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Abstract: Rule-based micro-grid dispatch strategies have received significant attention over the last
two decades. However, a recent body of literature has conclusively shown the benefits of opera-
tional scheduling optimisation while optimally sizing micro-grids. This is commonly referred to as
micro-grid design and dispatch co-optimisation (MGDCO). However, as far as can be ascertained,
all the existing MGDCO models in the literature consider a 24-h-resolved day-ahead timeframe
for the associated optimal energy scheduling processes. That is, intelligent, look-ahead energy
dispatch strategies over multi-day timeframes are generally absent from the wider relevant litera-
ture. In response, this paper introduces a novel MGDCO modelling framework that integrates an
arbitrage-aware linear programming-based multi-day energy dispatch strategy into the standard
metaheuristic-based micro-grid investment planning processes. Importantly, the model effectively
extends the mainstream energy scheduling optimisation timeframe in the micro-grid investment
planning problems by producing optimal dispatch solutions that are aware of scenarios over three
days. Based on the numeric simulation results obtained from a test-case micro-grid, the effectiveness
of the proposed optimisation-based dispatch strategy in the micro-grid sizing processes is verified,
while retaining the computational tractability. Specifically, comparing the proposed investment
planning framework, which uses the formulated 72-h dispatch strategies, with the business-as-usual
MGDCO methods has demonstrated that it can reduce the micro-grid’s whole-life cost by up to 8%.
Much of the outperformance of the proposed method can be attributed to the effective use of the
behind-the-meter Li-ion battery storage, which improves the overall system flexibility.

Keywords: micro-grids; optimal sizing; optimal dispatching; energy management; metaheuristics;
linear programming

1. Introduction
1.1. Background and Motivation

Micro-grids (MGs) are typically associated with high capital and replacement costs,
but low operation and maintenance costs [1,2]. This makes the global (true) optimisation
of the MG resources especially important, especially in efforts to accelerate the transition
to renewables. In particular, the system integration of a high share of non-dispatchable
and weather-dependent renewable energy sources (RESs), such as solar photovoltaic (PV)
panels and wind turbines (WTs), into MGs adds significant computational complexities
to the conventional micropower system design problem. In addition to dealing with the
high capital costs of RESs and the variability in their power outputs, there is a wide variety
of operational- and planning-level constraints that need to be simultaneously met while
optimally designing an MG [3–5].

Further compounding the MG design problem is the consideration of stationary
batteries as they increase the dimensionality of the problem at hand. Accordingly, the
optimal charge/discharge coordination of batteries can have a significant impact on the
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cost-effectiveness of MG solutions. This is particularly salient in off-grid MG installations
where there exists no connection to the wider utility grid to help in serving the peak load
and/or absorbing the excess generation. Accordingly, there is a great risk of sub-optimality
in MG designing problems, with potential overbuilt capacity or inadequate reliability
implications [6,7].

In this light, integrating an economic multi-day, forward-looking energy dispatch
optimisation framework into the design processes of MGs is widely found to be able to
provide new layers of insight and perspective into the MG investment planning problem.
More specifically, the objective of the MG design and dispatch co-optimisation problem is
to balance the cost of capital investment with the expected total operational cost, subject
to a set of technical feasibility constraints. Estimating the associated total operational
costs generally entails simulating the energy scheduling and capacity procurement using
forecasts of input data—electricity demand, local renewable generation, and wholesale
prices—for a typical year at a given resolution [8,9].

1.2. Literature Review

A recent growing body of literature has recognised the importance of optimising the
energy dispatch over a forward-looking time horizon, while optimally planning renewable
and sustainable energy systems [10,11]. For instance, Li et al. [12] proposed an evolutionary
computation-based MG sizing model with integrated mixed-integer linear programming
(MILP)-based unit commitment decisions. In another instance, Swaminathan et al. [13]
developed a genetic algorithm-based MG sizing modelling framework with a nested model
predictive control-oriented daily energy management strategy tailored to the battery energy
storage systems (BESSs) of commercial buildings. Similarly, Xiao et al. [14] formulated a
bi-level metaheuristic-based MG capacity planning model where the economic dispatch
problem is solved in the inner loop using an improved variant of the particle swarm
optimisation algorithm, whereas the optimal designing problem is solved in the outer loop
using the mesh adaptive direct search algorithm. Furthermore, Chen et al. [15] have put
forward a two-stage robust optimisation model to co-optimise the operational scheduling
and investment planning costs of an energy hub considering an ellipsoidal uncertainty set to
address the variability inherent in input data. Moreover, Subramanyam et al. [16] proposed
an integrated optimal MG planning model to simultaneously allocate distributed energy
resources and determine the daily operating schedules. Table 1 provides an overview of
the notable existing work on the design and dispatch co-optimisation of MG, whilst also
positioning the novelties of this study within the identified gaps in knowledge.

Table 1. Summary of the notable work on MG design and dispatch co-optimisation.

Reference Components Real Input Data Two-Stage
Modelling Arbitrage Multi-Day

Rolling Horizon

Grid PV WT BESS Diesel
[12] × X × X × × X × ×
[13] X X × X × X × × ×
[14] X X X X × × × × ×
[15] X X × X X × X × ×
[16] X X X X × × × × ×
[17] × X × X X X X × ×
[18] × X X X X X × × ×
[19] × X × X × X X × ×
[20] × X × X X X × × ×
[21] × X × X × X × × ×
[22] × X X X × × × × ×
[23] × X X X × X × × ×
[24] X X × X × X × × ×
[25] × X X X × × × × ×

This study X X X X × X X X X
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1.3. Knowledge Gaps

Although a growing body of research has supported the role of operational planning
optimisation during the long-term investment planning phase in minimising the so-called
simulation-to-reality gaps, the significance of optimising the energy scheduling over mul-
tiple operating days, rather than a 24-h horizon, is less explored. In response, this paper
seeks fundamentally to address this knowledge gap by presenting a joint optimisation
framework for investment planning and operational scheduling of the distributed energy
infrastructure integrated into grid-connected, battery-supported, renewables-driven MGs,
which is necessary for improving the dispatchability of 100%-renewable MGs using more
intelligent energy dispatch decisions that consider wider timeframes.

In addition, Table 1 is revealing as to the less scholarly attention given to the con-
sideration of arbitrage-aware optimal dispatch strategies (in an integrated way) in the
associated stochastic methods focusing on the optimal system configuration and unit sizing
of renewable and sustainable energy systems. More specifically, whereas all the identified
relevant scholarly publications promote an integrated design and dispatch optimisation
model, the potentially significant benefits of using the onsite storage for arbitrage opera-
tions have been widely overlooked. That is, the table demonstrates that no single article, as
far as can be ascertained, has effectively valued the arbitrage economics of energy storage
during the long-term strategic investment planning phases of renewable and sustainable
energy systems.

1.4. Novel Contributions

In response to the identified knowledge gaps, this paper first introduces a novel
forward-looking 72-h energy storage scheduling optimisation framework based on linear
programming. The proposed energy dispatch framework is subsequently nested within
a standard metaheuristic-based MG capacity planning optimisation model for associated
impact analyses. More specifically, the major contributions of this study are as follows:

• Formulating a robust metaheuristic-based MG equipment capacity planning optimisation
model tailored towards community-scale, 100%-renewable and -reliable energy projects.

• Developing an arbitrage-aware, dynamic, look-ahead, predictive dispatch strategy for
the optimal scheduling of MGs—charging/discharging of energy storage systems and
energy exchanges with the main power grid—over a moving 72-h dispatch horizon.

• Nesting the developed forward-looking operational planning problem—formulated
to optimally respond to the dynamic nature of system conditions over a moving three-
day period—within the proposed metaheuristic-based MG sizing model to jointly
optimise the design and dispatch of MG systems.

Importantly, for the first time in the literature, this study has shown how integrating
computationally tractable optimisation-based dispatch strategies over multi-day horizons,
rather than business-as-usual rule-based strategies and state-of-the-art daily strategies, into
metaheuristic-based MG sizing modelling frameworks can minimise the risks of overbuilt
RESs. The outperformance of the proposed integrated design and dispatch co-optimisation
model to the existing frameworks in the relevant literature has been validated using a
comprehensive two-way sensitivity analysis, which additionally verifies the statistical
robustness of the model.

1.5. Paper Organisation

The remainder of this paper is organised as follows. Section 2 mathematically formu-
lates a test-case MG. Section 3 presents the method parametrised for the test-case system
of interest. Section 4 presents and discusses the numerical simulation results for a case
study by populating the model with real-world data. Finally, conclusions are drawn and
prospects for future work are outlined in Section 5.
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2. Test-Case Micro-Grid

In accordance with Figure 1, a grid-tied, DC-coupled community-scale MG is for-
mulated to test the effectiveness of the proposed integrated MG sizing and scheduling
framework. As the figure shows, the conceptual MG integrates solar photovoltaic (PV)
panels, wind turbines (WTs), a stationary Li-ion (lithium iron phosphate) battery bank
cycled at a C/2 rate, and a multi-mode inverter. A detailed mathematical formulation of
the MG components is presented in the following sub-sections. It is noteworthy that the
transformer and the multi-mode inverter are independently modelled by their efficiencies.
However, the efficiencies of the converters connecting the solar PV panels, WTs, and the
battery bank to the common DC busbar are factored in the mathematical models of the
corresponding component. Furthermore, a fixed power factor of 95% was assumed. How-
ever, the model is generally applicable to other power factors as well, as this parameter
is principally used to constrain the power exchanges with the wider utility network, in
accordance with the size of the transformer as the point of common coupling.
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The following sub-sections provide the mathematical formulation of the components
of the MG.

2.1. Wind Turbines

To determine the power output of the WT generator, the wind speed data (m/s),
measured at the height of hre f (m), needs to be converted to the hub height h using the
power law equation, as follows [26]:

Vh = Vre f × (h/hre f )
r, (1)

where Vre f is the wind speed (m/s) at the anemometer height hre f (m) and r is the power
law exponent, which is fixed at 0.2 in this study given the flat, lightly tree-covered terrain
characteristics of the site of interest [27].

The power output from each WT can then be determined as follows [26]:

PWT(t) =


0 i f v(t)< vcin or v(t) >vcout

Prated ×
(

v(t)3− v3
cin

v3
rated− v3

cin

)
i f vcin ≤ v(t) < vrated

Prated i f vrated ≤ v(t) < vcout

(2)

where PWT(t) is the WT’s output power (kW) at time-step t, Prated is the rated power (kW),
whereas v(t), vcin, and vcout, respectively, denote the nominal wind speed, cut-in wind
speed, and cut-out wind speed (m/s) of the WT. Figure 2 characterises the power curve of
a representative WT [28].
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2.2. PV Panels

The following equations express the power output from each PV panel (kW) at time-
step t [29]:

PPV(t) = DF× GT(t)× AS × ηPV(t)/1000, (3)

ηPV(t) = ηrηpc

[
1− µ

(
Tc(t)− Tc,re f

)]
, (4)

Tc(t) = Ta(t) +
[

NOCT − Ta, NOCT

GT,NOCT

]
GT(t), (5)

where GT(t) is the global solar irradiance (W/m2) at time-step t, DF is the degradation
rate, AS is the panel’s surface area (m2), ηr denotes the panel’s efficiency, ηpc is the built-in
inverter’s efficiency, µ denotes the PV temperature coefficient of power (%/◦C), Tc,re f de-
notes the reference cell temperature (◦C), Tc(t) is the effective cell temperature (◦C), NOCT
represents the nominal operating cell temperature (◦C), whereas Ta,NOCT and GT,NOCT ,
respectively, denote the ambient temperature (◦C) and solar irradiance (W/m2) at nominal
operating cell conditions.

2.3. Battery Storage

The following equation is used to determine the battery bank’s state of charge (SOC)
at each time-step t [30]:

EB(t) = EB(t− 1)× (1− σ) +
Pch(t)× ηch − Pdch(t)/ηdch

NB × EB,r
× ∆t, (6)

where Pch and Pdch, respectively, denote the charging power and discharging power of
the battery bank (kW), NB denotes the optimal quantity of battery packs integrated into
the battery bank, σ is the self-discharging rate (fixed at 0.3% per day in this paper [31]),
EB,r denotes the rated energy capacity of each battery pack (kWh), whereas ηch and ηdch,
respectively, denote the charging and discharging efficiencies of the battery storage, which
are fixed at 95% in this paper [32].
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Additionally, the charging power and discharging power of the battery storage at each
time-step can be determined as follows [2]:

Pch(t) = min

NB × Pmax
ch ,

Emax
B − EB(t)

ηch
∆t

, (7)

Pdch(t) = min

(
NB × Pmax

dch ,
(EB(t)− Emin

B )× ηdch

∆t

)
, (8)

where Pmax
ch is the maximum charging power capacity, Pmax

dch is the maximum discharging
power capacity, Emin

B is the minimum allowed energy in-store, and Emax
B is the maximum

allowed energy in-store.
Furthermore, the three-point rainflow-cycle-counting algorithm [33] is used to quantify

the heterogeneous cycles of the battery bank. Figure 3 illustrates the application of the
rainflow-cycle-counting algorithm to a typical battery SOC profile [33]. The yellow triangles
in the figure represent the full cycles, whereas the blue triangles represent the half-cycles
of the battery bank. Specifically, the representative SOC profile contains three full cycles
of B-A′-B′, J-K′-J′, and I-F-I′, as well as four half-cycles of C-D-C′, G-H-G′, L-M-L′, and
N-O-N′. In this study, MATLAB’s built-in ‘rainflow’ function is used to estimate the battery
cycle counts.
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2.4. Inverter

The following equations are used to model the multi-mode inverter of the MG [34]:

ηinv =

Po

Pr

Po

Pr
+ ηo + m

(
Po

Pr

)2 , (9)

ηo =

10
η10
− 1

η100
− 9

99
, (10)

m =
1

η100
− ηo − 1, (11)
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where Po denotes the inverter’s power output, Pr is the inverter’s rated power, m is a
coefficient employed to obtain the best-fit curve of the manufacturer-provided inverter
efficiency data, whereas η10 and η100, respectively, denote the efficiency of the inverter at
10% and 100% rated power.

3. Methodology

This section presents the proposed model for the co-optimisation of the design and
dispatch of grid-connected MGs in a two-layer structure. To this end, it first briefly explains
the temporal arbitrage opportunities that the optimal dispatch problem seeks to exploit. It
then proceeds to formalise and mathematically formulate the proposed two-stage modelling
framework for the optimal sizing and scheduling of MGs before illustrating the associated
interactions of the two sub-problems at hand using a flowchart.

3.1. Targeted Arbitrage Opportunities

In this study, temporal energy arbitrage not only refers to buying energy at a low
price, storing it, and selling it later at a higher price, but it also incorporates the strategy of
storing the excess onsite generation for later, more remunerative exports (using renewables
to charge storage when electricity prices are low and then discharging it when demand and
prices are higher), as well as later discharge of the energy stored by lower-priced imports
and excess generation to local loads during the coincident peak periods. In this setting,
the general arbitrage strategy of ‘buy low, sell high’—which fundamentally seeks to take
advantage of future price variations—can additionally be interpreted as ‘buy low, sell
reasonably’. In battery energy management terms, this can be expressed as ‘charge cheaply,
discharge foresightedly’ to effectively prioritise taking advantage of low market prices for
maximum imports over non- to slightly-profitable exports for the model instances with
fixed, low to moderate feed-in tariff rates.

3.2. Optimal Capacity Planning Problem

The capacity planning optimisation problem represents the outer-layer problem with
the overall objective of minimising the total net present cost (TNPC) of the MG, as [35]:

minTNPC = ∑c∈C NPCc + NPC
(

Pnet
im
)
+ p f , (12)

where NPCc denotes the net present cost of MG component c ∈ C, NPC
(

Pnet
im
)

denotes the
net present cost of the net imported energy over the MG life-cycle, whereas the term p f
adds a sufficiently large penalty to infeasible solutions.

Additionally, the net present cost (NPC) for each MG component c ∈ C can be
expressed as [36]:

NPCc = Nc ×
(

CCc + RCc × SPPW +
CO&M,c

CRF(i, R)
− SVc

)
, (13)

where Nc denotes the optimal capacity returned at each iteration of the optimisation process,
whereas CCc, RCc, and CO&M,c, respectively, denote the capital cost, replacement cost, as
well as the operation and maintenance cost of component c. Further, SPPW and CRF,
which, respectively, denote the single payment present worth factor and capital recovery
factor, are used to determine the future value of a stream of cash flows. Additionally, i and
R respectively denote the real interest rate and the expected project lifetime, whereas SVc
denotes the salvage value of component c.

Specifically, the single payment present worth factor, SPPW, and the capital recovery
factor, CRF, can be expressed as follows [36]:

SPPW =
Y

∑
n=1

1

(1 + i)L×n , (14)
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CRF(i, R) =
i(1 + i)R

(1 + i)R − 1
, (15)

where Y =
[

R
L

]
with R denoting the life-cycle of the project in years (in this analysis,

25 years) and L denoting the expected lifetime of the component, the NPC of which is being
calculated. Further, i denotes the real interest rate, which is fixed at 4% in this paper.

Moreover, each asset’s salvage value be determined as follows [36]:

SVc = RCc ×
L− (R− L× [ R

L ])

L
. (16)

To ensure that the planning-level objective function adequately adheres to the physical
limitations whilst providing long-term strategic objectives, the relevant objective function
in Equation (12) must adhere to a set of constraints, including the reliability of power
supply, upper limits on the design variables, as well as the initial and terminal energy
stored in the battery bank.

More specifically, the equivalent loss factor (ELF) is employed to measure the reliability
of each system design (a specific combination of capacities of the components), which can
be mathematically expressed as [37]:

ELFL =
1
T ∑T

t=1
QL(t)
PL(t)

, (17)

where T denotes the total number of time-steps considered for the associated year-long
operational analysis, whereas PL(t) and QL(T), respectively, denote the demanded load
and lost load at time-step t.

As the following equation expresses, the total lost load is enforced to be equal to 0:

ELFL = 0. (18)

Additionally, the constraints in Equations (19) and (20) define the initial and terminal
energy contents of the battery bank, whereas the constraint in Equation (21) limits the
solution space to minimise the risk of computational intractability [38–40]. More specifically,
Equation (20) represents a terminal battery capacity constraint which ensures that the year-
end energy content of the battery bank equals or exceeds its initial capacity (which is set
to be full as in Equation (19)), whereas Equation (21) specifies the upper bounds on the
non-negative size of the components.

EB(0) = NB × EB,r, (19)

EB(T) ≥ EB(0), (20)

0 ≤ Nc ≤ Nmax
c , ∀c (21)

where EB(0) is the initial energy content of the battery bank, EB(T) is the energy content of
the battery bank at the terminal time-step of the year-long operational analysis, and Nmax

c
denotes the maximum allowable size of component c.

Metaheuristic Optimisation Algorithm

To optimise a solution to the planning-level problem subject to the imposed constraints,
a newly developed metaheuristic optimisation algorithm, namely the equilibrium optimiser
(EO) [41], is used in this study. The EO was chosen due to its unique advantages in
trading off the exploration and exploitation phases of searching the solution space. Such
trade-offs are essential for increasing the accuracy of the solution whilst ensuring the
computational tractability in the highly-dimensional and computationally-intensive MG
sizing problem. Accordingly, the original developers of the algorithm have conclusively
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shown its statistically significant outperformance to a wide range of metaheuristics in
solving high-dimensional, non-convex, nonlinear problems in polynomial time [41].

The EO is inspired by the concept of “a simple well-mixed dynamic mass balance on a control
volume, in which a mass balance equation is used to describe the concentration of a nonreactive
constituent in a control volume as a function of its various source and sink mechanisms” [41]. The
mass-balance equation, which forms the underlying equation of the EO can be expressed
as [41]:

V
dC
dt

= QCeq −QC + G, (22)

where C is the concentration inside the control volume denoted by V, whereas V dC
dt repre-

sents the rate of change of mass in the control volume. In addition, Q is the volumetric flow
rate into and out of the control volume, whereas Ceq is the concentration at an equilibrium
state with no generation inside the control volume. Further, G denotes the mass generation
rate inside the control volume.

In this setting, similar to most search agent-based metaheuristics, the EO is initialised
as follows [41]:

Cinitial
i = Cmin + randi(Cmax − Cmin), i = 1, 2, . . . , n (23)

where Cinitial
i is the initial concentration vector of the i-th search agent, Cmin and Cmax,

respectively, denote the minimum and maximum values of the dimensions, randi is a
random number in the range [0, 1], whereas n denotes the total number of particles, i, in
the population.

Subsequently, at each iteration of the algorithm, the positions of the search agents are
updated as follows [41]:

→
C =

→
Ceq +

(→
C −

→
Ceq

)
.
→
F +

→
G
→
λV

(
1−

→
F
)

, (24)

where
→
λ is the vector of the turnover rates, V denotes the velocity of search agents, whereas

→
F is defined as follows [41]:

→
F = e−

→
λ (t−t0). (25)

Figure 4 illustrates the general updating rule of the EO, whereas Figure 5 shows how
the equilibrium candidates collaborate in updating the particles in a representative 2D
solution space [41].
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3.3. Multi-Day Energy Dispatch Scheduling Problem

To determine the optimal dispatch solution in a day-ahead, hourly basis setting, a
multi-day-oriented dispatch strategy is developed based on linear programming. The
dispatch strategy fundamentally seeks to minimise the operational cost of the MG. This
is achieved by considering a moving time window (scheduling horizon) of 72 h with
an updating period of 24 h with hourly time increments. The sub-problem-based multi-
day structure of the method where each daily dispatch solution has an overlap with the
subsequent two days provides greater insights into the mid-term dynamics that are likely
to take place within the system. This, in turn, enables producing the globally optimum
dispatch of the storage. The formulated multi-day energy dispatch scheduling problem is
solved using the built-in ‘linprog’ MATLAB optimisation solver.

To appropriately balance computational time reduction with accuracy, the perfor-
mances of various scheduling horizon lengths from 1 day to 10 days were systematically
tested in the early study design phase. Collectively, the results of the simulations carried
out using a number of test case systems indicated that a 72-h-long scheduling horizon
provides the best trade-off between the solution accuracy and computational time.

Figure 6 illustrates the overall structure of the proposed multi-day energy dispatch
scheduling method for integration into the metaheuristic-based MG sizing processes.



Sustainability 2022, 14, 12941 11 of 24

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 25 
 

dispatch of the storage. The formulated multi-day energy dispatch scheduling problem is 
solved using the built-in ‘linprog’ MATLAB optimisation solver. 

To appropriately balance computational time reduction with accuracy, the perfor-
mances of various scheduling horizon lengths from 1 day to 10 days were systematically 
tested in the early study design phase. Collectively, the results of the simulations carried 
out using a number of test case systems indicated that a 72-h-long scheduling horizon 
provides the best trade-off between the solution accuracy and computational time. 

Figure 6 illustrates the overall structure of the proposed multi-day energy dispatch 
scheduling method for integration into the metaheuristic-based MG sizing processes. 

 
Figure 6. Illustration of the proposed optimisation-based multi-day energy scheduling method. 

Mathematically, the objective function of the proposed multi-day-oriented opera-
tional scheduling method can be formulated as follows:  min 𝑶𝑷𝑬𝑿 = 𝑷𝒊𝒎𝝅்∆𝑡 − 𝑷𝒆𝒙𝑭𝒊𝑻்∆𝑡 + 10ି଺‖𝒖‖ଵ,   (26)

where 𝑶𝑷𝑬𝑿, 𝑷𝒊𝒎, 𝑷𝒆𝒙, 𝝅, and 𝑭𝒊𝑻, respectively, denote the 72-h column vectors of op-
erational cost (expenditure), imported power, exported power, spot prices, and feed-in 
tariffs, ∆𝑡 represents the length of each time-step (1 h), whereas the term 10ି଺‖𝒖‖ଵ is a 
penalty factor, which ensures that the battery bank does not undergo any uneconomic 
cycles. Specifically, the penalty term can be calculated as follows: ‖𝒖‖ଵ = ෍ (𝑃௖௛(𝑡) + 𝑃ௗ௖௛(𝑡)௧భା଻ଵ௧ୀ௧భ ),  (27)

where ‖𝒖‖ଵ represents the L1-norm of the charge/discharge dispatch decisions of the bat-
tery bank over the scheduling horizon, whereas 𝑃௖௛ and 𝑃ௗ௖௛, respectively, denote the 
charging power and discharging power of the battery bank. 

The objective function of the day-ahead, hourly-basis, multi-day-oriented dispatch 
problem is subject to the following set of dispatch-level constraints: 𝑷𝒊𝒎 − 𝑷𝒆𝒙 = 𝑷𝑳 + 𝑷𝒄𝒉 − 𝑷𝑷𝑽 − 𝑷𝑾𝑻 − 𝑷𝒅𝒄𝒉, (28)𝐸஻(𝑡) = 𝐸஻(𝑡 − 1) × (1 − 𝜎஻ × ∆𝑡) + ௖௛ × 𝑃௖௛(𝑡) × ∆𝑡 − 𝑃ௗ௖௛(𝑡) × ∆𝑡

ௗ௖௛   ∀𝑡, (29)

where 𝑃௅, 𝑃௉௏, and 𝑃ௐ், respectively, denote power load, power output from the solar 
PV generator, and the power output from the WT generator, 𝐸஻ denotes the energy con-
tent (SOC) of the battery bank, 𝜎஻ is the self-discharge rate of the overall battery bank, 
whereas ௖௛ and ௗ௖௛, respectively, denote charge and discharge efficiencies of the bat-
tery bank. It is also noteworthy that bold-face symbols denote 72-h column vectors of the 
corresponding variable or parameter. 

Collectively, the dispatch-level constraints in Equations (28) and (29) ensure that the 
power balance of the system is maintained at each time-step. Additionally, the battery 

Figure 6. Illustration of the proposed optimisation-based multi-day energy scheduling method.

Mathematically, the objective function of the proposed multi-day-oriented operational
scheduling method can be formulated as follows:

min OPEX = PimπT∆t− PexFiTT∆t + 10−6‖u‖1, (26)

where OPEX, Pim, Pex, π, and FiT, respectively, denote the 72-h column vectors of op-
erational cost (expenditure), imported power, exported power, spot prices, and feed-in
tariffs, ∆t represents the length of each time-step (1 h), whereas the term 10−6‖u‖1 is a
penalty factor, which ensures that the battery bank does not undergo any uneconomic
cycles. Specifically, the penalty term can be calculated as follows:

‖u‖1 = ∑t1+71
t=t1

(Pch(t) + Pdch(t)), (27)

where ‖u‖1 represents the L1-norm of the charge/discharge dispatch decisions of the
battery bank over the scheduling horizon, whereas Pch and Pdch, respectively, denote the
charging power and discharging power of the battery bank.

The objective function of the day-ahead, hourly-basis, multi-day-oriented dispatch
problem is subject to the following set of dispatch-level constraints:

Pim − Pex = PL + Pch − PPV − PWT − Pdch, (28)

EB(t) = EB(t− 1)× (1− σB × ∆t) + ηch × Pch(t)× ∆t− Pdch(t)× ∆t
ηdch

∀t, (29)

where PL, PPV , and PWT , respectively, denote power load, power output from the solar PV
generator, and the power output from the WT generator, EB denotes the energy content
(SOC) of the battery bank, σB is the self-discharge rate of the overall battery bank, whereas
ηch and ηdch, respectively, denote charge and discharge efficiencies of the battery bank. It is
also noteworthy that bold-face symbols denote 72-h column vectors of the corresponding
variable or parameter.

Collectively, the dispatch-level constraints in Equations (28) and (29) ensure that the
power balance of the system is maintained at each time-step. Additionally, the battery
SOC, as well as charge and discharge powers, are enforced to lie within the corresponding
pre-specified allowable ranges, as follows:

Emin
B ≤ EB(t) ≤ Emax

B , ∀t (30)

Emin
B = (1− DODmax)× Emax

B , (31)
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0 ≤ Pch(t) ≤ Pmax
ch , ∀t (32)

0 ≤ Pdch(t) ≤ Pmax
dch , ∀t (33)

where Emin
B and Emax

B respectively denote the minimum and maximum allowable energy in
store, DODmax is the maximum allowable depth of discharge of the battery storage, whereas
Pmax

ch and Pmax
dch , respectively, denote the maximum allowable charge and discharging power

of the battery bank.
Furthermore, a similar set of constraints ensure that power exchanges with the grid

are in accordance with the size of the transformer at the point of common coupling, as:

0 ≤ Pim(t) ≤ NT , ∀t (34)

0 ≤ Pex(t) ≤ NT , ∀t (35)

where NT denotes the size of the transformer.
Additionally, specific non-linearity constraints at each time-step ensure that the battery

bank is not in both charge and discharge modes in a single time-step and the MG does not
simultaneously import from and export to the wider utility network, as follows:

Pch(t)× Pdch(t) = 0, ∀t (36)

Pim(t)× Pex(t) = 0. ∀t (37)

3.4. Overview of the Overall Method

Figure 7 shows an overview of the overall joint investment planning and operational
scheduling method. Specifically, a metaheuristic-based design optimisation problem is
formulated with a nested linear programming-oriented multi-day forward-looking energy
scheduling strategy. That is, the overall problem is structured as a sizing problem in the
outer layer with an integrated optimal scheduling problem. Accordingly, each candidate
solution (the vector of the size estimates of components), represented by the positions of
the metaheuristic’s search agents in the solution space, is first passed to the inner opti-
mal scheduling layer. The optimal MG operating schedule is then found using the linear
programming-based operational strategy over the course of one representative year at an
hourly resolution for each candidate solution set. To this end, the one-year timeframe is de-
composed into a set of overlapping time horizons. There are two main reasons underlying
such decomposition of the entire operational analysis timeframe, namely: (1) a one-time
year-long dispatch optimisation is not representative of the operation of MGs in real-world
settings given the limited foresight of generations, demand, and prices in practice, and
(2) it is not computationally tractable to solve the optimal scheduling problem simultane-
ously over the complete one-year period all at the same time. The optimal dispatch problem
of each candidate infrastructure capacity mix is then solved for the selected time horizon
length and the resulting dispatch decision is followed until the time horizon can be updated.
After developing the MG dispatch for the entire analysis period by solving a sequential set
of optimal scheduling problems, the results are returned to the outer sizing problem. At
this stage, the positions of the search agents are updated and the above-mentioned process
is repeated until the termination conditions are met. Based on preliminary benchmarking
studies, a time horizon length of 72 h and an update period of 24 h were selected because
they were respectively found to be the longest and shortest time windows that ensured the
computational tractability, whilst adequately capturing the dynamics of MG operation.
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4. Case Study: Simulation Results and Discussion

This section presents and discusses the numeric simulation results obtained from
the application of the proposed integrated optimal sizing and dispatching method to the
test-case MG system, laid out in Section 2. To this end, the test-case MG is populated
for a relatively small-scale residential subdivision in Aotearoa–New Zealand, namely
Totarabank [42]. Totarabank, the location and satellite photograph of which are shown in
Figure 8, consists of eight detached houses with an additional communal building. It also
has a population of 14 people as of 2020. It is also noteworthy that all simulations were
carried out based on specifically developed scripts coded in MATLAB software [43], and
were run on a standard desktop computer.
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4.1. Input Data

Figure 9 displays the monthly averaged 24-h profiles for the forecasts of power
loads [44], solar radiation [45], ambient temperature [45], wind speed [45], and spot elec-
tricity prices [45]. Note that all time series data represent the local Aotearoa–New Zealand
time in the Southern Hemisphere. In addition, Table 2 summarises the values of the techno-
economic specifications of the modelling parameters of the MG, where all costs are cited
in NZD. Note that the average US Dollar (USD) to New Zealand Dollar (NZD) exchange
rate for the year 2021 was used (where appropriate) [46]: 1 USD = 1.41 NZD. In addition,
as mentioned earlier, the expected project lifetime and real interest rate were respectively
selected to be 25 years and 4%.
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Table 2. Assumptions on the techno-economic specifications of modelling parameters of the MG.

Component Capital Cost Replacement Cost Operation and
Maintenance Cost Lifetime Efficiency Source(s)

PV panel NZD 1135/kW NZD 915/kW NZD 5/kW/year 25 years 17.11% [5,47,48]
Wind turbine NZD 1290/kW NZD 1020/kW NZD 191/kW/year 25 years N/A a [49–51]
Battery pack b NZD 1073/kWh NZD 504/kWh NZD 2.1/kWh/year 15 years 90% c [52,53]

Hybrid inverter NZD 533/kW NZD 533/kW NZD 1.3/kW/year 15 years 96% [54,55]
a Not applicable, as the WT generator’s power output is estimated based on the associated power (characteristic)
curve. b Charge/discharge power capacity of the battery pack is equal to 3 kW and its energy throughput equals
3.03 MWh. c Round-trip efficiency.

It was additionally assumed that the MG has a contract with a financially responsible
market participant to access the wholesale electricity market for the bi-directional trading
of power. Accordingly, the feed-in tariff is modelled as a variable, as opposed to the
business-as-usual approach of a single-tier (fixed) rate. More specifically, it was assumed
that the financially responsible market participant has a dynamic subscription fee of 10% of
the relevant wholesale price. This can be mathematically expressed as:

FiT(t) = 1.1× π(t), (38)
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where FiT(t) and π(t), respectively, denote the feed-in tariff and wholesale electricity price
at time-step t, respectively.

4.2. Comparative Optimal MG Sizing Results

Table 3 presents a direct comparison of the test-case MG sizing results (rounded
to the nearest integer) for the following three dispatch strategies: (i) the proposed look-
ahead, multi-day dispatch strategy, (ii) a counterpart of the proposed dispatch strategy that
considers a sequence of fixed 24-h day-ahead dispatch horizons (zero overlap), and (iii) a
conventional, rule-based, cycle-charging strategy that prioritises the battery dispatch over
the grid power trading.

Table 3. Comparative MG sizing results optimised under the multi-day (proposed), one-day, and
cycle-charging dispatch strategies.

Output
Dispatch Strategy

Multi-Day Scheduling One-Day Scheduling Cycle-Charging

Total net present cost [NZD] 55,175 60,244 69,466
Levelised cost of energy [NZD/kWh] 0.19 0.22 0.27

Total discounted renewable energy generation [kWh] 1,248,446 1,773,003 2,754,411
Solar PV generator size [kW] 8 10 16

WT generator size [kW] 11 17 20
Li-ion battery storage size [kWh] 31 19 12

Multi-mode inverter size [kW] 7 8 9
TNPC of the components [NZD] 99,581 86,383 84,610

Total net energy purchased [kWh] −249,471 −175,170 −302,882
TNPC of the net electricity imports [NZD] −44,406 −26,139 −15,144

Total excess renewable energy curtailment [kWh] 1509 11,738 19,121
Battery bank autonomy a [h] 11.2 7.1 4.5

a Defined as the ratio of the optimal size of storage to the mean total annual load, battery bank autonomy
represents the number of hours the battery bank alone would be able to meet the local loads over a year-long
operation of the system [36].

In addition, Figure 10 presents a comparative statistical representation of the hourly
variations of the SOC of the Li-ion battery bank over a year-long, hourly-basis operation of
the system optimised under the proposed multi-day economic dispatch strategy. The boxplots
represent the interquartile ranges of the SOC of the battery. Specifically, the lines that divide
the boxes into two parts represent the median of the SOC data, whereas the whiskers represent
the relevant minimum and maximum values of the population for the relevant hour. A smaller
section of the boxplot indicates that the SOC data is more condensed. Additionally, a positive
(negative) value represents the charging (discharging) mode.
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The comparative results presented in Table 3 are collectively revealing in the following
ways. As the model’s level of foresight of demand, generation, and price improves, the
capacity of the battery storage in the optimum solution set increases. More specifically,
the model with a cycle-charging dispatch strategy that uses the battery simply as a buffer
for variable renewable energy supplies (by charging storage using excess supplies before
exporting to the grid, and discharging storage to meet loads internally before purchasing
the deficit from the grid) produces a comparatively low storage capacity of 12 kWh. The
modified model with an integrated linear programming-based dispatch strategy over a
moving three-day time window yields an optimal battery capacity of 19 kWh—58% greater
than the model with the rule-based strategy. Planning ahead storage in the optimisation-
based one-day dispatch strategy has also enabled a substantial reduction in the excess
renewable energy curtailments, thereby reducing the overbuilt capacities of the solar PV
and WT components by 6 kW (38%) and 3 kW (15%), respectively.

The more forward-looking dispatch strategy with a 72-h time window has then re-
sulted in a dramatically increased battery capacity (and in turn, further reduced overbuilt
renewable generation capacity and curtailment), with a consequent considerably lower total
NPC given the unlocked potential of valuing the mid- to short-term arbitrage economics of
storage in conjunction with planning ahead the battery for the future presence (excess) and
absence (shortfall) of renewables. More specifically, as it can be inferred from Figure 10,
the synergistic opportunities associated with grid arbitrage and load levelling have been
well-leveraged in the proposed multi-day scheduling strategy advanced in the proposed
integrated sizing and scheduling model. Additionally, the battery bank autonomy is higher
by 58% (equating to 4.1 h) and 149% (6.7 h) compared to the daily and rule-based strategies,
respectively. The greater battery capacity yielded in the model with a multi-day dispatch
optimisation strategy has additional direct benefits in terms of resilience.

Furthermore, Figure 11 shows the monthly mean daily profiles for the SOC of the
battery bank, the optimal size of which has undergone the most drastic change among
the decision variables (including MG components). As the figure implies, the linear
programming-based intelligent scheduling framework has effectively charged the battery
bank using excess power and/or power imports during lower-priced off-peak hours to
minimise the daily operational costs—and more cost-efficiently meet the net load demand—
by discharging the battery bank to local demand and/or back to the grid during peak times
when wholesale prices are higher.

As the results indicate, overbuilding of non-dispatchable renewables for energy ar-
bitrage functional roles is also found to be economically inviable as that would generate
a reasonable profit stream only during the summer months when the difference between
the minimum and maximum daily wholesale prices is larger, implying that the MG would
have to sell a significant proportion of over-generation capacity at less remunerative spot
market prices during the wintertime (though the load demand is generally larger). This,
consequently, results in a rejection of the overbuilt renewable capacity strategy for leverag-
ing potential benefits from arbitrage, demonstrating that the associated arbitrage revenue
expectations from overbuilt renewable capacity fall short of the revenue requirements
necessary for capital cost recovery.

The co-optimisation model has also produced a novel insight into the inefficacy of
long-term and seasonal arbitrage using the battery bank. More specifically, further analyses
have revealed that profits solely from daily energy arbitrage, without consideration of
internal energy balance benefits, are insufficient to achieve additional battery capacity
capital cost recovery. That is, at the existing costs of battery storage systems, daily en-
ergy arbitrage alone is not a viable market niche for storage; rather, it can be regarded as
a value-enhancing service if accompanied by an economic dispatch strategy tailored to
managing the battery storage capacity in a forward-looking manner that would otherwise
remain under-utilised within the MG context. Moreover, the arbitrage trades have also
been found to remain as smooth and gentle as possible to avoid capacity additions neces-
sary for sharper arbitrage-related power exchanges. In addition, comprehensive capital



Sustainability 2022, 14, 12941 17 of 24

budgeting analyses have confirmed the significance of an integrated design and dispatch
optimisation approach in improving the economic viability of the project. Notably, it can
be observed that a coordinated, system-level design and dispatch co-optimisation model—
which considers the capacity planning optimisation of battery storage simultaneously with
its optimal operational scheduling strategy—yields capital budgeting metrics that well
outperform those of a baseline case that uses conventional heuristics to decide (as opposed
to optimising) the operating schedules of battery storage without explicitly planning it
for future time-steps. In particular, the levelised cost of energy (LCOE) of the project is
significantly reduced to NZD 0.19/kWh from NZD 0.27/kWh in the counterpart case that
uses a cycle-charging strategy.
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4.3. Economics of Daily Energy Arbitrage

This section evaluates the economics of daily electricity price and renewable energy
arbitrage (using the battery bank) and its robustness to changes in key related parameters.
To this end, two-way sensitivity analyses were carried out to estimate the total amount
of annual arbitrage trades with respect to a range of incremental buyback rates from the
current value of NZD 0.08/kWh to NZD 0.43/kWh in intervals of NZD 0.05/kWh, as
well as a range of expected reductions in the capital cost of the selected battery chemistry;
specifically, from its current values to 30% of its current values in intervals of 10%. Note
that the upper limit of the buyback rate is under the assumption that additional income
streams such as frequency control ancillary services, operating reserves, and network
support markets are accessed. Accordingly, 64 combinations of future buyback rates and
battery energy storage system capital costs were created and the model was solved for
each of them. Note that, to ensure the computational tractability of the two-way sensitivity
analyses, the assumption on the agreement of the MG system with a financially responsible
market participant to access the wholesale spot market in the original MG planning and
scheduling co-optimisation model was considered inactive, and the sensitivity analyses
were run under the basic single-tier feed-in tariff export settlement format.

Furthermore, given the computational expensiveness of simulating the proposed
model (even with a fixed feed-in tariff), a reduced variant of the model was used to perform
the sensitivity analyses. To this end, the hourly-basis, one-year input time series were
averaged to a lower resolution, namely monthly mean 24-h data streams. Accordingly, the
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typical 8760-h annual energy balance analysis was reduced to a 288-h (12 months × 24 h)
analysis, which has been shown to provide adequate accuracy in prior work [56].

The resulting two-way sensitivity analyses are depicted in Figure 12. As the figure
shows, at the existing fixed feed-in tariff, the capital costs of the Li-ion battery bank need to
be reduced by at least 30% so that the volume of profitable energy arbitrage trades increases
approximately linearly with the associated battery cost reductions. On the other hand, at
the current costs of the considered storage technology, the fixed buyback rate needs to be
increased by at least 190% for the energy arbitrage trades to become an increasing linear
function of the feed-in tariff.

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 25 
 

 
Figure 12. Sensitivity of the total arbitrage trade with respect to changes in the buyback rate and the 
capital cost of the battery energy storage system. 

Impact on the Optimal MG Sizing 
To further investigate the impact of the variations in the feed-in tariff and the battery 

capital cost on the optimal combination of the MG components, as well as the exchanged 
power with the grid, Table 4 details the cost-optimal solutions obtained for the three cases 
marked in Figure 12, namely: the existing situation (business-as-usual case), a realistic 
projection case (where the feed-in tariff is increased to NZD 0.18/kWh and the battery 
capital cost is reduced by 40%), and an extreme case (where the feed-in tariff is increased 
to NZD 0.43/kWh and the battery capital cost is reduced by 70%). For reasons of greater 
focus, the table only reports the variations in the optimal capacities of the battery bank 
and multi-mode inverter, which have undergone the most important changes from an 
arbitrage perspective, compared to the other decision variables including component sizes 
and non-arbitrage-related grid power exchanges. In addition, as an illustration of the dy-
namics that are taking place within the system, which yield the associated total net energy 
arbitrage trade profit in the business-as-usual battery capital cost and feed-in tariff case, 
multiplying the associated total annual arbitrage trade (~40.3 MWh), shown in Figure 12, 
by the average hourly difference in per-unit import and export rates of ~NZD 0.09/kWh 
(accounting for the total net discounted cost of additional equipment capacity by convert-
ing the associated annualised costs into hourly operating basis), and then multiplying the 
result by the number of years in the planning horizon (25 years) yields a total net energy 
arbitrage trade profit of ~NZD 0.09 m. 

Table 4, furthermore, provides important insights into the statistically significant im-
pact of the abovementioned ‘realistic’ and ‘extreme-case’ projections of the feed-in tariff 
and battery capital costs. As can be seen from the table, a further battery capacity of ~18 
kWh and a further inverter capacity of ~5 kW have been allocated for arbitraging on elec-
tricity tariffs under the realistic projection case scenario, which increase to ~21 kWh and 
~8 kW under the extreme case scenario, respectively. Expectedly, the comparative results 
indicate that the opportunity for exploiting the difference in import and export rates in-
creases as the battery costs decrease and/or the feed-in tariffs increase. Accordingly, the 
battery capacity becomes a strictly increasing function of the feed-in tariff and battery 
capital cost beyond the aforementioned thresholds in feed-in tariff increment and battery 
capital cost reduction. The battery capacity has also reached its maximum allowable limit 

Figure 12. Sensitivity of the total arbitrage trade with respect to changes in the buyback rate and the
capital cost of the battery energy storage system.

Given the remarkably green grid of Aotearoa–New Zealand, the buyback rate is
highly improbable to be increased to that large of an extent in the future (even considering
additional value streams from operating reserve and frequency control ancillary services
markets, as well as further not-yet-monetised network services). Yet, despite this limitation,
as the analyses indicate, it is likely that the community-scale behind-the-meter battery
systems are able to reach exceptionally large profitability levels, especially when used for
energy arbitrage reasons in conjunction with the onsite backup provision, in a few years’
time—in view of the projected cost reductions for the Li-ion battery chemistry [57].

The two-way sensitivity analyses, additionally, show that the energy arbitrage trade
reaches a saturation point when/if the feed-in tariff is increased to NZD 0.43/kWh and
the battery capital costs are reduced by at least 70%. The arbitrage trade saturation point
is limited by the upper bound imposed on the size of the battery bank. This implies that
the return on any potential investment made at the feed-in tariff above NZD 0.43/kWh
and battery capital costs lower than 30% of the existing costs would be a strictly increasing
linear function of the battery investment cost.

Impact on the Optimal MG Sizing

To further investigate the impact of the variations in the feed-in tariff and the battery
capital cost on the optimal combination of the MG components, as well as the exchanged
power with the grid, Table 4 details the cost-optimal solutions obtained for the three cases
marked in Figure 12, namely: the existing situation (business-as-usual case), a realistic
projection case (where the feed-in tariff is increased to NZD 0.18/kWh and the battery
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capital cost is reduced by 40%), and an extreme case (where the feed-in tariff is increased
to NZD 0.43/kWh and the battery capital cost is reduced by 70%). For reasons of greater
focus, the table only reports the variations in the optimal capacities of the battery bank and
multi-mode inverter, which have undergone the most important changes from an arbitrage
perspective, compared to the other decision variables including component sizes and non-
arbitrage-related grid power exchanges. In addition, as an illustration of the dynamics that
are taking place within the system, which yield the associated total net energy arbitrage
trade profit in the business-as-usual battery capital cost and feed-in tariff case, multiplying
the associated total annual arbitrage trade (~40.3 MWh), shown in Figure 12, by the average
hourly difference in per-unit import and export rates of ~NZD 0.09/kWh (accounting for
the total net discounted cost of additional equipment capacity by converting the associated
annualised costs into hourly operating basis), and then multiplying the result by the number
of years in the planning horizon (25 years) yields a total net energy arbitrage trade profit of
~NZD 0.09 m.

Table 4. Comparative modelling results under the existing situation, realistic projection case, and the
extreme case scenarios.

Output
Scenario

Existing Situation (Status Quo) a Realistic Projection Extreme-Case Projection

Total net present cost [NZD] 50,148 26,270 15,142
Total net energy arbitrage trade profit [NZDm] 0.09 0.11 0.13

Optimal battery bank size [kWh] 30 48 51
Optimal multi-mode inverter size [kW] 7 12 15

a The small changes in the model outputs relative to the base-case planning and scheduling co-optimisation
results are attributable to the down-sampled input data, as well as deactivating the MG system’s access to the
wholesale spot market through a financially responsible market participant, and therefore, considering a fixed
feed-in tariff.

Table 4, furthermore, provides important insights into the statistically significant
impact of the abovementioned ‘realistic’ and ‘extreme-case’ projections of the feed-in tariff
and battery capital costs. As can be seen from the table, a further battery capacity of
~18 kWh and a further inverter capacity of ~5 kW have been allocated for arbitraging on
electricity tariffs under the realistic projection case scenario, which increase to ~21 kWh
and ~8 kW under the extreme case scenario, respectively. Expectedly, the comparative
results indicate that the opportunity for exploiting the difference in import and export
rates increases as the battery costs decrease and/or the feed-in tariffs increase. Accordingly,
the battery capacity becomes a strictly increasing function of the feed-in tariff and battery
capital cost beyond the aforementioned thresholds in feed-in tariff increment and battery
capital cost reduction. The battery capacity has also reached its maximum allowable limit
just in the extreme-case projection scenario (as can be inferred from Figure 12), which
explains, in retrospect, the choice of the feed-in tariff upper bound and battery capital cost
lower bound for the bivariate sensitivity analyses.

The comparatively less dramatic changes in the size of the inverter, additionally,
indicate generally smooth increases in power trades across the entire representative one-
year operational period, rather than spikes in exchanges during the most remunerative
time-steps, or, put differently, sharp charging and discharging for energy arbitrage with the
grid. Most notably, a significant total discounted system cost reduction of ~48% (equating
to ~NZD 4k) has been found for the realistic projection scenario. Note that the projected
decreases in battery costs in the realistic scenario are expected to be realised within a
couple of years in accordance with the relevant extrapolated ‘learning curves’ [52,58],
whereas the associated more than doubled average feed-in tariff (NZD 0.18/kWh) is also
deemed to be feasible when payments for the network services provided by large-scale
batteries are established—apart from the current existence of energy retailers in the region
under consideration, who compensate NZD 0.16/kWh for the first 50 kWh exported per
fortnight [59].
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It should also be noted that it has been observed that the hybrid inverter is utilised
in both on- and off-grid modes, implying that its optimum size is primarily dictated by
the magnitude of peak loads, rather than grid trade decisions, whereas the associated
multicollinearity identified between the sizes of the inverter and the battery bank indicates
that the additional inverter capacity is fundamentally used for arbitrage services using the
battery storage.

In addition, further unreported results revealed that as the feed-in tariff increases
and/or the battery capital cost decreases, the total non-arbitrage-related net energy pur-
chased in the optimal solution set increases, while adhering to the minimum required
self-sufficiency ratio. The underlying reason for this observation is that the increased
optimal battery capacity—as a result of improved arbitrage profitability—increases the
opportunity to store the off-peak energy purchased from the grid—at costs lower than the
system’s LCOE—for later internal use, to cost-optimally supplement the power generated
by onsite non-dispatchable renewables—in addition to the increased frequency and volume
of arbitrage-related exports.

4.4. Validation of the Equilibrium Optimiser

To show the outperformance of the EO [41] to a set of well-established and state-
of-the-art metaheuristics in the MG sizing literature, this section compares the results of
the EO against the following metaheuristics: the genetic algorithm (GA) [60], the particle
swarm optimisation (PSO) [61], the hybrid GA-PSO [62], the harmony search (HS) [63],
the simulated annealing (SA) [64], the artificial bee colony (ABC) [65], the ant colony
optimisation (ACO) [66], and the ant lion optimiser (ALO) [67]. To this end, they are
separately embedded in the proposed outer sizing layer and applied to the test-case system
of interest.

In addition, to enable a fair comparison, the number of search agents and the maximum
number of iterations were, respectively, fixed at 50 and 200 for all the metaheuristics. Table 5
lists the adjusted values of the control parameters of the algorithms under comparison.

Table 5. Parameter settings of the metaheuristics under comparison.

Algorithm Parameter Settings Reference

GA Mutation rate = 0.05, crossover probability = 0.1, mutation probability = 0.9 [60]

PSO Acceleration coefficients = 2, inertia weight = 0.7 [61]

Hybrid GA-PSO Mutation rate = 0.05, crossover probability = 0.1, mutation probability = 0.9,
acceleration coefficients = 2, inertia weight = 0.7 [62]

EO Coefficients of the inertia weight equation = 2.0 [41]

HS Harmony memory accepting rate = 0.85 [63]

SA Initial acceptance probability = 0.4, cooling ratio = 0.95, size factor = 16,
imbalance factor = 0.05 [64]

ABC Number of onlooker bees = 25, number of employed bees = 25 [65]

ACO Archive size = 50, locality of search = 0.1, convergence speed = 0.85 [66]

ALO Self-adaptive adjustment of a single control parameter [67]

The comparative results are summarised in Table 6. As the table shows, based on the
returned TNPCs in the best simulation run out of 30 independent runs for each algorithm,
the following rank order can be produced for the competitively selected metaheuristics: the
EO > the hybrid GA-PSO > the GA > the PSO > the ABC > the SA > the ALO > the HS > the
ACO. Although the EO has outperformed all the algorithms under comparison, the hybrid
GA-PSO, the GA, and the PSO algorithms have yielded comparable results. However, the
TNPCs obtained by the ABC, the SA, the ALO, the HS, and the ACO collectively indicate
the inadequacy of these algorithms for the MG sizing applications.
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Table 6. Comparative results of the metaheuristics under comparison.

Algorithm Optimised TNPC Algorithm Optimised TNPC

ABC NZD 61,410 HS NZD 63,992
ACO NZD 64,739 Hybrid GA-PSO NZD 56,120
ALO NZD 63,005 PSO NZD 56,802
EO NZD 55,175 SA NZD 62,790
GA NZD 56,790

5. Conclusions and Future Work

This paper has presented a novel optimisation modelling framework for the simul-
taneous planning and operation of grid-connected, battery-backed MGs. The proposed
co-optimisation model has effectively valued the arbitrage economics of energy storage
using multi-day dispatch decisions, thereby reducing the optimal size of the components of
the system. Based on the numeric simulation results yielded for a test-case grid-tied solar
PV/WT/battery MG populated for a residential subdivision in Aotearoa–New Zealand it
has been demonstrated that look-ahead energy management over a rolling 72-h horizon
significantly contributes to achieving cost-optimal MGs. That is, the proposed frame-
work has enabled greater foresight of future scenarios necessary for the globally optimum
charge/discharge coordination of storage, whilst additionally helping unlock synergistic
associations of wholesale price arbitrage and load levelling, with consequently improved
flexibility in the use of storage.

Furthermore, comprehensive two-way sensitivity analyses have been carried out to un-
derstand the robustness of the total net energy arbitrage trade profit to simultaneous variations
in key related parameters, namely the capital cost of 0.5 C Li-ion batteries and a feed-in tariff.
Notably, the bivariate sensitivity analyses have indicated that under a realistic projection sce-
nario, where the feed-in tariff is increased to NZD 0.18/kWh—assuming additional payments
from frequency control ancillary services and operating reserves—and the battery capital cost
is simultaneously reduced by 40%, a significant total discounted system cost reduction of ~48%
(equating to ~NZD 24k) compared to the baseline scenario could be expected from arbitrage.
The expected cost reduction well outweighs the estimated increase in the capital expenditure
of the system mainly due to the added battery and inverter capacities of 18 kWh (+60%) and
5 kW (+71%), respectively. From a broader perspective, the associated two-way sensitivity
analyses that involve repeated evaluation of the proposed design and dispatch co-optimisation
model using a wide and statistically representative range of inputs assigned to the dedicated
sensitivity variables collectively offer additional evidence supporting the model’s robustness
in determining the cost-optimal solution under various input data scenarios.

In conclusion, this paper has systematically broadened the scope and methodological
complexity of business-as-usual approaches for renewable energy investment planning and
operational scheduling co-optimisation, with the ultimate goal of formulating an advanced
model that adopts a holistic approach to deriving the globally optimum energy planning
solutions that effectively account for the potentially significant arbitrage interventions. It
should finally be noted that although the model is particularly parametrised for the test-case
MG, it is readily applicable to other MG configurations given its general formulation.

Future work is also planned to integrate demand-side flexibility resources into the
proposed scheduling framework to explore the optimal balance of grid arbitrage and
customer demand response and evaluate its impact on the optimal infrastructure capacity
mix. Another direction for further work could be to characterise various sources of problem-
inherent time series input data uncertainty in the inner-layer optimal scheduling problem,
whilst quantifying the parametric investment planning uncertainties in the outer-layer
optimal sizing problem.
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