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Abstract: Under-canopy natural regeneration of Scots pine (Pinus sylvestris L.) stand is able to create
stands with a complex structure, which are characterised by greater resistance to extreme phenomena
related to climate change. The main aim of the work was to analyse the potential of pine undergrowth,
its role in the stand, and its usefulness in further breeding plans to create stands of various structure,
with greater stability and tolerance to stress factors, including greater resistance to climate change.
The study was carried out in north-eastern Poland, in pine stands thinned by strong (hurricane level)
wind in 2002. The study area covers 225.2 ha and is located in 29 stands. Naturally regenerated
pine saplings with a minimum height of 0.5 m, characterised by a high density, growing under the
upper cover of the stand, with varying degrees of thinning, were qualified for the study. On average
7.820 pine saplings were recorded in the area of one hectare. Over 65% of the examined saplings
were determined to be of very good or good quality, prognostic for further development and the
creation of the main stand in the future. The principle of increasing the structural diversity of stands
is the method of increasing the adaptability of forests to environmental changes.

Keywords: Pinus sylvestris; natural regeneration; climate change

1. Introduction

Worldwide, climate change has posed a significant threat to forests due to the increas-
ing heat and aridity, shifting rainfall patterns and extreme weather events [1]. The currently
observed climate changes, especially sudden violent weather phenomena are major stres-
sors for forests [2,3], reducing stability and resistance to harmful factors occurring in Central
European forests [4]. Temperature variation, precipitation, and long-term changes in vege-
tation [5] are among the most important factors influencing forest stand structures [6–9].
The literature describes increased tree mortality in temperate forests [10,11]. Models of po-
tential tree range changes indicate that the habitat conditions in most of Europe, including
Poland, will become unfavourable for Scots pine (Pinus sylvestris L.), which may result in
the withdrawal of this species from a significant part of its range in the near term. The main
reasons for the potential tree range changes will be an increase in carbon dioxide concen-
tration and an increase in the average global temperature [12,13]. In this situation, forest
management faces a great challenge to develop methods of silviculture to maintain the
health and vitality of forest ecosystems at a sufficiently high level [14,15], which will ensure
the emergence of healthy, climate-resistant stands, which can be regenerate naturally.

Scots pine (Pinus sylvestris L.) is the most widespread conifer species in the world. It
occurs in almost all coniferous habitats in the northern hemisphere, and its share in Europe
is 29.6% [16,17]. In the past, this species was artificially renewed by planting on felling [18],
but natural regeneration is now used to an increasing extent [19,20]. Planting/seeding
dominates in annual regeneration in both north (71.2%) and central-east Europe (66%).
In central-west Europe, natural regeneration is the most common regeneration type. For
example, 74.7% of the annual regeneration in Germany, respectively 85.3% in Switzerland,
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is natural. In European forests average for natural regeneration is 68% [17]. However,
natural pine regeneration under the canopy of other tree species is relatively rare [21,22]. It
is difficult to create and maintain durable structures of different ages [23]. Under favourable
conditions (considering the light requirements), the species can regenerate under the canopy
of the parent stand [20,24,25]. The use of under-canopy natural regeneration promotes the
formation of stands with a complex structure, characterised by greater stability and toler-
ance to stress factors [26], including stands characterised by greater resistance to climate
change [27]. Currently, due to climate change, the need to maintain the continuity growing
of forests on the smallest spatial scale is emphasised, and there is an underscoring of the
reconstruction of the existing one-century monoculture stands [28,29], in line with the
“Close to Nature” theory [30,31]. Natural regeneration is an important element in imple-
menting an ecological management model [32], seeking to ensure the sustainability of the
forest [33]. Properly shaping the stand structure is an important tool for mitigating future
climate change in forests, especially drought [34], but also hurricanes, which more and
more often cause damage to stands [35,36]. The gap made by strong winds can contribute
to the creation of good conditions for under-canopy pine natural regeneration [37].

The currently small amount of pine under-canopy natural regeneration should encour-
age the use of local clumps (groups) of pine renewals. To date, there have been few studies
that focus on under-canopy pine saplings [20,38,39]. The conducted study (a) analysed
Scots pine under-canopy natural regeneration after hurricane winds, (b) analysed the role of
saplings in pine stands and estimated the growth opportunities of a given tree, (c) analysed
the use of a young forest generation to optimize further breeding plans and create stands
with a diversified structure, and (d) looked for alternative methods of renewing Scots pine
in a changing climate, in particular, strong winds.

2. Materials and Methods
2.1. Study Area and Sample Design

The study was carried out in north-eastern Poland, in pine stands of the Nowogród
Forest District belonging to the Regional Directorate of the State Forests in Białystok (Figure 1).
On 4 July 2002, a hurricane struck the central and northern areas of this forest district, causing
forest damage. The study area was dominated by poor, dry habitats (86%). The dominant
species (in terms of the area covered) was Scots pine, which formed mostly single-species
stands with only a slightly diversified spatial structure (approx. 92% of the total forest area of
the forest district). For this reason, they succumbed to the strong wind with ease.

Features characterizing the climate of study areas: the length of the growing season is
approx. 210 days, the average temperature during the growing season–approx. 13.2 ◦C,
the sum of rainfall during the growing season–approx. 455 mm, the average annual
temperature—7.7 ◦C, annual rainfall—697 mm, relative air humidity—79% [40].

Following the suggestion of the Forest Service, the study analysed selected pine stands
thinned by strong (hurricane level) winds, growing in a fresh coniferous forest habitat,
aged 49 to 117 years. Tree stands in age classes 4 and 5 accounted for nearly 60% of the
stands over the analysed saplings. The indicated stands were then surveyed on linear trails
(every 15 m) to determine the location of pine regeneration under the canopy.

Naturally regenerated pine saplings with a minimum height of 0.5 m, characterised by
a high density, were qualified for the study (Scheme 1). The edge of the tuft was established
by delineating the outermost individuals in the tuft with saplings forming distinct clumps
of growth cones. Thus, the young generation of saplings (at least 50 cm high) growing
under the upper stand cover (giving hope for future stand establishment) was taken as
saplings.The analysed saplings grew under the canopy of the stand with various thinnings
(planting factors from 0.5 to 1.0, which corresponded to a specific density of the cover
stand-value 0.5, there are wide gaps between the crowns, in which one can easily fit one or
even two trees, 1.0, tree crowns are touching at the edges or partially overlapping). The
study area was 252.2 ha and included 29 Scots pine stands.
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Figure 1. Location of (A) Nowogród Forest District in Poland, (B) the analysed stands in the
Nowogród forest district (explanations of the colours on the map: brown—analysed stands, green—
other stands in Nowogród forest district), green line—border of the Nowogród forest district.

Measurements were taken on 6860 individual pine saplings from sub-canopy natural
regenerations. A total of 65 clumps of pine saplings were inventoried in areas ranging from
15 m2 to 2.340 m2. The average size of the clusters was 407.5 m2 (Table 1).
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Scheme 1. Under-canopy natural regeneration of Scots pine (Author: Anna Zawadzka).

Table 1. Basic characteristics of the research stands.

Sample Stands
Number

Stand Area
[ha]

Stand Age
[Years]

Stand Height
[m] Planting Factor Number of

Clumps
Average Area of the

Clump [m2]

1 2.21 97 27 0.7 1 648

2 2.03 67 23 1.0 1 1350

3 0.94 67 19 0.7 2 479

4 10.91 87 23 0.8 1 340

5 7.17 77 20 0.6 3 143

6 9.25 87 23 0.8 4 412

7 1.51 72 18 0.9 1 65

8 32.93 83 21 0.7 2 296

9 9.59 102 26 0.7 2 460

10 6.65 102 25 0.8 2 582

11 6.77 47 18 0.5 1 2340

12 17.76 69 18 0.7 1 66

13 6.18 67 17 0.8 1 20
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Table 1. Cont.

Sample Stands
Number

Stand Area
[ha]

Stand Age
[Years]

Stand Height
[m] Planting Factor Number of

Clumps
Average Area of the

Clump [m2]

14 3.16 92 23 0.9 1 15

15 3.95 60 20 0.8 2 241

16 10.46 98 20 0.8 8 539

17 4.51 87 23 0.7 5 279

18 3.88 52 18 0.7 1 105

19 3.31 57 21 0.7 2 103

20 3.55 49 19 0.9 1 65

21 6.11 69 23 0.7 1 154

22 1.98 91 26 0.8 3 186

23 9.82 91 25 1.0 2 298

24 11.94 117 30 0.9 6 141

25 9.95 115 29 0.5 4 203

26 2.36 60 21 0.7 2 101

27 5.40 92 26 0.7 2 195

28 19.12 110 26 1.0 2 30

29 11.80 111 26 0.8 1 48

The study looked at pine clump shape and area, saplings height, and saplings devel-
opment category. A visual assessment of the clump shape was performed according to
the following criteria: regular clumps—oval similar to a circle or of a shape similar to a
square (the diagonals did not differ significantly); strip clumps—rectangular in shape (one
of the sides was longer than the adjacent side); irregular clumps—a lack of proportions
between the sides, with many bends of the sides forming polygonal geometric figures.
When determining the development category (tendency), the following criteria were taken
into account: Category I—saplings with a positive prognosis for further development, no
excess needles, no disease features, mechanical damage, or physiological damage; Cate-
gory II—saplings stagnant in height with distinct features of a lack of light; trees with the
possibility of promotion and strengthening of the main shoot, without any disease features
or significant mechanical damage; Category III—saplings with a negative prognosis, with a
damaged top, with a strongly crooked trunk, with mechanical damage, disease features, or
strong defoliation with low breeding quality.

2.2. Data Analysis

A statistical analysis of pine saplings was performed using Statistica 13 software [41].
For measurable variables, arithmetic means, standard deviations, and the range of vari-
ability (extreme values) were calculated. The frequency of their occurrence (percentage)
was also calculated for the qualitative variables. All of the quantitative variables were
checked with the Shapiro-Wilk test to determine the type of distribution [42]. A comparison
of qualitative variables between the groups was made using the chi-square test (χ2) [43].
The comparison of quantitative results between groups was performed using the Kruskal–
Wallis test and a posthoc test (Tukey test). An analysis of Spearman’s rank correlation
between the selected variables was also performed [44]. The level of α = 0.05 was assumed
for all comparisons.
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3. Results

Based on the results, pine saplings were divided into three development categories us-
ing data collected from 6860 individuals pine saplings, under-canopy natural regeneration,
growing in 65 clumps.

The average height of the stand above the clumps of saplings was 23.7 m. The average
age of the stand was 91.3 years. There was an average of 7.820 pine saplings in one hectare,
with at least 609 saplings per ha, and max. 40.714 saplings per ha (Table 2).

Table 2. Characteristics of the measured saplings and their division into development categories.

Density
[N·ha−1]

Height of
the Sapling

[m]

Planting
Factor

Stand Age
[Years]

Stand
Area [ha]

Stand
Height [m]

Average Area of
the Clump [m2]

All
saplings

Mean 7820 2.81 0.75 91.3 8.51 23.7 407.5

min 609 0.75 0.50 47.0 0.94 17.0 15.0

max 40,714 12.00 1.00 117.0 32.93 30.0 2340.0

Sd 6774 1.54 0.14 19.7 5.98 3.9 458.6

Category
I

Mean 8220 3.12 0.70 91.6 8.70 23.9 413.8

min 609 0.80 0.50 47.0 0.90 17.0 15.0

max 40,714 12.00 1.00 117.0 32.90 30.0 2340.0

Sd 6863 1.70 0.14 20.5 6.40 4.1 502.0

Category
II

Mean 7220 2.45 0.80 92.1 8.60 23.4 421.9

min 609 0.80 0.50 47.0 0.90 17.0 15.0

max 40,714 12.00 1.00 117.0 32.90 30.0 2340.0

Sd 6679 1.19 0.13 18.3 5.60 3.8 413.9

Category
III

Mean 8114 2.42 0.80 88.2 7.80 23.8 351.6

min 609 0.80 0.50 47.0 0.90 17.0 20.0

max 40,714 7.50 1.00 117.0 32.90 30.0 2340.0

Sd 6634 1.46 0.14 20.4 5.80 3.7 420.9

The saplings in development category I were characterised by the highest abundance
among the examined saplings. A difference in the number of saplings occurred between
development categories I and III, and category II (which was the least numerous). The best
quality saplings accounted for 34.9% of the total number of inventoried saplings (lower
quality saplings accounted for 33.4% and stagnant saplings for 30.7%). The number of
young pines per 1 ha of area varied among the development categories (Figure 2a).

The average height of pine saplings was 2.81 m, but differed depending on the de-
velopment category (Figure 2b). The maximum and minimum average height differences
were above 10 m for development categories I and II. The height of the category III saplings
had the highest coefficient of variation (59.9%) and the category II saplings had the lowest
(48.6%). The mean height value was 54.8% (Table 3).
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Figure 2. (a) The number of young pines per 1 ha in each development category; (b) height of young
pines in each development category.

The height of saplings included in the first development category decreased (rs −0.18)
with increased numbers. Moreover, the forestation factor (−0.11) influenced the density of
saplings (category II). For all categories, the age of the surrounding forest stand had a positive
effect, and the number of saplings increased with the transition to older age classes (Table 4).

The growth of saplings in clumps (bio-groups) was also observed. During the mea-
surements, a characteristic biosocial system was visible between the individual saplings in
a clump. The tallest and relatively best quality saplings were usually in the centre of the
clump, and the poorer quality saplings grew on the edges, often providing cover for trees
inside the bio-group.

The mean sapling density differed between the clump shape categories (p < 0.01;
F = 263.9; df = 2). In development categories I and II, the most numerous pine saplings
were located in regular-shaped clumps (on average, 9680 saplings per ha). In turn, in
category III, the highest pine density occurred with an irregular clump shape. In all
development categories, the strip shape had the smallest number.

On average, 40% of the inventoried saplings had intermittent cover (planting factor
0.5–0.6) or full cover (planting factor 0.9–1.0), while 20% of pine saplings had moderate
density cover (planting factor 0.7–0.8). For all development categories, a downward trend
in numbers was noted along with an increase in the tree planting factor (to the value of
0.7–0.8). With the increase in the value of the planting factor (0.9–1.0), the sapling density
also increased (by over 52%, on average).

A positive relationship was found between the number of saplings and the age of the
upper stand. The smallest number was observed under the canopy in age classes 4 and 5
(on average, 5.615 per ha). As the parent stand progressed to the older development stages,
the number of saplings increased, reaching the highest value under the age class 6 stand
(on average, 12.934 saplings per ha).
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Table 3. Pine saplings’ density depending on the development category and the clump shape,
planting factor, and age class.

Overall Sapling Category I Category II Category III

Density [N·ha−1] 7820 (6774) 8220 (6161) 7220 (6679) 8114 (6634)

Height of the sapling [m] 2.81 (1.54) 3.12 (1.70) 2.45 (1.19) 2.42 (1.46)

Stand height [m] 23.7 (3.9) 23.9 (4.1) 23.4 (3.8) 23.8 (3.7)

Planting factor 0.75 (0.14) 0.70 (0.14) 0.80 (0.13) 0.80 (0.14)

Stand age [years] 91.3 (19.7) 91.6 (20.5) 92.1 (18.3) 88.2 (20.4)

Coefficient of variation in density [%] 86.6 83.5 92.5 81.8

Coefficient of variation in sapling
height [%] 5400200458 54.2 48.6 59.9

N·ha−1 % N·ha−1 % N·ha−1 % N·ha−1 %

Clump shape:

irregular 8014
(6985) 35.3 8550

(7270) 35% 7161
(6593) 30% 8342

(6753) 35%

rigger 5128
(4176) 22.6 5666

(4546) 37% 4699
(3794) 31% 4850

(4001) 32%

regular 9586
(7451) 42.2 9589

(7285) 35% 9770
(7926) 35% 8248

(6972) 30%

Planting factor

0.5–0.6 (broken canopy closure) 11.847
(7906) 41.1 11.633

(8081) 32% 12.133
(7523) 34% 12.079

(8159) 34%

0.7–0.8 (moderate canopy closure) 5648
(3454) 19.6 5778

(3372) 33% 5197
(3316) 30% 6466

(3857) 37%

0.9–1.0 (full canopy closure) 11.356
(9951) 39.4 12.335

(9628) 37% 10.581
(10479) 32% 10.474

(9463) 31%

Age class:

Age class III (41–60 years) 6891
(5370) 22.2 6239

(5398) 29% 7360
(5513) 35% 7643

(4951) 36%

Age class IV (61–80 years) 5832
(3406) 18.8 5744

(3079) 31% 5399
(3552) 30% 7145

(3628) 39%

Age class V (81–100 years) 5398
(3217) 17.4 5516

(3264) 33% 5019
(2912) 30% 6119

(3721) 37%

Age class VI (101–120 years) 12.934
(9321) 41.6 13.835

(8671) 36% 11.924
(9805) 32% 12.357

(9980) 32%

In parentheses standard deviation values.
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Table 4. Intra-group correlations of selected characteristics of pine saplings in given developmental categories.

Development Category Average Density
[N·ha−1]

Average Height
of Sapling [m]

Planting
Factor Stand Age

Category I

Average density [N·ha−1] rS 1 −0.18 * −0.02 0.41 *
Average height of sapling [m] rS −0.18 * 1 0.01 −0.06

Planting factor rS −0.02 0.01 1 0.07 *

Stand age [years] rS 0.41 * −0.06 0.07 * 1

Category II

Average density [N·ha−1] rS 1 −0.09 −0.11 * 0.29 *

Average height of sapling [m] rS −0.09 1 −0.05 * 0.02 *

Planting factor rS −0.11 * −0.05 * 1 −0.05 *

Stand age [years] rS 0.29 * 0.02 * −0.05 * 1

Category III

Average density [N·ha−1] rS 1 0.11 −0.03 0.24 *

Average height of sapling [m] rS 0.11 1 −0.09 −0.02

Planting factor rS −0.03 −0.09 1 0.10 *

Stand age [years] rS 0.24 * −0.02 0.10 * 1

rS—Spearman’s correlation coefficient; *—correlation coefficients significant at the level of p < 0.05.

4. Discussion

Pine forests are an important component of the forest ecosystems of Central Eu-
rope, and they are usually located on poor and dry sandy soils. In these areas, climate
change can result in even more extreme dry and warm periods during the growing
season [20,45–47]. Warming climates also increase frequencies of catastrophic winds [48,49].
In Poland an increase in the frequency and amplitude of strong winds, with intense rain-
fall is expected [50–53]. The use of pine under-canopy natural regeneration is an activity
conducive to forest management in the conditions of climate change and more frequent
extreme weather phenomena at the local level. The increase in frequency and intensity
of natural events [54] suggests large losses in future forest value [13]. Adapting forests
to climate change is therefore one of the major challenges for forest management [55–58].
To mitigate climate change risks and reduce vulnerability of forests in the face of climate
change, adequate adjustments to forest management are required [1,9]. Species diver-
sity, tree height variability, and spatial diversity are among the main factors influencing
stand resistance [20,48].

Natural regeneration of Scots pine under the canopy of other tree species is relatively
rare [21,22,46] because it is an extremely light-requiring species [24,50]. However, the
current study found that it can successfully regenerate naturally under the canopy of a
stand. Some studies suggest that Scots pine seedlings cannot survive under a dense canopy,
while others have found that they can survive for about 20–25 or even 45–60 years [24,51].

The study area was characterised by a large number of saplings (from 609 to as much
as 40.714 per ha, with an average of 7820 per ha). Under forest management in Poland,
the standard number of pine trees selected as good trees in a coniferous forest habitat
is 500–600 trees/ha [59], aged about 20–40 years, depending on the site valuation [60].
Therefore, considering the number of measured saplings, they are useful in further plans,
as such a high density allows the best specimens to be selected for further breeding.
Although healthy and well-developed trees dominated, a relatively large share of saplings
with features of insufficient light availability is an indication to improve insufficient light
conditions. An excessively long period of growth under unfavourable conditions may
significantly reduce the value of this layer. Trees left for further cultivation should usually
have a straight trunk, a narrow, symmetrical crown, and growing without the upper cover
of the stand (these elements are largely shaped by the features of the cover stand and
the degree of density of the saplings themselves). The good quality of the inventoried
saplings does not mean that they will become a valuable component of the next generation.
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The reaction of the trees to full access to light will be of great importance since stunted
saplings that remain under a large upper cover can accelerate growth after thinning the
cover stand [37].

High light availability is a key factor in the growth and survival of understory
seedlings [61]. In the current study, the smallest saplings were recorded under the canopy
of a stand with a tree planting factor of 0.7–0.8. Andrzejczyk [37] found that it is necessary
to thin a stand to a planting factor value of 0.4–0.5 to obtain successful regeneration under
a pine canopy. This corresponds to the current study results (the highest density of young
pines was recorded at planting factor of 0.5–0.6). However, this may have been due to
the increased development of the herbaceous layer or slowing (or even suppressing) the
emergence of seedlings by limiting seed contact with mineral soil [62]. The sapling density
also increased with an increase in the planting factor (0.9–1.0) in the examined plots. This
increase was probably, because a moderately dense canopy in dry places prevents the
upper soil layers from drying out [63,64]. However, competition with parent trees may be a
limiting factor, especially in dry and poor habitats [65–69]. According to Andrzejczyk [55],
the cover stand should be thinned relatively early and heavily in areas with low rainfall.

The increasing frequency of random phenomena such as hurricanes, pollution, and
insect plagues often contributes to a reduction of stand density which, in turn, influences
the shaping of optimal conditions for the formation of under-canopy regeneration [70].
The gap dynamics are closely related to natural regeneration methods [24,71–73]. Close-to-
nature management uses canopy gaps [74–76] to stimulate the natural regeneration process.
Naturation regeneration can serve as an alternative or supplement both to conventional
large-scale management and gap regeneration. In forests with significant non-production
functions it can be used to increase their structural variability and resistance [77,78]. A
high coefficient of variation in sapling height (approx. 50%), especially with a diversified
height structure, is characteristic of pine saplings growing under a canopy [79]. Trees in
stands with a different height structure are characterised by thinner branching, greater
wood density, and less convergence of trunks [80,81]. The possibility of including pine
saplings in further breeding planning could reduce the frequency of complete felling in
favour of shaping stands with a more diversified spatial structure, thus increasing their
naturalness and shortening the regeneration time [26]. Stands with a diversified structure
are generally more resistant and thus show a greater adaptive potential to changes in the
environment [82]. The ability of these stands to regenerate after disturbances and damage
caused by, e.g., strong winds or harmful insects, is also usually greater than that of stands
with a simplified vertical structure [83]. The abandonment of schematic cuts creates a richer
ecosystem and diversifies the spatial structure of the forest, increasing the attractiveness of
a forest complex for performing social functions.

Initiating the under-canopy natural pine regeneration requires extensive knowledge
and observation of the processes taking place in the forest environment. Understanding the
dynamics, patterns, and factors determining the success or failure of regeneration is now
essential knowledge in forest management [84]. One of the most important goals of natural
forest cultivation is to create multi-layered, multi-century stands [18]. “Close to nature”
forest management has recently been gaining increasing interest as a way to increase the
resilience of forests and their ability to adapt to climate changes [85–90].

5. Conclusions

Using under-canopy natural pine regeneration is a technique in forest management to
maintain an appropriate level of health and vitality of forest ecosystems. The principle of
increasing the structural diversity of stands is the method of increasing the adaptability of
forests to environmental changes.

Conducted research concerned the analysis of natural regeneration of Scots pine
resulting from hurricane winds, as well as the role of seedlings in pine stands and the
assessment of the growth potential of a given tree. Moreover, the use of young forest
generation was analysed in order to optimize further breeding plans and to create stands
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with a diversified structure. An important aspect of the conducted analyses was also the
search for alternative methods of pine regeneration in a changing climate, especially in
strong wind.

As a result of the analyses conducted, it was found that more than 65% of the examined
seedlings were considered of very good or good quality, promising for further development,
without disease traits and mechanical and physiological damage. Among the tested
seedlings, the most numerous were those of developmental category I, which indicates
the possibility of using pine seedlings in breeding plans for the creation of future stands.
The specific density of the shelterwood stand affected the density of seedlings, while the
age of the surrounding stand positively affected the transition to older age classes and
increased the number of seedlings for all developmental categories. The highest number of
regenerating pine seedlings under the canopy was found in stands with a canopy cover
index of 0.5–0.6, while the number of seedlings increased (to nearly 13.000 per ha) in older
developmental stages. The analysed pine seedlings may be taken into account in further
breeding plans and in the future shaping of the main stand. Spontaneously arising pine
saplings may also help to diversify the stand structure, further increasing its stability and
resistance to climate changes.
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1996, 60, 15–21. (In Polish)
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Sylwan 2015, 159, 12. (In Polish)
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