Median 37.01 17.00 11.00 13.00 71.00 1016.00 26.00 0.00

Std. Deviation 19.223 8.503 7.129 6.464 9.938 6.993 28.73 5.6851
Variance 369.595 72.293 50.827 41.781 98.774 48.901 825.55 32.320
Skewness 1.980 −0.088 −0.169 1.431 −0.166 0.258 0.778 5.155
Kurtosis 8.361 −0.901 −0.794 2.848 −0.415 0.247 −0.538 35.395

Minimum 4.77 −8 −10 2 40.00 990 0.0 0.0
Maximum 248.80 37 25 51 96.00 1040 100.0 69.5

Some problematic values of PM10 were observed. For example, the maximum value
of PM10 in the Burgas region is 248.8 µg/m3, and the mean of PM10 for the six years is
41.91 µg/m3. The extreme value of 248.8 µg/m3 in the period of 26–30 March 2020 was
due to unfavorable weather conditions caused by strong winds and transboundary dust
particles from the Aral Sea region [42]. Since the maximum of PM10 is the only outlier,
this value was substituted with the second largest one. The number of missing values for
PM10 was 135, or about 6.2% of the dataset. All missing data were replaced using linear
interpolation in the modeling process and denoted by the same variable names. In addition,
Table 1 shows some large values of the coefficients of skewness (1.980) and kurtosis (8.361)
for PM10. This could affect the direct application of classical regression methods.

Figure 1 shows the sequence plot of PM10, where the horizontal red line indicates
the permissible upper daily limit of 50 µg/m3 in the European union. Large peaks and
exceedances are observed during the winter months.
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Figure 1. Sequence plot of the measured daily concentrations of PM10 in the Burgas region, Bulgaria.
The horizontal red line indicates the permissible upper daily limit value of 50 µg/m3 for PM10

according to European and national standards.

2.2. Model Assumptions

Every model has its assumptions and limitations. The current study aims to demon-
strate the construction of models for PM10. According to reports from the European agency,
this is Bulgaria’s most problematic pollutant over recent years [44]. Measurements of mete-
orological factors have been used as predictors; however, this does not limit the suggested
approach. If easy retrieval of data regarding other pollutants and factors is possible, their in-
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fluence can be modeled directly. As compensation, the use of lagged variables of PM10 and
meteorological time series includes the stochastic influence of all other factors, including
critical inventory factors, emission intensity, and other measurements or yet-undetermined
factors. We should note that the suggested framework is intended for short-term forecasts
of PM10 levels as a component of mobile applications within a developed cloud IoT plat-
form. For this reason, the study is concentrated on algorithms with a preferably small
initial number of variables.

2.3. Stacking Generalization

On the one hand, stacking can be viewed as a generalization of many ensemble
methods. On the other hand, it can be viewed as a specific combination method that
combines by learning [27]. According to Wolpert’s terminology [37], the original data and
the models constructed for them in the first stage are referred to as level-0 data and level-0
models (or base-learners), respectively. Then, the obtained set of cross-validated predictions
and the second stage learning algorithm are considered as the level-1 data and the level-1
generalizer (or meta-learner), as in [37,38]. The target variable is the same for the two levels.
For this approach, it is believed that a combination of several models outperforms a single
“best” model [45]. It should be noted that the concept of “stacking” assumes a combination
of the results from various algorithms, unlike the concept of the “ensemble method”, where
one algorithm is applied to various subsets. A simplified outline of the idea of stacking is
shown in Figure 2.
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2.4. Proposed Stacking Framework

Following the general guidelines from Section 2.3, we propose a stacking framework
in five steps, as illustrated in Figure 3.

Step 1: Level-0 data

The target variable is PM10—measured PM10 values. However, we use the variable
PM10_7, derived from PM10, where the last seven values are deleted, to validate the
predictive power of the models. In terms of analysis, the considered influencing variables
on the PM10 concentrations are categorized into four groups of predictors—environmental
parameters (meteorological variables), rotated principal component variables (PCs), lagged
variables (of PM10, meteorological time series, and PCs), and temporal variables (Day,
Year$, and Season$).
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Step 2: Construction of base models

In stacking, it is considered that the best results can be obtained by combining three
to eight different base learners at level 0 [37,38,45]. Therefore, in our study, we chose to
select four base models. With different combinations of level-0 data we will build several
level-0 models using RF, rotation RF (RotRF), selective CART-EB (Sel-EB), and selective
rotation CART-EB (SelRot-EB) methods. The corresponding RotRF and SelRotEB models
are constructed using PCs and lagged PCs instead of meteorological factors. Sel-EB and
RotSel-EB type models are built by the proposed simplified selective ensemble algorithm.

Step 3: Training and evaluation of the base models

In this step, we perform the training and cross-validation of the generated set of
the base models. Models based on RF are trained using the standard out-of-bag (OOB)
subsamples and the models built on CART-EB, using 10-fold CV. A Wilcoxon signed rank
test (WSRT) is applied to select heterogeneous models and check the required diversity [46].
In addition, diagnostics is performed on the residuals of the models using partial autocor-
relation functions (PACFs). The statistics and performance measures of successful base
models are calculated.

Step 4: Level 1 data (Predictions)

Four end models with the best statistical indicators are selected from the many base
models. Their predicted values for PM10_7, including the last 7 days of the time series, are
considered level-1 data.

Step 5: Stacked models

The selected four base models are regressed with the MARS method. Several MARS
models were built, linear and up to the second degree of interaction between predictors.
The training and evaluation are conducted using a 5- or 10-fold CV. The resulting stacked
models with the best statistics are denoted by S-MARS. Finally, the model’s predicted and
forecasted values are compared with those of the base models and with the measured
values of PM10.
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2.5. Methods

To build the models, we used the following methods, described briefly below: (1)
factor analysis (FA) with principal component analysis (PCA) to obtain rotated space and
relevant principal components (PCs) from the multicollinear independent variables; (2) RF;
(3) CART-EB and selective CART-EB; and (4) MARS.
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2.5.1. Principal Component Analysis and Factor Analysis to Obtain Rotation Space of PCs

Principal component analysis was introduced by Hotteling [47] as a technique for
deriving linear combinations of collinear variables into uncorrelated new variables (PCs)
that capture the most possible variance. For this purpose, the overall correlation matrix
and its eigenvalues are initially calculated, and the corresponding PCs are extracted [48].
In the next step, one can use FA to retain all or some PCs (also called factors) to reduce
the data dimensionality. The procedure ends with the rotation of the factor variables and
thus a rotated space or solution to the problem is formed. A factor model is adequate
when each original variable is grouped to only one factor, and the factors themselves are
well separated from each other. Studies that apply PCA and FA abound in environmental
science (see for instance [8,15]).

2.5.2. Random Forest and Rotation RF

Random forest is a powerful statistical ML and ensemble technique developed by Leo
Breiman, based on his bagging algorithm and the random subspace method of Ho [49–51].
RF is suitable for regression and classification, and can handle all types of data—numeric,
categorical, and nominal. Moreover, there are no special restrictive assumptions about the
distribution of the data. The RF algorithm builds hundreds of independent binary trees
using identically distributed randomized learning samples. The initial set of data with
volume N is randomly divided into two, of which about one third is used for a test set called
out-of-bag (OOB). The other part is used to form the learning sets with volume N through
the bootstrap algorithm for each tree in the ensemble. To avoid overfitting and reduce
variance, each model is trained with OOB. In this way, a large ensemble of independent
decision trees is generated, which form the forest, each of which builds its predictive model
of the target. The final RF model is obtained after averaging each predicted value from the
ensemble component trees. The main input hyperparameters of RF are the number of trees
T in the ensemble, the minimum cases in the parent node of the tree, and Q—the number of
randomly selected predictors from all given M features at each node of each tree. Usually,
Q = 3 [49].

Rotation RF is a variant of RF that uses rotated PCs in the set of features, where PCs
replace some initial variables from which they are generated.

2.5.3. Proposed Selective CART Ensemble and Bagging Algorithm and its Rotation Variant

The general CART-EB is a learning method that aims to reduce variance within a
noisy dataset. It is applicable for regression and classification problems. To improve the
stability of the CART method, bagging (abbreviated from bootstrap aggregation) is applied
in an ensemble of several trees [50]. In bagging, each tree is built independently with a
random sample of data in a training set, by randomly extracting cases from the initial
dataset with replacement. A random subset of Q features is selected at each decision, split
as in the RF algorithm. Additionally, an initial CART tree is built on the full sample. After
calculating predictions from all trees, the values for each case are averaged and the final
target prediction is obtained [27,50]. A general scheme of the CART-EB algorithm is shown
in Figure 4.
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Figure 4. Flowchart of the CART-EB algorithm.

In this study, we propose a new simplified selective CART-EB algorithm. In our
scheme, the statistical measure of the quality of the model is the index of agreement (IA or
d), calculated by the expression [52]:

IA = d = 1−

N
∑

i=1
(Pi −Oi)

2

N
∑

i=1

(∣∣Pi −O
∣∣+ ∣∣Oi −O

∣∣)2
(1)

where Pi is predicted values, Oi and O are observed values and its mean, respectively, and
N is the sample volume. IA is a dimensionless and bounded measure in [0, 1], with values
closer to 1 indicating better agreement between the model and the target variable.

The suggested selective algorithm is as follows: Let ensemble E with ns component
trees is a model of the observed target variable O. We use dE to denote its IA. The trees are
removed one by one and the IAs of the corresponding reduced ensembles are calculated as
dj, j = 1, 2, . . . , ns. Each component tree Tj, such that dj > dE, is a candidate for removal
from the ensemble. Tj is also known as “negative” tree. It is easy to understand that the
maximum increase in dE is obtained through the simultaneous removal of all the negative
trees. At the same time, the algorithm presents a new type of diversity.

The selective rotation CART-EB algorithm is a variant of selective CART-EB, where the
PCs are used as predictors with their lagged variables to replace the original continuous-
type meteorological samples.

2.5.4. Multivariate Adaptive Regression Splines

MARS is a non-parametric data mining method developed in [53]. It is designed
to predict numeric outcomes and provides models similar to traditional regression that
may include partial terms of the nonlinear type. The dependent variable y = y(X) can be
predicted using p independent variables X =

(
X1, X2, . . . , Xp

)
defined in RN . The MARS

model ŷ = ŷ[L] is presented in the form:

ŷ[M] = b0 +
L

∑
j=1

bjBFj(X) (2)

where b0, bj, j = 1, 2, . . . , L are the coefficients, BFj are its basis functions (BF), and L is
their number. The one-dimensional BF is written as:

BFj(X) = max
Xk

(0, Xk − ck,j) or BFj(X) = max
Xk

(ck,j − Xk, 0)

where the nodes (points of slopes) are denoted by ck,j ∈ Xk. The non-linear interactions
are presented as the products of other BFs. The usual MARS hyperparameters are the
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maximum number of BFs and the maximum degree of interactions. For each model, the
MARS algorithm defines variables and nodes so as to minimize a predefined loss function,
such as the mean square error. More about MARS methodology and implementation can
be found in [53].

2.5.5. Performance Measures

In this work, we apply four typical evaluation measures to assess and compare the
accuracy and predictive ability of the constructed models. In addition to the index of
agreement (IA) in Equation (1), the other three evaluation indices are root mean squared
error (RMSE), fractional mean bias (FB), and the coefficient of determination R2, calculated
by the expressions:

RMSE =

√√√√ 1
N

N

∑
i=1

(Oi − Pi)
2, FB = 2

O− P
O + P

, R2 =

{
N
∑

i=1

(
Pi − P

)(
Oi −O

)}2

N
∑

i=1

(
Pi − P

)2.
N
∑

i=1

(
Oi −O

)2
(3)

where Pi and Oi stand for model predicted and target values, respectively, and P, O are
their mean values. RMSE is used to assess the model accuracy. The FB index measures the
tendency of a model to over-predict with values close to 2 and under-predict with values
close to −2. The coefficient of determination R2 is a measure of the proportion of the total
variation of target values explained by the model and expresses linear relationships. A
good predictive model should have a value close to 0 for RMSE and FB, and a value close
to 1 for IA and R2. Statistical analyses were conducted using the Salford Predictive Modeler
(SPM) from Minitab, IBM SPSS, and the author’s code in Wolfram Mathematica software.

3. Results

The analysis will be carried out according to the framework in Section 2.4.

3.1. Pre-Processing Level-0 Data

The continuous time series in the initial data was PM10 and the seven meteorological
variables MaxT, MinT, WindSpeed, Humidity, Pressure, Cloud, and Rain. We will carefully
investigate their characteristics for further use.

3.1.1. Construction of the Additional Samples

Along with the initial samples from Section 2.1, we involved additional variables that
affect PM10. With the aid of the PACF, we found that PM10 and the other seven variables in
Table 1 had large PACF coefficients in lag 1. Figure 5 shows the PACF of PM10 and the seven
continuous meteorological factors. These results indicate that lagged variables can be used
as additional data samples. These variables will be denoted by “name”<1>. Additionally,
using PCA and FA, some rotated variables were extracted from the independent continuous
meteorological variables. In addition, we introduced three temporal variables, namely Day
with values 1, 2, . . . , N (ordinal), the nominal Year$, and Season$ with four values (winter,
spring, summer, and autumn).
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3.1.2. Determination of Principal Components

We transformed the seven continuous meteorological variables using PCA and FA.
Their correlation matrix had a small determinant, det = 0.013. In addition, the Kaiser–Meyer–
Olkin Measure of Sampling Adequacy (KMO) was equal to 0.636 > 0.5, and Bartlett’s test of
sphericity was significant with a p-value equal to zero. From these statistics, we concluded
that the considered seven variables were multicollinear and suitable for PCA and FA. Six
PCs (factors) were extracted with a total variance of 99.555%. Thus, the loss of information
was negligible, within 0.5%. After factor rotation using the Promax method, we obtained
the pattern matrix shown in Table 2. Of the six factors (PC1, PC2, . . . , PC6), the PC1 groups
MaxT and MinT and the other variables are single factors. All the variables are very well
separated in PCs, as they have large loadings with only one factor (the corresponding
term from the main diagonal), and relative to other factors, the loadings are negligible,
with absolute values less than 0.1. Therefore, we can assume that the factor analysis is
statistically valid [48].

Table 2. Pattern matrix of the rotated seven meteorological variables 1.

Variable
Component (PC)

PC1 PC2 PC3 PC4 PC5 PC6

MinT 1.046 0.024 −0.009 0.033 0.034 0.053
MaxT 0.921 −0.028 0.011 −0.040 −0.043 −0.064

WindSpeed 0.001 1.001 0.001 −0.002 −0.002 −0.002
Rain −0.001 0.001 0.998 0.002 0.001 0.003

Humidity −0.001 −0.002 0.002 0.998 −0.003 0.001
Pressure −0.005 −0.002 0.001 −0.003 0.997 −0.004

Cloud −0.004 −0.001 0.005 0.005 −0.004 0.993
1 Extraction method: principal component analysis. Rotation method: Promax with Kaiser normalization. The
highest loadings are in bold.

The resulting six rotated factors form a rotated subspace, which we used to build
some of the base models. We should especially note that the established multicollinearity
between the meteorological variables was not very strong when KMO = 0.636 << 1. This
allowed us to use both the initial meteorological variables and their PCs as predictors in
the ML models, but not simultaneously. The PACFs of the extracted PCs have the same
character as given in Figure 5.
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To build the heterogeneous base models, we used the following four datasets of
predictors:

• Dataset A: PM10_7<1>, MinT, MaxT, WindSpeed, Rain, Humidity, Pressure, Cloud,
Weather$, WinDir$, Day, Year$, Season$;

• Dataset B: PM10_7<1>, PC1, PC2, PC3, PC4, PC5, PC6, Weather$, WinDir$, Day, Year$,
Season$;

• Dataset C: PM10_7<1>, PM10_7<2>, MinT, MaxT, WindSpeed, Humidity, Pressure,
Cloud, Rain, MaxT<1>, MinT<1>, WindSpeed<1>, Humidity<1>, Pressure<1>, Cloud<1>,
Rain<1>;

• Dataset D: PM10_7<1>, PC1, PC2, PC3, PC4, PC5, PC6, PC1<1>, PC2<1>, PC3<1>,
PC4<1>, PC5<1>, PC6<1>, Day, Year$, Season$.

3.2. Construction and Comparison of the Base Models

With different combinations of level-0 data, we built several level-0 models using RF,
rotation RF (RotRF), selective CART-EB (Sel-EB), and selective rotation CART-EB (SelRot-
EB) algorithms. The corresponding RotRF and SelRot-EB models were constructed using
PCs and lagged PCs instead of meteorological factors. The Sel-EB and SelRot-EB type
models were built by the proposed simplified selective ensemble algorithm.

3.2.1. Diversity Strategies

In order to build heterogeneous base models, we explored the following five strategies:

1. Use of test and training subsets of varying size and composition, based on initial and
additional data samples;

2. Selection of different algorithms as base-learners;
3. Building selective ensembles to improve some base-learners;
4. Variation of the hyperparameters of the algorithms;
5. Using different model validation techniques.

To test the diversity of base models, the use of WSRT is recommended since it is less
restrictive to the sample distribution, nature of the error, and less susceptible to outliers [46].
The null hypothesis of WSRT is that the differential series d(t) = A(t) − B(t) has zero
median, where A(t), B(t) are two related samples.

Several models with each of the four methods (RF, RotRF, Sel-EB, and SelRot-EB) and
datasets A, B, C, and D were built. The RF-based models were trained with the OOB test
sample and the rest with 10-fold cross-validation. The hyperparameters were the number
of trees in the ensemble (T), minimum cases in parent node 10, minimum cases in terminal
node equal to 5 (recommended in [48]), and the number of randomly selected features at
each node of each tree was taken as Q = 3 or Q = 4.

3.2.2. Construction of Selective CART-EB Ensembles

We will take a closer look at the results of our suggested simplified algorithm for
constructing a selective CART ensemble with the following example. Using dataset D, we
generate a standard RotEB ensemble model RotEB36 with ns = 36 trees. Its initial CART
tree is represented below by number 36. The value of IA for the model is dE = 0.97318. We
remove the trees one by one and calculate dj, j = 1, 2, . . . , ns of all reduced ensembles with
35 trees. Figure 6a shows the graph of the derived updated values of IA, together with dE.
We identify nine negative trees (above the line dE). The removal of each of the nine trees
should lead to an improvement of the ensemble’s IA by dj − dE. In our case, the negative
trees’ numbers in descending order of dj are: 17, 29, 4, 9, 31, 34, 6, 26, and 22.
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Figure 6. Example of selective ensemble algorithm, where the horizontal lines represent the dE value
of the initial ensemble model RotEB36. (a) Updated values of IA following the removal of each of the
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Of the many combinations, we choose to remove groups of negative trees in the
following manner. We designate the sequence of negative trees as:

Mt = {m17, m29, m4, m9, m31, m34, m6, m26, m22}

and construct the sums
k
∑

i=1
Mt(i), k = 1, 2, . . . , 9. The resulting nine new selective

ensemble models are calculated using the following expression:

sel_k =

ns.RotEB36−
k
∑

i=1
Mt(i)

ns − k
, k = 1, 2, . . . , 9; ns = 36 (4)

Figure 6b illustrates the increase in the IA of ensembles sel_k. Table 3 contains the
evaluation measures for the derived selective ensembles (4). We can see that all the statistical
indicators improve as k increases. From the following models, we will choose the last (for
k = 9) as a base model, denoted by SelRotEB1. It contains 27 trees.

Table 3. Evaluation statistics of the RotEB36 and the 9 selective ensemble models from (4).

Ensemble
Model

Number of
Trees RMSE FB AI R2

RotEB36 36 5.65492 0.00680 0.973181 0.9168
Sel_1 35 5.63835 0.00643 0.973373 0.9169
Sel_2 34 5.62213 0.00654 0.973545 0.9169
Sel_3 33 5.61483 0.00635 0.973646 0.9170
Sel_4 32 5.60487 0.00614 0.97376 0.9173
Sel_5 31 5.59607 0.00611 0.973873 0.9174
Sel_6 30 5.58497 0.00613 0.973985 0.9176
Sel_7 29 5.57812 0.00596 0.974066 0.9180
Sel_8 28 5.57221 0.00587 0.974144 0.9182
Sel_9 27 5.56676 0.00575 0.974201 0.9186

We applied the same procedure to the CART-EB model built with 31 trees using dataset
C. Eight negative trees were obtained. The constructed maximal selective ensemble model,
according to formula of the type (4) for k = 1, 2, . . . , 8, ns = 31 was chosen as the base
model and is denoted by SelEB1.
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3.2.3. Base Models

Several candidates for base models were built for the target variable PM10_7. Table 4
presents the construction parameters and statistics of the four selected base models RF1,
RotRF1, SelEB1, and SelRotEB1. Specific sets of the proposed five types of diversities were
applied. Different datasets were used. There were some common elements, such as PM10_7
<1>, included in all models. The other main predictors in the first and third models were
the initial meteorological variables, while the second and fourth used their respective PCs
(rotated subspace). The RF models contained about 10 times more trees in the ensembles
RF1 and SelEB1, and RotRF1 and SelRotEB1.

Table 4. Parameters and statistics of the four selected base models a.

Model Method Dataset 0 Number of
Trees T Q Trained Sample R2 RMSE FB IA, d R2

RF1 RF A 200 3 0.7126 5.3020 0.0043 0.9758 0.9358
RotRF1 RotRF B 400 4 0.7114 5.0588 0.0045 0.9784 0.9393
SelEB1 Sel-EB C 23 out of 31 3 - 5.8095 −0.0011 0.9721 0.9082

SelRotEB1 SelRot-EB D 27 out of 36 3 - 5.5668 0.0058 0.9742 0.9186
a The first two models were trained with the OOB test sample and the rest with the 10-fold cross-validation
technique.

From the calculated evaluation measures (1) and (3) in Table 4, it can be seen that the
statistics are close. The most favorable statistics for RMSE, AI, and R2 were for the model
RotRF1. On the other hand, SelEB1 showed the lowest indicators (except for FB).

A comparison of the prediction quality of the four base models for the initial PM10
data is shown in Figure 7. Due to the large amount of data, no visible difference was
observed. The comparison with the sorted PM10 data using scatter plots is illustrated in
Figure 8. From both Figures 7 and 8, it can be seen that the highest and somewhat lowest
values of the PM10 concentrations were not very well predicted. As already mentioned,
this is a common shortcoming of ensemble methods that average their predictions.
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3.3. Evaluation of the Base Models and Variable Importance

Following our proposed stacking framework in Sections 2.4 and 3.2.1, we must also
analyze the diversity and residuals of the base models. Another important task is to
determine the degree of influence of predictors in the models. The most important of these
are meteorological variables.

3.3.1. Checking for Diversity

The results of the WSRT are shown in Table 5. All the significance values (p-values)
were less than 0.01, leading us to reject the null hypothesis of the test and conclude that
there were significant differences between the four base models at the confidence level
of 95%.

Table 5. Wilcoxon signed rank test results to check the difference between the four selected base
models.

Test Statistics a

RF1-
RotRF1

RF1-
SelEB1

RF1-
SelRotEB1

RotRF1-
SelEB1

RotRF1-
SelRotEB1

SelEB1-
SelRotEB1

Z (Standardized
test statistics) −2.666 b −2.721 c −2.925 b −6.297 c −2.270 c −5.313 b

Asymptotic Sig.
(2-tailed) 0.008 0.007 0.003 0.000 0.023 0.000

a Wilcoxon signed ranks test; b based on negative ranks; c based on positive ranks.

3.3.2. Analysis of Residuals

To assess the reliability of the models, we need to study their residuals in more detail.
First, we must check whether the residuals are merely white noise with no significant
serial correlation. However, the author of [54] states that “in fact, there is currently no
general diagnostic statistics for nonlinear autocorrelation relationships.” In particular, this
also applies to ML models, including models that use lagged time series of the dependent
variable and/or of predictors. In these cases, standard statistical tests, such as Durbin–
Watson, Ljung–Box, Breusch–Godfrey, etc., which are valid for the assumption of linearity,
cannot be used [54]. For nonlinear time series models, it is recommended to study the
autocorrelation functions (ACF) plot of the model residual [55,56]. If the data constitute a
large sample from an independent white noise sequence, approximately 95% of the sample
autocorrelations should lie between the bounds ±1.96/

√
N [57]. For our four models, the

results are shown in Figure 9. We can conclude that models’ residuals are white noise and
do not contain significant autocorrelation.
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3.3.3. Variable Importance

An important part of modeling air pollutants is assessing the impact of the predictors
used in the models. Table 6 shows the relative weights of the predictors in the base models.
All the models determined a 100% primary effect of the lagged variable PM10_7 <1>,
which in this case was shown to some extent as a stochastic factor, including measured and
immeasurable complex effects from the previous day’s PM10 concentrations.

Of the meteorological predictors (including their lagged variables), the more signifi-
cant, weighing more than 9 to 27 relative units, were MinT and MaxT (or PC1), followed by
WindSpeed (PC2). The variables WinDir$ and Weather$ had less importance. These factors
determine the main meteorological conditions for the formation and retention of PM10 in
ambient air [58]. Therefore, we can assume that our models correctly detect the contribution
of the conditions under consideration, including the additional data samples. The temporal
variable Day also had a large relative weight, with 12, 10, and 24 relative units in the first,
second, and fourth models, respectively.
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Table 6. Relative variable importance in the base models a.

Base Model Variable Importance

RF1 PM10_7<1> (100), MinT (12), Day (12), WindSpeed (9), MaxT (9), WinDir$ (6),
Rain (4), Cloud (3), Humidity (2), Pressure (1)

RotRF1 PM10_7<1> (100), PC2 (13), Day (10), PC1 (9), Season$ (7), WinDir$ (6), PC3
(4), PC5 (1)

SelEB1
PM10_7<1> (100), PM10_7<2> (50), MinT<1> (17), Pressure<1> (16), MaxT<1>
(15), WindSpeed (14), MaxT (12), Cloud (11), Pressure (10), Rain (9), Humidity
(8), Cloud<1> (8), WindSpeed<1> (8), Humidity<1> (7), Rain<1> (5)

SelRotEB1 PM10_7<1> (100), PC1<1> (27), Day (24), Weather$ (20), PC5<1> (19), WinDir$
(18), PC1 (17), PC2 (16), PC5 (13), PC2 (12), PC6 (11)

a Variables with zero importance are not included.

From the results so far, we can conclude that the selected base models are statistically
tested and reliable and can be used for forecasting. As shown in Table 4, the RF-based
models had higher coefficients of determination, reaching R2 = 94%, compared to those
with selective CART-EB, for which R2 was about 91–92%. Similarly, the RMSE of the RF
and RotRF models was smaller. As the number of trees increased, the statistics stabilized,
which is especially characteristic of the CART-EB algorithm. When the statistical indicators
are close, the simpler model is chosen; however, it must be one that retains good diversity
in the final selection of base models.

3.4. Construction and Analysis of Stacked MARS Models

We used the predicted values from the base models as predictors in constructing the
MARS models for target PM10_7.

3.4.1. Construction and Evaluation Statistics of the Stacked Models

Different values of the hyperparameters of the MARS algorithm were set. In this
case, the main hyperparameter was the maximum number of basis functions (BFs) and the
order of interactions between them. We only used linear and up to the second degree of
BFs. Table 7 shows the statistics of the selected stacked models S-MARS1 and S-MARS2.
The linear model, S-MARS1, was obtained with a set of 80 BFs and, after pruning in the
backward step of the algorithm, L = 29 BFs remained. The second-order model, S-MARS2,
was built using a maximum of 60 BFs, resulting in L = 30 BFs remaining. The S-MARS1
was tested with 5-fold CV and the S-MARS2 with 10-fold cross-validation.

Table 7. Statistics of the two staked S-MARS models and the reference model AvrStacked.

Model Number of BFs; L R2 Test RMSE FB IA, d R2

S-MARS1 80; 29 0.9351 4.3341 −0.00014 0.9860 0.9462
S-MARS2 60; 30 0.9349 4.2522 −0.00012 0.9865 0.9482
AvrStacked - - 5.2325 0.00347 0.9769 0.9329

A comparison of the results of the performance measures with those of the base
models shows a clear superiority of S-MARS1 and S-MARS2 on all four measures (1) and
(3). Table 8 gives the relative importance of the base models in the stacked S-MARS1
and S-MARS2. For S-MARS1, the model RotRF1 (100 points) has the highest contribution,
followed by RF1 (53), SelEB1 (49), and SelRotEB1 (50). For S-MARS2, the relative importance
is somewhat different—100, 43, 21, and 35, respectively. From Table 4 and Figure 8, we
obtain that the best base model is RotRF1, which in Table 8 has the highest relative weight
of 100. A comparison of the S-MARS1 and S-MARS2 statistics with those of RotRF1 shows
the superiority of the stacked models in all statistics.
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Table 8. Relative importance of base models in the staked models.

Model RF1 RotRF1 SelEB1 SelRotEB1

S-MARS1 52.87 100 49.44 50.30
S-MARS2 42.88 100 21.27 34.81
AvrStacked 25 25 25 25

Having the predictions of the four base models, let us also calculate the standard
stacked average model as a reference model. We denote it by AvrStacked. Its values are
calculated using the expression:

ArvStaked =
RF1 + RotRF1 + SelEB1 + SelRotEB1

4
(5)

From Tables 7 and 8, it is seen that this reference model has weaker statistical indicators
compared to the S-MARS models.

The S-MARS1 model has the Equation (A1) and BFs (A2) in Appendix A. The Equation
(A1) and BFs (A2) serve to calculate each approximate value of the time series PM10 if the
corresponding values of the four models at time t are known.

The prediction quality of the stacked models is visualized in Figure 10. Figure 11a,b
show the scatter plots comparing the predicted levels versus PM10 measured with 5%
confidence intervals. Again, much better prediction was observed, and in particular of the
largest and smallest values, compared to the corresponding results of the base models from
Figures 7 and 8, respectively.
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3.4.2. Reliability Evaluation of S-MARS Models

To provide statistical evidence and compare the stacked models, we used two statistical
tools: WSRT and an ACF plot of their residuals. Using the WSRT in Table 9, S-MARS1,
S-MARS2, and PM10 were compared. Since all the p-values were insignificant (Sig. > 0.05),
the null hypothesis was retained; thus, there was no statistically significant difference
between the compared variables. In particular, the WSRT for S-MARS1 and S-MARS2 was
insignificant (Sig. = 0.150 > 0.05). Therefore, the two stacked models can be considered as
relatively equal. According to the parsimonious principle, we chose the linear model as
simpler.

Table 9. Statistics of Wilcoxon signed rank test to check the closeness between the stacked models
and the target variable.

Test Statistics a

S-MARS1, PM10 S-MARS2, PM10 S-MARS1, S-MARS2

Z (Standardized test
statistics) −0.973 c −1.025 c −1.441 c

Asymp. Sig. (2-tailed) 0.331 0.305 0.150
a Wilcoxon signed ranks test; c based on positive ranks.

The errors ACF are shown in Figure 12. They are within the respective bounds.
Therefore, we can assume that the residuals of S-MARS1 and S-MARS2 are white noise,
and do not contain serial autocorrelation.
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3.4.3. Forecasting of Holdout Sample for 7 Days Using Staked S-MARS Models

We will demonstrate the results of our S-MARS1 and S-MARS2 models for short-term
forecasting of PM10 concentrations. So far, all models were built and analyzed for the
target PM10_7, in which the last seven values of PM10 were unknown as holdout sample
data. The forecasts of these 7 days are shown in Figure 13, together with the values of the
measured PM10 for the last 21 days of the initial sample. On the left side of the vertical line
are the stacked predictions for the penultimate 14 days, and on the right are seven forecasts
for the holdout sample.
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Figure 13. Forecasting of the measured PM10 levels for the last 28 days using the stacked S-MARS
models. The predicted values are plotted to the left of the vertical line, and data forecasts for the
7-day holdout sample are provided to the right.

From the performed reliability assessment, we can conclude that all constructed
models are statistically valuable, and the proposed framework has great potential for
forecasting time series of air pollution concentrations under the model assumptions.
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4. Discussion with Conclusions

In this paper, we studied the dependence of time series for the concentrations of
the air pollutant PM10 on meteorological time series, including maximum and minimum
average daily air temperature, wind speed, relative air humidity, atmospheric pressure,
cloud conditions, rain, and weather and wind direction as categorical variables. The data
are for a seaside region of Bulgaria over a period of more than 6 years. To find a more
parsimonious approach to improving the forecasting quality of time series for PM10, we
developed a novel ensemble-based stacking framework.

With a limited number of initial predictors, we conducted a careful study to find
existing relationships between them. In this way, we constructed additional data samples.
The proposed framework combines ML techniques at two levels, utilizing the paradigm
of stacked generalization. For the first time, CART ensemble and bagging (CART-EB) and
rotation CART-EB with principal components were used to build base models. In addition,
a simplified selective ensemble algorithm was proposed and implemented. A reduction in
the number of trees in the CART-EB ensembles was achieved and the number of models
was expanded through greater diversity. Although with slightly lower performance than
RF1 and RotRF1, the obtained selective CART-EB and RotEB models at level 0 had relatively
good statistical indicators.

Perhaps the most challenging part in the application of the framework is the selection
of the four models at level 0 so that they are diverse among each other and that each
approximates the PM10 data sufficiently well. We achieved the required diversity property
by suggesting five strategies. After that, with the help of the MARS method, the forecasts
made using these four base models were combined into two stacked models—linear S-
MARS1 and second-degree S-MARS2. We showed no significant difference between these
two models and chose the parsimonious S-MARS1 as the final one. With this linear stacked
MARS model, the following performance measures were achieved: RMSE = 4.3341, frac-
tional bias FB = −0.00014, index of agreement IA = 0.9860, and coefficient of determination
R2 = 95%. All constructed models were cross-validated, and their residuals were examined
to establish their reliability and the lack of serial autocorrelation.

Another notable aspect is the interesting result that stacking with MARS overcomes
some of the disadvantages of the ensemble models, such as poor prediction of the highest
and lowest values due to averaging.

Meteorological factors are a standard component of the data samples used to model
the concentrations of air pollutants. In a recent publication [7], meteorological variables
are the only predictors. An ANN model has been developed for forecasting hourly data
for PM10 for winter periods in three settlements in Poland. The evaluation measures R2

from 0.452 to 0.848, RMSE values from 8.80 to 23.56, and index of agreement (IA) from
0.693 to 0.957 were achieved. They are comparable to the corresponding statistics of our
base models. Additionally, daily mean PM10 concentrations are forecasted in [17] using
ANN, with hourly PM10 measurements one-day in advance, and local meteorological
and some deterministic data, such as Sahara dust alert in Montseny and Barcelona, Spain.
The performance indices of the model were R2 = 0.86 and R2 = 0.73 for the two cities,
respectively. These results are inferior to ours, which is probably partly due to the greater
variability of the hourly data used.

Our model is comparable to the stacked model presented in [40] for forecasting average
daily pollution with fine particulate matter (PM2.5) in Beijing, China. First, base models
were developed using LASSO, AdaBoost, XgBoost, and MLP optimized by the genetic
algorithm (GA-MLP). Then, these base models were combined by SVR. The stacked model
reached the coefficient of determination R2 = 90%. Another paper, similar to our study,
is [39]. The authors analyzed and predicted the measured hourly concentrations of PM10
in four automatic stations in Cairo, Egypt, depending on seven meteorological and three
temporal variables. Three machine learning methods were studied and compared—support
vector regression, boosting, and stacking ensemble, applying the chance weight of its target
variables. Stacking models showed the best statistics, with R2 values up to 64%.
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In [16], three ML spatial models using RF, bagged classification, regression trees
(bagged CART), and mixture discriminate analysis (MDA) for the hazard prediction of
PM10, measured in 75 stations in the Barcelona Province, Spain, were developed and
analyzed. Thirteen important variables were used as predictors: minimum temperature,
maximum temperature, precipitation, wind speed, wind direction, elevation, road density,
normalized difference vegetation index (NDVI), topographic wetness index (TWI), land use,
terrain roughness index (TRI), and distance from the water body. The bagged CART and
RF models achieved an accuracy of 92% to 93%, respectively, with a precision of about 86%.
Although in different contexts, these results are in good agreement with those obtained
from our base models (see Table 4).

Some other similar studies in which stacked selective ensembles are implemented can
be mentioned. In [26], such models were proposed to forecast hourly PM2.5 levels based on
meteorological and pollutant predictors and a set of lagged variables. The authors explored
random subspace, inclusive subspace, bagging, selective ensemble, and SVR-based stacking
techniques. A large number of models for different data samples were obtained. Their
statistical measures are comparable to ours for both base and stacked models.

The presented stacking framework and the results of this study show that the proposed
approach allows one to obtain high-quality and reliable ensemble models for predicting the
levels of air pollutants. Its implementation is useful for the protection of the population by
providing timely information based on weather forecasts and other easily accessible data.
In future studies, we plan to expand the application of the developed time series framework
to forecast air and water pollution levels, financial and foreign exchange markets, etc.,
characterized by greater volatility.
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Appendix A. Model S-MARS1

The stacked linear S-MARS1 model has the equation

ŷ = P̂M10_7 = 75.1403− 0.696284 BF2− 0.423695 BF3 + 0.674278 BF5− 0.69262 BF6 + 1.15976 BF7
−1.46369 BF9 + 8.49668 BF15− 6.91818 BF17− 4.42493 BF19 + 4.07217 BF21− 0.918303 BF23
−2.75369 BF25 + 2.87188 BF27− 0.46759 BF29 + 0.228861 BF31− 0.285907 BF39 + 0.569981 BF41
+3.02017 BF47 + 3.8429 BF49− 1.59911 BF51− 2.59165 BF53− 7.48239 BF57 + 7.56856 BF59
+9.48026 BF61 + 1.06406 BF63− 1.59165 BF65− 2.13434 BF71− 5.5955 BF75− 3.44223 BF77

(A1)

where BFs are calculated by the expressions:
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BF2 = max(0, 81.8456− RotRF1); BF3 = max(0, SelEB1− 45.6374); BF5 = max(0, RF1− 43.7164);
BF6 = max(0, 43.7164− RF1); BF7 = max(0, SelEB1− 83.8242); BF9 = max(0, RotRF1− 90.2285);
BF15 = max(0, RF1− 87.9986); BF17 = max(0, RF1− 84.2722); BF19 = max(0, RF1− 89.9127);
BF21 = max(0, RF1− 82.2843); BF23 = max(0, SelRotEB1− 78.9109); BF25 = max(0, RF1− 102.162);
BF27 = max(0, SelRotEB1− 103.255); BF29 = max(0, RF1− 25.6409); BF31 = max(0, SelEB1− 24.8643);
BF39 = max(0, SelRotEB1− 38.9905); BF41 = max(0, RotRF1− 40.7856); BF47 = max(0, SelEB1− 72.0619);
BF49 = max(0, SelRotEB1− 52.7836); BF51 = max(0, SelRotEB1− 57.5217); BF53 = max(0, SelRotEB1− 51.8321);
BF57 = max(0, RotRF1− 74.2716); BF59 = max(0, RotRF1− 75.2887); BF61 = max(0, RotRF1− 61.7364);
BF63 = max(0, SelRotEB1− 69.5625); BF65 = max(0, SelEB1− 67.475); BF71 = max(0, SelEB1− 75.6904);
BF75 = max(0, RotRF1− 62.9263); BF77 = max(0, RotRF1− 60.1102)

(A2)
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