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Abstract: Agricultural activities have a significant impact on environmental quality, because they
generate waste that pollutes water and soil. In parallel, the supply of products has diversified in
recent years to meet growing demand, exerting strong pressure on nature’s capacity for regeneration
and absorption of waste. This research aims to examine the impact of agricultural employment and
the export diversification index on ecological footprints, using advanced techniques of panel data
econometrics. This relationship is moderated by population density and real per capita product.
Cross-section dependence and slope homogeneity were included in the econometric models. The
cointegration and causality analysis was reinforced by estimating the short- and long-term elasticities,
using the AMG, CCE-MG, FMOLS, and DOLS models. Using annual data for 96 countries, we found
a heterogeneous impact of agricultural employment and the export diversification index on ecological
footprint, between the short and long term. The findings reveal that the increase of the product
increases the pressure on the ecological footprint. The achievement of SDGs must include joint efforts
between countries, and not in isolation. Those responsible for environmental policy should promote
the idea that production must be friendly to the environment and promote the green growth of
countries. The adoption of new technology, higher productivity agricultural employment, and the
regulation of exports of sustainable products can contribute to achieving environmental sustainability.

Keywords: agricultural employment; export diversification index; ecological footprint; FMOLS;
AMG; CCE-MG

1. Introduction

The environmental challenges derived from climate change constitute a source of con-
cern for achieving sustainable economic development. Consequently, the recent literature
on the causes of environmental degradation has grown rapidly, particularly the evidence
on the nexus between economic activity and greenhouse gas emissions. However, environ-
mental sustainability requires a more thorough and meticulous analysis of all dimensions of
environmental degradation. Various empirical studies have noted the importance of using a
more holistic and comprehensive indicator of the deterioration of nature and suggest using
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the ecological footprint (EF) as a measure of the destruction of nature [1–3]. According to
data from the Global Footprint Network (2021), until 2008, the EF increased in most groups
of countries. As of that year, the EF experienced a slight reduction in aggregate form. How-
ever, there are specific cases of countries where the behavior of EF is more dynamic, both in
its growth and in its decrease [4]. In practice, EF is a more comprehensive indicator of the
state of environmental deterioration, concerning polluting gas emissions [5,6]. Therefore,
it is necessary to identify the factors that determine the behavior of EF in the short and
long term, in light of the new econometric techniques available. This action will help those
responsible for environmental policy-making decisions to achieve the environmental and
economic sustainability of society.

There are several economic, social, and institutional aspects that can influence the
temporal dynamics of EF [7–9]. However, in this research, we focus on two components
that have not received sufficient attention in the previous literature and deserve special
attention in the academic and political debate on environmental pollution: agricultural
employment, and the export diversification index. In order to obtain consistent conclusions,
the impact of the two variables on EF is moderated by the real per capita product and
the population density. Development levels determine the strength of the relationship
between economic and environmental variables [10]. It is well known that the level of
development of countries is associated with the institutional framework, the effectiveness
of the government, human capital, and environmental awareness, among other aspects that
affect the quality of environmental policies. Therefore, the total sample of 96 countries was
classified into four subgroups, using the gross national income to group them. The total
sample of countries was classified into high-income countries (HIC), upper-middle-income
countries (UMIC), lower-middle-income countries (LMIC), and low-income countries (LIC).
Econometric estimates were made for the global panel of 96 countries and the panels of the
four groups of countries.

First, we employed the cross-sectional dependence test formalized by Bailey et al. [11].
The findings of this stage indicated that there is cross-sectional dependence in the five
series in all panels. This result is informative because it conditions the use of the unit root
and second-generation cointegration tests. Both tests were systematically estimated as the
starting point for subsequent econometric models [5,12–14]. In practice, the results indicate
that on average, the changes in the values of the series in a country are associated with the
changes in the values of the series in the rest of the countries. Usman et al. [7] and Nathaniel
and Khan [15] used the CD test to examine the nexus between EF and the factors that
determine it. Second, we evaluated the homogeneity in the slope between the panels using
the Pesaran and Yamagata [16] test. We found enough evidence to reject the hypothesis
of homogeneity of the slope between the panels. The later econometric models consider
the cross-sectional dependence and the heterogeneity in the slope, to estimate the models
and obtain consistent and unbiased parameters. Third, we estimated the stationarity of the
series using the second-generation unit root test proposed by Herwartz and Siedenburg [17].
The results confirmed the hypothesis that the series has an integration order of one. The
Herwartz and Siedenburg [17] test has been recently used in the environmental economics
literature, particularly in research examining the link between environmental quality and
human activity [18,19].

Fourth, we used a second-generation cointegration test to estimate the long-term
relationship between the EF and the four covariates. Specifically, we performed West-
erlund’s [20] second-generation cointegration test. The findings show a cointegration
relationship between EF, agricultural employment, export diversification index, population
density, and real per capita product. In practice, this result implies that changes in regres-
sors cause a significant change in EF, which is evident in the long term. Westerlund’s [20]
test has been used in recent literature that examined the factors that influence levels of
contamination [21,22]. Fifth, in order to broaden the debate on the policy implications that
the countries analyzed should adopt, we estimated the short- and long-term elasticities
between the covariates and the FE. Specifically, we used the AMG and CCE-MG models.
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Finally, the short and long-term analysis of the previous models were reinforced by esti-
mating the FMOLS and DOLS models. The AMG and CCE-MG models show that the real
product per capita increases the ecological footprint in all groups of countries, except in the
LICs. This result offers an important lesson in environmental policy, because it indicates
that economic growth is integrally destroying nature. This fact raises the need for a thor-
ough review of the current development model, which is incompatible with environmental
sustainability. In the short term, agricultural employment, the export diversification index,
and population density do not significantly impact EF, although the impact differs with
long-term elasticities.

The results of the long-run models differ from the short-term coefficients in the size
of the elasticities. In general, long-term elasticities are more significant than short-term
elasticities. At all levels of development, the product and export diversification index
increase the EF. While agricultural employment decreases EF in HICs and UHICs, in LICs
and LMICs, agricultural employment reduces EF. A possible explanation for this result
is that environmental degradation is more visible and quantifiable in the long term. On
the other hand, population density reduces EF in all countries, except the LICs. This
result suggests that population concentration generates economies of scale concerning
environmental pollution. Namely, pollution increases with population concentration, but
at a decreasing rate. In the recent environmental literature, various empirical works have
used this instrumental framework to verify the impact of economic and social variables on
environmental quality [14,23,24].

These results highlight the importance of those responsible for environmental pol-
icy, including temporal dynamics, in applying climate change mitigation and adaptation
strategies. Likewise, we found sufficient evidence to reject the hypothesis that EF does
not cause the product in the global panel and the HICs. The underlying logic behind this
result is that economic growth is occurring at the expense of environmental degradation.
Furthermore, we found that the export diversification index causes EF in the Granger
sense in the global panel, UMICs, and LMICs. Finally, we found a causal relationship that
connects agricultural employment to EF in the HIC, ULIC, and LIC. Economic agents face
the enormous challenge of applying mechanisms to mitigate environmental deterioration
in blocks of countries, and not in isolation. Economic, social, and political integration
between countries can be a tool to coordinate more effective pro-environmental policies
that guarantee environmental sustainability for future generations. The joint application of
environmental policies will increase their quality and guide the search for a more environ-
mentally friendly development model. In general, this research contributes to highlighting
the combined effect of agricultural employment and the export diversification index on EF
and the combination of short- and long-term methods.

The remainder of the article is organized as follows: In the second section, we include
a review of the previous literature on environmental degradation, focusing on the works
that use EF to measure the deterioration of nature. In the third section, we describe the
characteristics of the data. In the fourth part, we present the stages of the methodological
strategy. In the fifth section, we report the results and discuss them with the recent literature.
In the last section, we systematize the research findings into conclusions and propose pro-
environmental policy implications to mitigate the adverse effects of natural pollution.

2. Literature Review

The theoretical framework of the environmental Kuznets curve (EKC) has been used
in recent decades to examine the relationship between economic activities and the envi-
ronment [25]. The literature that studies this relationship frequently uses carbon dioxide
emissions as an indicator of the degradation of nature [26–28]. However, polluting gas
emissions do not reflect the totality, complexity, and depth of the environmental problems
caused by human activity [4,6]. In this sense, several empirical investigations suggest using
comprehensive indicators of environmental quality to improve the quality and efficiency of
pro-environmental policies. The EF allows evaluating the impacts of human activity on
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nature using a criterion of sustainability of economic and social development [23,29–31].
High values of EF are associated with high consumption of natural resources, which im-
plies a negative impact on the environment [32]. Some previous research concluded that
economic growth increases EF, but certain factors can attenuate the positive relationship
between output and HE. For example, activities such as agriculture, fishing, livestock,
and infrastructure construction generate a high ecological impact [15,22,33–36]. However,
the dynamics of the relationship between the consumption of natural resources and envi-
ronmental sustainability varies from one country to another, depending on the countries’
industrial structure and institutional framework [37]. Countries that base their economies
mainly on agriculture and natural resource extraction have a high EF. This fact results from
the excessive use of energy from polluting sources and the high levels of consumption in
cities [21,38].

The analysis of the factors that determine the behavior of EF has focused on economic
aspects and has been extended to institutional, political, and social components [29,39].
Although the evidence for the sources of contamination has increased in recent years, there
is no consensus on the findings or the suggested policy implications. A combination of
economic and institutional aspects, as determinants of environmental deterioration, can
improve the inferences obtained from the econometric estimates. The development of
new quantitative techniques facilitates the correction of possible biases of the estimators,
generating a broader and more robust analytical framework. For example, Ahmed et al. [32]
used the CUP-FM and CUP-BC methods and found that exports reduce environmental
degradation in G7 countries. In contrast, Dogan et al. [40] revealed that exports are the most
common cause of anthropogenic pressure on the environment in the long term. Several
recent investigations have included the role of the underground economy as a factor that
explains the pollution of nature [4]. Table 1 summarizes the main results of the factors that
influence cross-sectional heterogeneity and the temporal dynamics of EF.

Table 1. Summary of the literature review.

Author [s] Study Area Time Variable(s) Methodology Findings

Ahmed et al. [29] Japan 1971–2016
EF, GDP, ENG,
GLOB, FD, PD,

R&D

The asymmetric
and symmetric

ARDL

Symmetric ARDL: GLOB and FD increase EF;
Asymmetric ARDL: Positive and negative changes in
GLOB reduce EF. FD stimulate EF. ENG increases EF.

PD reduce EF. Support for the EKC hypothesis.
Causality from GDP to EF

Sarkodie [30]

Australia, Brazil,
China, Germany,

India, Japan,
Russia, and US

1961–2016
ECF, BIO, EF, ES,
GDP, GDPC, PD,

TRD
CIPS, CADF Disparity in ECF and EF between income groups

converge in the long-run

Sharif et al. [41]
Top ten solar

energy-consuming
countries

1990–2017 SE, EF QQ regression
SE mitigates EF at various quantiles, except India and

the United Kingdom.
Bidirectional causality between EF and SE

Sharma et al. [23]
Eight developing
countries of South
and Southeast Asia

1990–2015
EF, GDP, GDP2

GDP3, RE, LEXP,
PD

CS-ARDL The N-shaped EKC is valid. RE reduces EF. PD
increases EF. LEXP is not significant

Yao et al. [31] BRICS and the
Next-11 economies 1995–2014

ENE, EF, FD, NR,
INV, IND, CORR,

TRD

DEA method,
GMM model

EF can be decreased by FD. EF can be decreased by
CORR. INV is a determinant of ENE. Bi-directional

causal relationships between ENE, EF, FD, CORR, NR,
INV, IND, TRD

Ahmed et al. [38] China 1970–2016
EF, GDP, NR

URB, HC, INT,
ECF

The Bayer-Hanck
cointegration,

Bootstrap causality

NR, and URB increase EF. HC and INT reduce EF.
Unidirectional causality from NR and URB to EF

Ahmed et al. [38] G7 2ountries 1971–2014
EF, CO2, GDP

ENG, URB, HC,
IMP, EXP, FDI

CUP-FM, CUP-BC

URB increases EF. HC reduces EF. GDP, IMP, and ENG
increase EF. EXP, FDI, and reduce EF. Unidirectional

causality from HC and URB to EF. Bidirectional
causality between URB, GDP, and HC

Alvarado et al. [5] 77 countries 1996–2016 EF, AQ, R&D, AGR,
TRD

Second-generation
unit root test,
FMOLS, D–H

Heterogeneous impact of R&D on environmental
degradation.

Bidirectional causality between AQ and R&D and
between EF and R&D

Baz et al. [42] Pakistan 1971–2014 EF, GDP, ENG,
CAP

NARDL
co-integration

approach,
Asymmetric
causality test

Asymmetric feedback causality between ENG and EF.
Symmetric: EF causes ENG
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Table 1. Cont.

Author [s] Study Area Time Variable(s) Methodology Findings

Destek and Sinha
[33] 24 OECD countries 1980–2014 EF, GDP, RE,

NRE, TRD, GDP2
FMOLS, DOLS,

CCEMG

EKC hypothesis does not hold. U-shaped relationship
between GDP and EF. RE reduces EF. NRE increases

EF

Langnel and
Amegavi [34] Ghana 1971–2016

EF, GLOB,
Economic

globalization,
Social globalization,

Political
globalization,

ELEC, GDP, URB

ARDL

EGLOB and SGLOB increase EF. PGLOB decreases EF.
ELEC increase EF. GDP and URB increase EF.

Bidirectional causality between EF and ELEC. GLOB
causes EF

Nathaniel and
Khann [15] ASEAN countries 1990–2016 ENG, URB, TRD,

GDP, RE, EF
Cointegration,

AMG GDP, TRD, and ENG increase FE. RE reduces EF

Nathaniel et al. [43] BRICS 1992–2016 EF, GDP, URB,
RE, HC, NR

AMG, CCEMG,
PMG, FMOLS,

DOLS, D-H,
Granger Causality

GDP and NR increase the EF. RE decreases EF. HC is
not significant. Bidirectional causality between HC,

URB, and EF

Nathaniel et al. [35]
Coastal

Mediterranean
Countries

1980–2016 EF, FDI, NRE, URB,
GDP Quantile regression FDI and URB reduce EF

Pata et al. [44]
Top ten countries
with the largest

ecological footprint
1992–2016 EF, GLOB, HDI

RE, NR AMG EKC is invalid. HDI and RE reduce EF. NR increases
EF. GLOB is not significant

Sharif et al. [45] Turkey 1965–2017 EF, GDP, RE, NRE QARDL
RE decreases EF. The EKC is confirmed.

Bi-directional causal relationship between RE, NRE,
and GDP with EF

Udemba [36] Nigeria 1981–2018 EF, GDP, ENG,
FDI, AGR, POB

ARDL, Granger
Causality

Positive relationship between GDP, EF, ENG, FDI, and
AGR. Unidirectional causality from GDP to EF; from
ENG to EF; from POB to EF; from GDP to ENG; and

from POB to GDP

Alola et al. [46] European Union
[EU] 1997–2014 GDP, NRE, RE,

Trade Policy, FR, EF PMG-ARDL GDP increases FE. RE reduces EF. NRE increases EF

Danish and Wang
[47] Next-11 countries 1971–2014 EF, GDP, ENG,

URB CCEMG URB and GDP increase EF.
ENG has a positive and significant impact on EF

Destek and
Sarkodie [48]

11 newly
industrialized

countries
1977–2013 EF, GDP, ENG, FD AMG ECK is valid. Bidirectional causality between GDP and

EFUnidirectional causality from GDP to ENG

Dogan et al. [40] MINT 1971–2013 EF, FR, EXP, URB,
IMP, FD, ENG Panel ARDL ECK is valid. ENG, EXP, URB, and FD increase EF

Hassan et al. [49] Pakistan 1971–2014 EF, HC, GDP, BIO ARDL BIO and GDP add to EF. HC reduces EF
Wang and Dong

[50] 14 SSA 1990–2014 EF, RE, URB, GDP,
NRE AMG RE adds to environmental quality. GDP, NRE, and

URB increase EFP

Zafar et al. [51] United States 1970–2015 EF, GDP, ENG, NR,
FDI, HC ARDL

HC, NR, and FDI reduce EF. GDP and ENG increase
EF. Bidirectional causality between ENG and EF; and
between GDP and EF. Unidirectional causality runs

from NR to EF and from HC to NR.

Note: EF: Ecological Footprint; URB: Urbanization; GDP: Gross Domestic Product; GDP2: Gros Domestic
Product square; GDP3: Gros Domestic Product cubic; ENG: Energy Consumption; RE: renewable energy; NRE:
Nonrenewable Energy; HC: Human Capital; NR: Natural Resources Rent; ECF: Ecological carbon footprint; SE:
Solar energy consumption; QQ: Quantile on Quantile regression; AMG: Augmented Mean Group; CCEMG:
Common Correlated Effects Mean Group; PMG: Pool Mean Group; D-H: Dumitrescu and Hurlin; IMP: Import;
EXP: Export; FDI: Foreign Direct Investment; CUP-FM: continuously-updated fully modified estimators; CUP-
BC: continuously-updated bias corrected estimators; GLOB: Globalization index; HDI: Human development
index; CIPS: cross-sectional augmented IPS panel unit root test; INT: Interaction term (Urbanization × Human
capital); TRD: Trade; AGR: Agricultural Sector; POB: Urban Population; PD: Population Density; FD: Financial
Development; Consumption; CADF: cross-sectional ADF unit root test; FMOLS-MG: Fully Modified Ordinary
Least Squares; DOLS-MG: Dynamic Ordinary Least Squares; CAP: Real Gross Fixed Capital Formation; ARDL:
Autoregressive distributive lag model; FR: Fertility rate; ELEC: Electricity consumption; QARDL: Quantile
Autoregressive Distributed Lag; DEA: Data Envelopment Analysis; ENE: Energy Efficiency; INV: Technology
Innovation; IND: Industrial Structure; CORR: Corruption; GMM: Generalized Method of Moment; LEXP: life
expectancy; BIO: Bio-capacity; ES: Ecological Status; GDPC: Income Level; AQ: Air Quality.

On the other hand, population trends play a significant role in determining the en-
vironmental quality of countries [3]. The conclusions on the association between the
demographic indicators and EF indicate that population density can optimize of consump-
tion of natural resources in a region or locality through economies of scale, technological
innovation, and energy efficiency [52,53]. Likewise, in the long term, concentration of the
population can exert pressure on PE, as a result of the increase in traffic congestion, the use
of polluting energy, and the construction of new infrastructure to satisfy the demands of the
urban population. In this context, the findings of Sharma et al. [23] point out the existence
of a positive relationship between population density and EF in eight developing countries
in South and Southeast Asia. Udemba [36] found a unidirectional causal relationship that
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goes from population size to EF using a data panel. On the contrary, Ahmed et al. [29] and
Ahmed et al. [52] concluded that population density decreases EF in Japan and Malaysia,
respectively. Using a large sample of countries can provide more robust evidence of the link
between population dynamics and PE. Several studies included other variables to explain
the behavior of PE, such as urban concentration, globalization, consumption of renewable
and non-renewable energy, and others [31,34,41,44]. The previous literature results are
heterogeneous among themselves for various reasons: differences in levels of development,
sample size, degree of institutionality, and methodological aspects, among others. Table 1
systematizes the review of the previous empirical literature that uses EF as a variable of the
degradation of nature.

3. The Data and Statistical Sources

EF measures the amount of land and water that a human population needs to produce
the resources it consumes and absorb waste using available technology [54]. This indicator
is a tool to evaluate the holistic impact of environmental deterioration and inform about the
policies required to mitigate the pollution. Data from the Global Footprint Network [55]
show that EF has steadily increased, at an average of 2.1 percent per year since 1961: it
went from 7.0 billion hectares per capita (hpc) in 1961, to 20.6 billion hpc in 2014 [56]. These
results indicate that the earth’s ecological overshoot began in the 1970s. Furthermore, the
ecological overshoot continues to grow at an average rate of 2.0% per year [55]. In the last
decade, the trend of EF has been partially reversed. The systematic decline in EF occurs not
only globally, but also in some groups of countries. Figure 1 shows the evolution of the EF
of the 96 countries classified according to gross national income. The EF of the 96 countries
has decreased since 2008, with a slight increase in 2011. However, the EF is above 300 gha.
In the HICs, the evolution of EF follows a similar trend to the group of countries analyzed.
In the LICs, the levels of EF are the lowest compared to the other groups of countries and
show a constant behavior during the period studied.
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This research uses annual data from 1991 to 2018. Table 1 reports the countries included
in the research, grouped according to the Atlas method. Table 2 reports the description of
the variables used in the econometric estimates. The selection and inclusion of the four
independent variables used the following arguments. First, in the previous literature on
environmental economics, the impact of agricultural employment on EF has not received
enough attention, even though agricultural activities cause a significant effect on the
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regeneration and absorption capacity of polluting wastes from agriculture. Second, the
growing demand for diversified products generates emissions, waste, and other pollutants
that directly pressure the integral quality of nature. The consumerism patterns of modern
economies are associated with the variety of products that are manufactured and exported
to the international market. Consequently, the export diversification index captures this
trend in modern economies. Third, population density is associated with economies of
scale and agglomeration, which can be an instrument of policies to mitigate and adapt to
environmental deterioration. Finally, the real per capita gross domestic product makes
it possible to assess the impact of economic development on the integral degradation
of nature.

Table 2. Description of variables and data sources.

Variable Symbol Definition Measure Source

Ecological
footprint EFit

EF measures the amount of biologically
productive land and water that the

population requires to produce the resources
it consumes and absorb the waste it generates

using current technology

Hectares per capita Global Footprint
Network

Export
diversification

index
XDIit

Export diversification can occur across either
products or trading partners. Product

diversification occurs through introducing
new product lines (the extensive margin) or
through exporting a more balanced mix of

existing products (the intensive margin)

Index International
Monetary Fund

Employment in
agriculture EAit

Employment is defined as persons of working
age who were engaged in any activity to

produce goods or provide services for pay or
profit, whether at work during the reference

period or not at work due to temporary
absence from a job, or to working-time

arrangement. The agriculture sector consists
of activities in agriculture, hunting, forestry,

and fishing

% of total
employment World Bank

Population
density PDit

Population density is defined as the mid-year
population divided by land area in square

kilometers

People per sq. km
of land area World Bank

Economic growth Yit
Real per capita output is gross domestic
product divided by midyear population

USD constant price
of 2010 World Bank

Figure 2 illustrates the geographic coverage of the countries included in the research,
where the four groups of countries classified according to the Atlas method are included.

Table 3 reports the descriptive statistics and the partial correlation matrix between the
variables. The analysis period has a temporal coverage from 1991 to 2018, corresponding
to a fully balanced data panel. The temporal dimension and the sample of countries used
represent a total of 2688 observations. Most of the variables do not show a high dispersion
of data, except for the density of the population. Using the Kolmogorov–Smirnov test, the
statistics show that all the variables satisfy the null hypothesis of a normal distribution,
with a significance level of 1%. The partial correlation coefficients are reported in the lower
part of Table 3.
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Table 3. Descriptive statistics and correlation matrix of variables.

EFit Yit XDIit EAit PDit

Mean 0.97 8.64 3.07 26.22 4.06
Std. Dev. (Overall) 0.73 1.46 1.17 22.04 1.34
Std. Dev. (Between) 0.71 1.45 1.14 21.68 1.34
Std. Dev. (Within) 0.15 0.23 0.31 4.52 0.14

Min. −0.78 5.10 1.12 −3.48 0.36
Max. 2.63 11.42 6.34 3.77 8.98

Kolmogorov–Smirnov test 0.08 *** 0.07 *** 0.99 *** 0.88 *** 0.99 ***
Observations 2688 2688 2688 2688 2688
Countries (N) 96 96 96 96 96

Time (T) 28 28 28 28 28
Ecological footprint 1.00

Output 0.89 ** 1.00
Export diversification index −0.52 ** 0.48 ** 1.00
Employment in agriculture −0.80 ** −0.88 ** 0.47 ** 1.00

Population density −0.07 ** 0.06 ** −0.32 ** −0.12 ** 1.00

Note: ** and *** indicate 0.1 and 1% of significance, respectively.

In order to verify that the covariates do not present the collinearity problem, we used
the variance inflation factor (VIF) method. The VIF is the ratio of the variance in the presence
of multicollinearity between covariates, and the variance in the absence of multicollinearity.
The partial correlation between real per capita output and employment in agriculture is
greater than 0.8. However, the two variables are different concepts and are treated as such in
this research. The VIF is the inverse of the partial correlation coefficients. Therefore, when
the VIF is greater than one and less than five, the problem of multicollinearity between the
covariates is not significant [6]. From the test results shown in Table 4, all VIF values are
less than five, which shows that the model does not have collinearity problems.

Table 4. Multicollinearity statistics.

Variable VIF SQRT VIF Tolerance Squared

Employment in agriculture 4.61 2.15 0.22 0.78
Export diversification index 1.46 1.21 0.69 0.31

Population density 1.14 1.07 0.88 0.12
Output 4.68 2.16 0.21 0.79

Mean VIF 2.97
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The analysis of the initial characteristics of the data facilitates the approach of the
econometric strategy following the research objectives and the gap in the literature review.

4. Econometric Strategy

The formulation of the econometric strategy combines several advanced methods of
panel data econometrics. The dependent variable is EFit, and the covariates are agricultural
employment EAit, export diversification index XDIit, population density PDit, and real
per capita output Yit.

4.1. Cross-Section Test

First, we examine the effects of common shock using the Bailey et al. [11]. Aydin [57]
points out that economic cooperation between countries and globalization have allowed
global economies to share common economic, social, and commercial interests. The eco-
nomic interaction between countries is mainly reflected in trade and capital flows [5]. This
fact supports the existence of dependency between cross-sections (CD), the omission of
which would cause the findings to be biased and the conclusions unreliable. Equation (1)
poses the CD test using the following notation:

CD =

√
2T

N[N − 1]

(
N−1

∑
i=1

N

∑
j=i+1

√
Tijρ̂ij

)
CD ∼ N(0, 1) (1)

where N is the sample size, T measures the temporal coverage, and ρ̂ij is the error of the cor-
relations for the individual cross-sections. One of the advantages of Bailey et al. [11] is that
it eliminates the values of the means during the estimation of the correlation components.
Therefore, the CD test has the null hypothesis that there is no cross-sectional dependence
in the data. The statistical significance is determined from the p-value associated with the
statistic and, consequently, the acceptance or rejection of the null hypothesis.

4.2. Homogeneity Slope Test

In the second stage, we determined the homogeneity in the slope between the panels
included in the sample of countries using the Pesaran and Yamagata [16] test. The main
argument for assuming that there is no homogeneity between the slopes of the panels
is that the sample contains highly heterogeneous countries in the institutional quality
associated with the countries’ level of economic and social development. It is logical
to expect that institutional quality will have a heterogeneous effect on the effectiveness
of pro-environmental policies. Furthermore, in the theoretical framework of the EKC,
the perception of the importance of environmental care differs between developing and
developed countries. Therefore, the intensity of the relationship between the variables must
be different between the panels. Equations (2a) and (2b) formalize the slope homogeneity
of the test. The term ∆̌SH is the homogeneity test, and ∆̌Adjusted−SH is the homogeneity-
adjusted test, while k is the lags, and Š is a factor common.

∆̌SH = [N]
1
2 [2k]−

1
2

(
1
N

Š− k
)

(2a)

∆̌Adjusted−SH = [N]
1
2

(
2k[T − k− 1]

T + 1

)− 1
2
(

1
N

Š− 2k
)

(2b)

4.3. Unit Root Test

Third, the existence of cross-section dependence implies the need to use second-
generation unit root tests. In this research, we used the unit root test formalized by
Herwartz and Siedenburg (2008). This test generates reliable results when there is cross-
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section dependence and a heterogeneous slope. Equation (3) formalizes the Herwartz and
Siedenburg [17] test.

tHS =
∑T

t=1 y′t−1∆yt√
∑T

t=1 y′t−1ete′tyt−1

→ dN(0, 1) et = ∆yt = et (3)

The term yt represents the transversal mean of the time, and et is the error term. The
optimal length of the lag is determined using the information criterion of Akaike [58].
Finally, εit is the error term. The null hypothesis of this test is that there is homogeneity in
the slope of the panels.

4.4. Cointegration Test

In the fourth stage, we used the Westerlund [20] cointegration test to determine the ex-
istence of a long-term equilibrium relationship between the five series. Some cointegration
tests, such as those of Kao [59] and Pedroni [60] do not explicitly incorporate cross-sectional
dependence and heterogeneity in the slope in calculating the cointegration vector. One of
the advantages of the Westerlund [20] test is that it allows some flexibility in estimating
cointegration in some of the panels and the entire panel. There may be cointegration in
a large sample of cross-sectional units in a part of the sample and not necessarily in the
whole panel. In addition, the test is flexible, to compare the results between a trending or
non-trending cointegration model. Equation (4) formalizes the test:

αi(L)∆yit = δ1i + δ2it + αi

(
yit−1 − β′ iXit−1 + λi[L]

′vit

)
+ εit (4)

The term αi is the cointegration vector between the five series, βi is the error correction
coefficient that captures the temporal dynamics of the regressors, and δ in the intercept.
The term ∆yit is the dependent variable (EF), and Xit is a covariants matrix. Therefore, the
null hypothesis is that there is no cointegration between the series.

4.5. Short- and Long-Run Elasticities

In the fifth stage, we examined the short- and long-term relationships between the
regressors with the EF. To obtain the short-term elasticities, we implemented the ‘augmented
mean group’ (AMG) approach proposed by Eberhardt and Teal [61] and the common
correlated effects mean group (CCE-MG) method developed by Pesaran [62]. The objective
of estimating the short- and long-term elasticities between the series has two dimensions.
On the one hand, the short- and long-term elasticities allow us to broaden the time horizon
of analysis obtained in the previously formalized models. On the other hand, the AMG
and CCE-MG estimators have been shown to be useful to infer pro-environmental policy
lessons, through normative instruments that consider temporal dynamics. In parallel, the
analysis of the previous models is reinforced by estimating fully modified least squares
(FMOLS) and dynamic ordinary least squares (DOLS) models. One of the advantages of the
FMOLS and DOLS models is that they generate estimators free of endogeneity problems,
sample size bias, and serial correlation [63]. The inclusion of the time horizon is important
because efforts to mitigate environmental degradation have an immediate effect and a
temporarily lagged effect. These tests are formalized in stages in Equations (5a) and (5b).

Stage 1 : ∆EFit = b′∆xit +
T

∑
t=2

ct∆Dt + eit =⇒ ĉt ≡ µ̂t (5a)

Stage 2 : ∆EFit = ai + b′ ixit + cit + diµ̂t + eit =⇒ b̂AMG = N−1 ∑
i

b̂i (5b)

In this case, the first stage includes the first least-squares difference and the second
stage contains cross-sections dependence. In Equations (5a) and (5b), b is the estimators, c
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is a factor common, d is a deterministic component, µ̂ is the error correction factor, and e is
the idiosyncratic error of the model.

5. Results and Discussion

The results of the estimation of the stages of the econometric strategy are reported in
this section. Table 5 reports the estimators and their respective p-value obtained through
the test of Bailey et al. [11], used to verify the dependency in the cross-sections. The
results show sufficient evidence to reject the null hypothesis of independence between the
cross-sections in the five series. The cross-sectional dependence in the sample is a sign
that there is the possibility of a common shock in all the countries covered by the research.
This result implies that shocks to the ecological footprint, agricultural employment, the
export diversification index, population density, or real per capita product generate a
significant impact on the series for the rest of the countries. The ecological environment
faces enormous challenges due to the effects generated by economic activities, particularly
those that directly influence EF, such as agriculture. Several factors explain the existence
of the cross-sections dependence, such as trade agreements, the relocation of industry,
the division of production processes in several countries, and flows of capital and people
can explain the cross-sectional dependency between the series. Some recent research has
used this cross-sectional dependency test to analyze the determinants of environmental
pollution [6,64].

Table 5. Results of cross-section dependence [11].

Series Statistics p-Value

Ecological footprint 220.25 a 0.00
Output 350.74 a 0.00

Export diversification index 347.50 a 0.00
Employment in agriculture 342.92 a 0.00

Population density 350.35 a 0.00
Note: a is significant at 0.1% level.

Table 6 reports the test results of the homogeneity of the coefficients between the
panels using the Pesaran and Yamagata [16] test. The results are consistent with both the
delta, and delta-adjusted estimators, at a significance level of 0.1%. This finding means
that the slope coefficients are not homogeneous. Various economic and environmental
reasons support the existence of heterogeneity in the slope of the panels. On the one hand,
the intensity of the nexus between regressors and EF may differ according to the level of
institutionality achieved by each country [3,65]. Likewise, the heterogeneity in the slope
between the panels may be associated with the effectiveness of pro-environmental policies
and the industrial structure of each country.

Table 6. Results from the Pesaran and Yamagata homogeneity test.

Tests Delta p-Values
−∆ 42.46 a 0.000
−∆adj 48.14 a 0.000

Note: a is significant at 0.1% level.

To determine the unit root properties of the series, we used the second-generation unit
root test of Herwartz and Siedenburg [17]. The results of this test are reported in Table 7.
The null hypothesis of unit root cannot be rejected when the variables are in levels, as
demonstrated by the large p-value (p-value > 0.05). On the contrary, when the series is in
first differences, there is enough evidence to reject the null hypothesis of the non-existence
of a unit root. The EF, agricultural employment, the export diversification index, population
density, and the real product per capita do not have unit roots in differences. Therefore,



Sustainability 2022, 14, 677 12 of 20

the null hypothesis is rejected for the five covariates in all groups of countries. This fact
implies that the series are stationary in first differences and, therefore, are integrated in
order one, I [1]. Several recent investigations in the environmental economics literature
have employed this unit root test [18,19,66–68].

Table 7. Results of second-generation unit root tests [17].

Levels First Differences

96 countries
Ecological footprint −1.15 −3.83 a

Output 1.74 −2.65 b

Export diversification index 0.06 −3.27 a

Employment in agriculture 3.09 −3.51 a

Population density 1.33 −2.67 b

High income countries
Ecological footprint −0.84 −3.72 a

Output 2.13 −1.86 c

Export diversification index 0.08 −2.63 a

Employment in agriculture 2.72 −3.05 a

Population density −0.63 −2.58 b

Middle-high income countries
Ecological footprint −1.89 −3.12 a

Output 1.53 −3.04 b

Export diversification index 0.11 −2.83 b

Employment in agriculture 3.47 −2.73 b

Population density 1.87 −0.97 c

Middle-low income countries
Ecological footprint 1.07 −3.31 a

Output 2.51 −2.71 b

Export diversification index −1.14 −2.91 b

Employment in agriculture 1.34 −3.24 a

Population density 0.99 −0.65 c

Low income countries
Ecological footprint −1.24 −3.34 a

Output −0.21 −1.59 c

Export diversification index −0.24 −2.80 b

Employment in agriculture 0.39 −3.16 a

Population density −1.07 −3.52 c

Note: a, b and c are significant at 0.1%, 1%, and 5% level, respectively.

The cointegration results allow evaluating the dynamics of the relationship between
the series analyzed in a long-term horizon, facilitating the design of mechanisms to mitigate
environmental deterioration. It is well known that the most effective environmental policies
are planned in the long term, by influencing the population’s behavior. Table 8 reports
the results of the cointegration test formalized in Equation (5). One of the advantages of
the Westerlund [20] cointegration test is that it allows comparing the findings obtained
with/without the cross-sectional averages and with/without the time trend. Furthermore,
the estimators allow differentiating the cointegration in some of the panels or all the panels.
The evidence found in this test indicates that there is sufficient evidence to reject the
null hypothesis of non-cointegration between EF, agricultural employment, the export
diversification index, population density, and real per capita output.
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Table 8. Results of the Westerlund [20] cointegration test.

Variance Ratio
Without Cross-Sectional Averages With Cross-Sectional Averages

Without Time Trend With Time Trend Without Time Trend With Time Trend

Statistic p-Value Statistic p-Value Statistic p-Value Statistic p-Value

96 countries
Test some panels −9.20 a 0.00 −11.40 a 0.00 −8.71 a 0.00 −6.42 a 0.00

Test all panels −5.07 a 0.00 −8.61 a 0.00 −4.92 a 0.00 −5.29 a 0.00
High income countries

Test some panels −4.15 a 0.00 −3.40 a 0.00 −4.50 a 0.00 −9.54 a 0.00
Test all panels −3.12 b 0.00 −1.22 b 0.00 −3.07 a 0.00 −7.29 c 0.00

Upper medium income countries
Test some panels −5.36 a 0.00 −3.56 a 0.00 −1.84 a 0.00 −6.97 a 0.00

Test all panels −4.28 a 0.00 −1.96 b 0.00 −5.74 a 0.00 −5.38 a 0.00
Lower-medium income countries

Test some panels −4.89 a 0.00 −6.68 a 0.00 −2.52 a 0.00 −6.27 a 0.00
Test all panels −3.21 a 0.00 −7.40 a 0.00 −3.17 b 0.00 −5.60 b 0.00

Low income countries
Test some panels −5.67 a 0.00 −8.37 a 0.00 −6.92 a 0.00 −5.19 a 0.00

Test all panels −5.14 a 0.00 −7.04 b 0.00 −5.23 c 0.00 −4.48 a 0.00

Note: a, b, and c are significant at 0.1%, 1%, and 5% level, respectively.

Furthermore, all parameters are statistically significant, at least at 5% significance.
Therefore, it is concluded that there is cointegration in all the panels between the series.
The findings of the tests applied for the HIC, UMIC, LMIC, and HIC are consistent with
the results of the overall panel. Several reasons support the equilibrium of relationship
between the variables of this research. First, agricultural employment directly impacts
environmental quality, due to the expansion of the agricultural frontier and the generation
of waste and residues that pollute the soil and the seas. Consequently, agricultural em-
ployment is a factor that affects the overall quality of the environment. Second, the export
diversification index is associated with EF in the long term, because the productive activity
that requires the manufacture and export of goods and services with a greater variety
causes environmental pollution. Third, population density has a long-term relationship
with EF, because the way the population is distributed in the territory determines the level
of demand for consumer goods. Thus, areas with a higher density have higher consumption
levels, which puts pressure on nature’s regeneration and adaptation capacity. Recently,
several applied investigations on environmental deterioration used this methodology to
examine the long-term equilibrium relationship between economic and environmental
variables [69–71].

Table 9 reports the short-term ecological footprint elasticity results obtained through
the augmented means group estimator (AMG) and the common correlated effects (CCEMG).
The unobservable common factors in the AMG method are treated as a common dynamic
process. The CCE-MG method includes unobservable common factors in the stochastic
error term. The CCEMG estimator and the AMG estimator generate robust estimators of
the heterogeneity of the parameters and the cross-sectional dependence. The main differ-
ence between the CCE-MG and AMG estimators is the approximation of the unobserved
common factors. The AMG estimator uses a two-step method to estimate the unobserved
common dynamic effect and allows for cross-sectional dependence, by including the com-
mon dynamic effect parameter.

The findings are quantitatively similar for both short-term elasticities. With the AMG
estimates, the product has a positive and significant effect on EF in the 96 countries, UMICs,
and LMICs. With the CCE-MG estimator, the impact of the real per capita product is also
positive. However, it is significant for almost all groups, except the LICs. For the rest of the
variables, the coefficients have the same sign with both estimators. The first conclusion of
the short-term elasticities is that they are extremely small. However, the explanation for the
result obtained is based on the fact that, in the short term, the impacts of environmental
degradation are not always visible. It takes several years to make visible the magnitude of
the adverse effect of human activity on nature. Destek and Sarkodie [48] and Pata et al. [44]
used the AMG and CCE-MG models in similar environmental investigations.



Sustainability 2022, 14, 677 14 of 20

Table 9. Short-run elasticity.

Panel AMG Panel CCE-MG

96
Countries HIC UMIC LMIC LIC 96

Countries HIC UMIC LMIC LIC

Output 0.81 a 0.58 0.60 c 0.70 a 0.65 0.95 a 1.07 a 1.02 a 0.71 a 0.63
(5.40) (1.59) (2.50) (4.27) (1.48) (7.80) (4.11) (6.33) (4.09) (1.44)

Export
diversification index 0.06 0.14 0.06 0.04 0.03 0.04 0.07 0.06 0.02 0.04

(1.40) (1.74) (0.76) (0.79) (0.96) (1.55) (1.34) (1.03) (0.37) (1.30)
Employment in

agriculture 0.0004 0.0002 −0.01 0.03 0.02 0.005 −0.01 −0.01 0.02 0.02

(0.03) (0.01) (−0.48) (1.11) (1.55) (0.39) (−0.69) (−1.05) (0.79) (1.74)
Population density 2.97 −0.75 13.59 1.50 −14.86 0.35 −1.46 10.26 −3.31 2.37

(0.69) (−0.20) (1.21) (0.17) (−0.93) (0.09) (−0.57) (1.15) (−0.43) (0.63)
c_d_p 1.08 a 0.86 a 1.11 a 1.06 b 0.96 a

(3.87) (3.67) (3.30) (3.08) (4.28)
Trend 0.0001 −0.0001 −0.0003 0.0004 −0.0003 0.0001 −0.005 −0.0003 0.0005 −0.0003

(0.28) (−0.72) (−0.96) (1.41) (−0.62) (0.47) (−0.28) (−1.20) (1.23) (−0.93)
Ecological footprint

_avg 1.18 a 0.81 a 1.43 b 1.21 b 1.01 a

(3.78) (3.45) (3.05) (3.01) (4.12)
Output _avg −0.73 c −0.16 −0.62 −0.47 −0.63 b

(−1.97) (−0.31) (−1.12) (−1.14) (−2.82)
Exports _avg −0.10 −0.11 −0.11 −0.04 −0.003

(−0.91) (−0.66) (−0.92) (−0.40) (−0.05)
EA_avg 0.03 −0.01 0.02 −0.02 −0.02

(0.96) (−0.20) (0.53) (−1.18) (−0.69)
DP_avg 3.38 −2.64 0.58 2.03 26.02

(0.75) (−0.76) (0.07) (0.26) (1.19)
Constant −0.001 0.02 0.01 −0.01 0.01 −0.01 a −0.004 −0.07 b −0.05 a 0.03 b

(−0.29) (0.58) (0.92) (−0.88) (0.70) (−3.57) (−1.28) (−3.15) (−3.58) (3.17)

Observations 2688 952 700 840 196 2688 952 700 840 196
Countries [N] 96 34 25 30 7 96 34 25 30 7
Chi-squared 30.87 9.592 14.72 21.33 4.24 62.09 18.98 56.23 18.27 4.77

Note: a, b, and c are significant at 0.1%, 1%, and 5% level, respectively.

Table 10 reports the elasticities of the EF, concerning the long-term covariates obtained
using the FMOLS and DOLS models. Both models consider the serial correlation and
endogeneity that may exist in the model. The two models generate similar results for each
variable, in terms of sign and statistical significance, although they vary slightly in terms of
magnitude. The DOLS results show that the real product per capita significantly impacts
the EF in the global panel, UMICs, and the LICs. In HICs, in addition to the real per capita
product, the population density is also significant at 1%. The export diversification index
in this group reduces the EF. Agricultural employment only has a negative impact on EF
in LMICs.

This result is consistent with the countries’ economic structure, since their productive
matrix is not sufficiently diversified, and production is based on primary activities. On the
other hand, in the results of the FMOLS model, almost all the variables are significant in
all groups of countries. The real per capita product and the export diversification index
positively impact the EF in almost all groups, with a significance level of 1%. Employment
in agriculture and population density reduces EF, although the magnitude of the impact is
small and is not significant in LMICs and LICs. Findings on the long-term elasticities of
EF suggest that the export diversification index, agricultural employment, and population
density play an important role in determining the EF in the countries included in the
research. Unlike the short-term elasticities, the long-term ones allow a clear visualization of
the impact of the covariates on the EF. These results highlight the importance of broadening
the time horizon in understanding the factors that influence environmental pollution.

A rigorous analysis of the causality between the variables is necessary for the construc-
tion of solid pro-environmental policy. We used the approach proposed by Dumitrescu and
Hurlin [72], which considers the heterogeneity between the series. Table 11 presents the
results of the test panel average and the probability values associated with each variable.
The null hypothesis of non-causality is rejected for the 96 countries. In this group, there is
bidirectional causality between the EF and the export diversification index; and between
EF and employment in agriculture.
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Table 10. Long-run elasticity.

Panel-FMOLS Panel-DOLS

Coefficient t-Statistic Coefficient t-Statistic

96 counties
Output 1.06 a 80.07 0.43 b 10.48

Export diversification index 0.10 a 21.86 −0.14 −1.48
Employment in agriculture −0.01 a −17.44 −0.04 −1.67

Population density −2.85 c −3.39 1.16 0.09
High income countries

Output 1.38 a 54.23 0.23 c 4.77
Export diversification index 0.15 a 2.33 −0.16 c −2.20
Employment in agriculture −0.02 b −11.85 −0.06 −0.95

Population density −9.06 c −2.41 8.34 c 2.32
Upper-medium income countries

Output 1.11 a 55.38 0.75c 6.56
Export diversification index 0.12 b 16.00 −0.18 −1.13
Employment in agriculture −0.02 b −9.18 −0.06 −0.24

Population density −1.47 c −3.82 −1.07 −1.73
Lower-medium income countries

Output 0.75 a 28.42 0.33 c 3.89
Export diversification index 0.02 −1.70 −0.10 0.51
Employment in agriculture 0.00 b −8.95 −0.01 c −2.10

Population density −2.03 −0.16 −5.32 −0.80
Low income countries

Output 0.75 b 13.50 0.68 c 7.84
Export diversification index 0.06 b 7.24 0.02 0.45
Employment in agriculture −0.00 c −2.59 −0.02 0.71

Population density 1.49 0.31 2.05 0.14

Note: a, b, and c are significant at 0.1%, 1%, and 5% level, respectively.

Table 11. Results of Dumitrescu and Hurlin [72] panel causality test.

Relation Statitis 96
Countries HIC MHIC MLIC LIC

Ecological footprint −→ Output Z-bar 4.31 c 3.30 c 0.91 2.33 2.14
p-value 0.02 0.05 0.51 0.08 0.12

Output −→ Ecological footprint Z-bar 1.16 0.19 −1.06 0.76 4.31 c

p-value 0.43 0.85 0.36 0.48 0.02

Ecological footprint −→ Export diversification index Z-bar 4.00 c 2.01 2.28 2.99 b −0.13
p-value 0.05 0.15 0.18 0.01 0.93

Export diversification index −→ Ecological footprint Z-bar 7.64 a 2.50 5.13 a 6.12 b 0.43
p-value 0.00 0.11 0.00 0.01 0.72

Ecological footprint −→ Employment in agriculture Z-bar 3.92 c 4.12 a 0.41 0.82 2.94 c

p-value 0.02 0.00 0.68 0.51 0.03

Employment in agriculture −→ Ecological footprint Z-bar 4.81 a 2.94 c 1.69 2.96 c 2.02 c

p-value 0.00 0.03 0.12 0.03 0.03

Ecological footprint −→ Population density Z-bar −0.88 2.11 −0.75 −2.32 −1.69
p-value 0.50 0.13 0.49 0.08 0.06

Population density −→ Ecological footprint Z-bar 0.22 2.31 1.66 −2.95 a −1.32
p-value 0.87 0.06 0.17 0.00 0.08

Note: a, b, and c are significant at 0.1%, 1%, and 5% level, respectively.

Furthermore, we found a unidirectional causal relationship that goes from the EF to
the real per capita product in the global panel. In the HICs, we found a unidirectional causal
relationship from the EF to the real per capita product, and a two-way causal relationship
between EF and employment in agriculture. In the LICs, the findings show unidirectional
causality from the real per capita product towards EF and bidirectional causality between
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EF and employment in agriculture. In the MLICs, we found a two-way causal relationship
between the EF and the export diversification index; and a one-way causal relationship
from population density to EF. Finally, in the MHICs, we found unidirectional causality
from the index of diversification of exports to the EF.

6. Conclusions and Policy Implications

Globally, about 44% of the population still lives in rural areas, who are mainly em-
ployed in agricultural activities. Agricultural employment has a significant impact on
environmental quality, because it generates waste that is dumped directly into the soil
or water. In addition, agricultural employment activities are related to the occupation
of arable land and the expansion of the agricultural frontier, which reduces plant cover.
Consequently, agricultural activities are a significant source of environmental deterioration
and pressure on the regeneration capacity and absorption of waste by nature. In paral-
lel, agricultural and industrial production has diversified in recent years, in response to
increasing consumption levels. In this sense, agricultural employment and the diversifi-
cation of exports play an essential role in providing food and other consumer goods for
the urban population, reducing the barriers imposed by geographical distance. These
aspects motivate an exhaustive analysis of the impact of agricultural employment and
the export diversification index on the integral quality of nature, as measured by EF. EF
reflects the degree of environmental deterioration in a more comprehensive way than other
indicators of environmental degradation. In order to achieve the objective of this research,
we employed a set of second-generation panel data econometrics techniques to examine
the behavior of the EF.

The sustainability of economic development requires environmental sustainability as
part of a dynamic process. In order to achieve the objective of this research, we employed
a set of second-generation panel data econometrics techniques to examine the behavior
of the EF. We included four regressive variables in the quantitative models: agricultural
employment, the export diversification index, population density, and real per capita
output. In addition, the estimated models include the dependency on cross-sections and
the heterogeneity of slope. This fact allows us to obtain estimators consistent with the
recent environmental literature and consistent with the characteristics of the data.

The conclusions of the research are synthesized in the following items: First, we
found a long-term relationship between EF and the four covariates, both at the level of
the global panel and of the four groups of countries. Second, these results support several
policy implications. On the one hand, those responsible for environmental policy must
consider that, in the long term, activities associated with agricultural employment can
cause permanent changes in EF, which poses a risk to the environmental sustainability
of economic development. On the other hand, business and political efforts to diversify
the portfolio of export products directly impact environmental quality as measured by
the EF. High-income and upper-middle-income countries should lead efforts to achieve
environmental sustainability. Specifically, this group of countries could focus on stricter
regulation of companies exporting manufactured products to developing countries. The
trade-in of environmentally friendly products benefits society by improving the quality of
life, which produces a healthier environment. Likewise, the countries of both groups of
countries could make information on the capital flows associated with investment firms
in developing countries transparent, to improve environmental regulation. In addition,
lower-middle and lower-income countries should apply stricter environmental regulations
to companies engaged in agriculture oriented towards international trade. Developing
countries need to adopt good environmental practices in activities associated with foreign
investment. Sustainable development objectives must take precedence over the maxi-
mization of non-inclusive growth. In the long term, traditional practices of maximizing
production will leave developing countries without natural resources and without a green
and inclusive development.
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Second, regulations aimed at protecting the environment should consider that envi-
ronmental impacts are more visible in the long term than in the short term. Therefore,
environmental policy decisions cannot be based only on short-term evidence, and the focus
of economic sustainability should be associated with the medium and long term. Third, the
results offer partial evidence in favor of the EKC, particularly concerning export diversifi-
cation. Third, using the causality models, we conclude that there is enough evidence to
give concern about the sustainability of economic and social development. We show that
agricultural employment and the export diversification index have a causal relationship
with EF. These results should constitute a call for collective actions by the countries regard-
ing the current situation of the environment and the future sustainability of the economic
development model. The main limitations of our research are the lack of more recent data
from the series and the lack of data for all countries. Future research should deepen the
analysis of the factors that influence the behavior of EF and the search for environmental
mitigation mechanisms that guarantee the quality of life of future generations.
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