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Abstract: The vehicle routing problem seeking to minimize the traveled distance and the deviation
of the total workload is known as the vehicle routing problem with workload balance (WBVRP). In
the WBVRP, several elements are considered: (i) the total distance or driving time, (ii) the number of
customers to be visited, and (iii) the total weight or amount of delivered goods. We have considered
the WBVRP by adding a concept called customer compactness and the visual attractiveness of the
routes. The WBVRP allows a similar workload for drivers to improve their well-being and social
development. Unbalanced routes could generate high costs due to potential strikes by drivers seeking
an equitable workload. We have proposed three mathematical formulations for solving the WBVRP
by minimizing the customer compactness and the distance with and without considering workload
balancing. The workload balancing is based on the deviation concerning the average load of the routes
and considering waiting and driving time. We have tested the efficiency of the proposed models on
a synthetic set of instances, analyzing different aspects such as depot location, customer location,
and demand. The analysis of the results has been performed considering customer compactness and
the visual attractiveness of the obtained solution. Computational experiments on generated random
instances show the efficiency of the proposed approaches.

Keywords: vehicle routing problem; workload balance; social well-being; equitable workload; visual
attractiveness; customer compactness; mixed integer programming models

1. Introduction

Mathematical optimization models for the solution of the well-known vehicle routing
problem (VRP) have been used for decades as a strategy to generate distribution plans.
The proposed mathematical models consider maximizing the resources of the VRP (vehi-
cles, drivers, cargo capacities, traveled distance, demands, depot location, and customers).
Historically, the focus of these models has been aimed at reducing costs and increasing
transportation revenues, solving the problem’s commercial aspect. However, experimenta-
tion over the years has concluded that the early proposed formulations generally do not
consider the desired benefit due to the high dispersion of customers. This aspect leads
to confusing and unintuitive routes (low visual attractiveness) and unbalanced routes in
terms of the work by drivers. Both factors increase the disagreement of the main actors,
triggering a low acceptance of distribution planning.

The use and experience of the published works over the years have led to the identifi-
cation of certain shortcomings of the VRP in practice [1].

Dispersion of the customer set of the route. Usually, the traditional variants of the VRP
consider a cost or income based on the distance the vehicle must travel to supply the
customers’ demand. The outputs of the classic models provide a set of points to go through,
which should offer the cheapest, simplest and shortest route at first glance. However, the
cost is not directly related to the generation of simple routes by increasing the number of
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customers, vehicles, and demands. Therefore, having a set of customers with scattered
locations exacerbates this problem.

Unbalance in the route’s workload. The workload is usually measured as a fixed or
variable cost based on traveled distance or time. The workload metrics must consider the
comparison between routes avoiding generating disproportionate VRP solutions concern-
ing the required work of each route.

A high dispersion of customers (or low compactness) could generate challenging
routes to be performed, longer service times, longer working hours, and the concentration
of deliveries in some areas (leaving a group of dissatisfied customers). In addition, the scarce
workload limitation produces unequal demands for the drivers who carry out the routes.
Drivers could usually be dissatisfied due to unequal routes, increasing staff turnover, and
decreasing service quality. On the other hand, it is essential to maintain drivers’ conformity
to generate stability and service confidence. Otherwise, low customer satisfaction may
occur, negatively affecting economic terms. It should be noted that currently, “a deficit of
10,000 professional drivers is estimated in Chile” [2] which aggravates the problem due to
the complexity of supplying the demand in the event of medical licenses and resignations.

Given that some aspects of customer dispersion and lod balancing, including compact-
ness of customer and visual attractiveness, are usually not covered by most VRP published
variants, our interest is to create solution strategies to generate simple, ordered, and com-
pensated routes. These aspects could be summarized as route balancing, which could
be performed by compacting the customers based on a balance in the route’s workload.
In this work, the problem of vehicle routing with load balancing with compactness and
improvement of visual attractiveness of the routes is introduced. Three mathematical
models are proposed for the problem, maximizing the group of customers and balancing
the workload routes.

The paper’s main contribution is associated with some limitations and considerations
that have yet to be studied deeply in the literature. First, the proposed models consider
vehicles with homogeneous characteristics and travel times of a size predefined, separating
the workload into costs associated with driving and waiting times at loading and unloading
for the WBVRP. Drivers have been assigned to a single vehicle and a single route; therefore,
“route workload” and “driver workload” are synonymous. The workload is distinguished
into two types: driving time and waiting time. The waiting times correspond to the periods
associated with the unloading time with which the driver is not associated. In contrast,
driving time considers an amount of time related to the distance between nodes and the
average speed of the trip.

Second, the proposed approaches integrate two additional concepts related to cus-
tomer compactness and visual attractiveness of the routes for the WBVRP. The customer
compactness concept allows for improving balanced work on routes, given the nature of
the routes. We have proposed as a metric the distance as the primary attribute to calculate
the customer compactness, to the detriment of travel time. The compactness for the entire
system is determined by the sum of the individual route compactness. We have considered
the maximum compactness, the minimum compactness, the minimum dispersion, and the
maximum proximity as proposed metrics. In addition, the visual attractiveness concept
allows drivers to perceive a similar workload, therefore improving their well-being and
social development. Unbalanced visual routes could generate high costs due to potential
strikes by drivers seeking equitable workloads.

This paper has been developed as follows. Section 2 details the literature related to
the problem of customer compactness and load balancing in VRP. Section 3 details the
proposed models. Section 4 presents the statistical analyses of the findings in the different
sets of instances. Finally, Section 5 shows the conclusions and proposed future work.

2. Literature Review

The VRP consists of generating practical routes and using them to distribute or collect
products. Basic VRP problems have a predefined number of vehicles that depart from
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a starting point (depot) to supply the other nodes within the route (customers). The
main objective is to perform a set of efficient routes, minimizing costs or maximizing
profits, under considerations specific to each problem. In general, drivers and dispatchers
assigned to VRP problems may be reluctant to implement solutions that seem too complex
and counterintuitive or require a high degree of coordination, even if these solutions are
technically optimal concerning cost [3].

Similarly, the customers generally ask that their cargo not pass-through unwanted
places before reaching the final destination. In this way, the VRP problem’s objective
should be minimizing costs and achieving acceptance and success in generating balanced
routes considering the drivers’ criteria and the customers’ perception. One of the ways to
solve this problem is through the concept of visual attractiveness. This concept considers
a solution within a short computing time and without modifications. It is also easy to
understand and accept from the observation point. There is no precise definition for visual
attractiveness; however, many authors agree on the characteristics of visually attractive
routes: compact, short distances between customers, reduced overlap between routes, and
simple routes in terms of their shape and path [4].

In parallel, a situation arises from acceptance of the routing plans. It occurs when the
distribution plan generates routes disproportionately concerning the workload performed
by the driver in terms of the traveled distance, driving times, loading and unloading
times, and costs per vehicle, among other elements. This situation could be exemplified in
cases of a system comprised of very long and short routes. Some vehicles and drivers are
overexerting themselves, and others work less than average. Figure 1 shows an example of
unbalanced versus balanced routes.

Figure 1. Unbalanced routes vs. balanced routes. Source: Author.

This problem is known as vehicle routing problem with workload balance (WBVRP).
Its effects range from low acceptance of operating plans, decreased employee satisfaction,
increased overtime, bottlenecks of some resources, irregular wear of equipment, visually
unattractive routes, and unbalanced routes. In the long term, this situation could lead to
adverse work environments and driver resignations, which are critical to transportation
operations. It is necessary to consider both the visual aspect of the routes and the workload
to generate balanced solutions for the drivers and carriers.

2.1. Customer Compactness

Achieving visual attractiveness requires a combination of compactness and balanced
routes, decreased overlap, and simplicity in route shapes. One of the ways to group these
elements is to work directly on maximizing compactness using a metric to reduce the
dispersion of customers, which reduces the probability of overlapping, as well as the
appearance of routes that are too long or too short.

Constructing a centroid for each route is necessary to generate a metric related to com-
pactness. There are several definitions for the concept of route centroid: (i) the geometric center
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of a route [5] (ii) the customer closest to the geometric center of the route [6], (iii) the customer
who is in the middle of the route in terms of the number of nodes [7], (iv) the customer with
the minimum total distance to the rest of the nodes of its route [8], among others.

Figure 2 presents the example of a route with five customers of equal importance. The
route centroid is highlighted in red, and the center of gravity with a cross. In case one,
the centroid corresponds to the center of gravity. In case two, the centroid of the route
corresponds to the node closest to the center of gravity. In case three, the middle node is
the centroid (third of five points). Finally, in case four, the centroid of the route is the node
with the smallest total distance from the rest of the nodes. The difference between these
examples is the benefit of considering visual attractiveness. In this sense, the centroid that
offers the best visualization is the most intuitive for identifying the route (case one).

Figure 2. Examples of the center of gravity of routes. Source: Author.

The compactness calculation metrics are diverse. However, two representative indices
operating with the center of gravity as a centroid are route compactness and route proximity.
Route compactness of i (COMPi) calculates the distance from the different nodes of the route
i to their corresponding center of gravities Ci. This value is divided by the total number of
nodes of the route (|Ti|). In this way, compactness allows comparison between different
routes [9]. In addition, compactness is maximized when the metric is minimized according
to (1). Route proximity i (PROXi) is calculated according to (2). In particular, Oi corresponds
to the number of nodes of a route i close to the center of another route j (under a predefined
threshold), with j 6= i [6]. If this value is high, the routes are closed, and the compactness
is high.

Note that the compactness is calculated independently by each route. In contrast,
the proximity is calculated with the information of two close routes to compact the nodes,
consequently generating overlapping routes. However, in both cases, the location of the
center of gravity is necessary.

COMPi =
∑i∈TI

dist(i, C1)

|Ti|
(1)

PROXi =

[
2
(

1− Oi
|Ti|

)]
− 1 (2)
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2.2. Workload

Balancing workloads between routes could serve as a metric to improve visual at-
tractiveness since it is possible to have routes with a similar composition, reducing the
customer’s dispersion and, therefore, the appearance of extremely short or long routes.
This situation reduces the total compactness of the system and the overlapping of edges.
However, it is difficult to quantify the workload since it generally involves vehicle drivers.
A daily schedule driver is composed of driving and waiting times, finding VRP solutions
with long driving times and fewer waiting times and vice versa. The published works have
dealt with this situation, proposing the workload constraint under specific parameters.

Individual workloads (times) are likely to yield significant inequalities between drivers
by maximizing or minimizing the sum of the total workload. The best way is to carry
out this evaluation individually or to support the objective function in some metric that
measures work balance. It may also be the case that the workload is used for other purposes,
such as minimizing travel times and distances between nodes, maximizing benefits, and
minimizing costs. Another option is to handle the workload as a constraint, limiting its
maximum value, the minimum and the mean of the workload, and the standard deviation
of the driver’s set. An individual approach is also possible, limiting each of the individual
workloads. A survey of some routing problems considering variants of workload balance
has been addressed by [10].

2.3. The Vehicle Routing Problem with Workload Balance (WBVRP)

The vehicle routing with balancing load has been studied by [11] and [12]. Two main
aspects are highlighted from previous work: the total distance or driving time and the total
weight or amount of goods delivered. One of the main challenges is to measure “workload
balance” fairly. Lozano et al. [13] compare objective functions (OFs) to measure balanced
route configurations. This work proposes a basic single-solution-based evolutionary algo-
rithm to compare the quality of the Pareto approximations for the different conflict objective
functions. Solution methods for bi-objective variants of the WBVRP have been proposed
by [14–18]. Population-based algorithms for the WBVRP have been proposed by [17,19–21].

Real problems associated with WBVRP have been considered by [22], who address
the problem from a real bottled beverage distribution company. The authors propose a
bi-objective programming model where dispersion and balancing concerning the number
of customers are used as performance criteria. In addition, [21] develops a multi-objective
memetic algorithm (MMA) for the WBVRP, integrating a problem-specific local search
procedure into a multi-objective evolutionary algorithm. Camacho-Vallejo et al. [23] con-
sider the distribution process of a manufacturing company that supplies products to the
customers. Lehuédé et al. [24] investigate the lexicographic minimax approach to research
the balanced workload, rooted in social choice theory. The problem is solved by a heuristic
based on the multi-directional local search framework.

Recently, [25] examined a centrally organized multi-period collaborative vehicle rout-
ing problem, where carriers can exchange customers who must be serviced regularly.
Sartori et al. [26] consider vehicle routing and scheduling problems with interdependent
routes arising when some services must be performed by at least two vehicles and temporal
synchronization between the starting times of these services. Fallah et al. [27] present
an improved two-approximation algorithm for the WBVRP. The authors focus on ob-
taining approximate solutions since finding balanced loads is NP-complete. In addition,
Li et al. [28] addressed the vehicle routing problem with workload balance (WBVRP) and a
microcluster-based VRPWB (MWBVRP) to minimize the total traveling costs and balance
the workload. Jorge et al. [29] consider the smart waste collection problem concerning
workload. The authors propose a look-ahead heuristic to decide when the collection is
necessary and which bins must be collected considering the present bin fill levels.

Finally, variants of the WBVRP have been considered by several authors. The balanced
cargo vehicle routing problem with time windows (BCVRPTW) has been studied by [30–32].
A combination of the WBVRP with loading constraints has been introduced by [33]. A
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real-world balanced open vehicle routing problem considering the minimization of the
makespan is introduced by [34].

According to the literature review, the traditional approaches to measuring the work-
load balance have some problems. Traditionally, the workload balance is measured as the
minimization of the duration of the longest route and the difference between the longest
and the shortest routes, respectively. Instead, we propose a novel formulation for the WB-
VRP with the customers’ compactness and visual attractiveness by using several objectives
to propose a practical framework for real rich routing problems.

3. Material and Methods

We have proposed three mathematical models to solve the WBVRP considering cus-
tomer compactness and visual attractiveness. The proposed mathematical models use the
following parameters and decision variables:

3.1. Parameters

coordij = Coordinates of the nodes
di = Demand of customer i
tdi = Loading and unloading time of customer i
cti = Cost per time associated with driving and waiting time for each node
N = Number of nodes
K = Number of vehicles
Q = Vehicle capacity
vel = Average vehicle speed
desv = Workload deviation
distij = Euclidean distances between nodes
γ = Factor for the considered distance.

3.2. Decision Variables

xijv =

{
1
0

If the vehicle v travels the edge (i, j), Otherwise

uiv = Cumulative demand of the vehicle v on node i

CTv = Workload of the vehicle v

mCT = Workload average

CGvc = Coordinate X and Y of the gravity center of the visited route by vehicle v

COMPv = Compactness of the route v
distxiv = Squared difference between the x-coordinate of the nodes and their correspond-
ing CGvc
distyiv = Squared difference between the y-coordinate of the nodes and their correspond-
ing CGvc

3.3. Model with Minimum Compactness

The first model seeks to minimize the compactness expressed by (3). The compactness
is calculated as the distance from the node i to the center of gravity (CG) of the route v plus
the sum of a proportion of the total distance. This sum has been added to the compactness
to give a logical order to the routes.

Minimize Z = ∑
v∈K

COMPv + γ

[
∑

v∈K
∑
i∈N

∑
j∈N

distij ∗ xijv

]
(3)

Subject to
xiiv = 0 ∀i ∈ N, v ∈ K (4)
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∑
v∈K

∑
i∈N

xijv ≤ 1 ∀j ∈ N (5)

∑
v∈K

∑
j∈N

xijv ≤ 1 ∀i ∈ N (6)

∑
j∈N

x1jv = 1 ∀v ∈ K (7)

∑
i∈N

xi1v = 1 ∀v ∈ K (8)

∑
i∈N

xijv = ∑
i∈N

xjiv ∀v ∈ K, ∀j ∈ N (9)

∑
v∈K

∑
i∈N

∑
j∈N

xjiv = N + n− 1 (10)

∑
i,j∈N

djxijv ≤ Q ∀v ∈ K (11)

∑
i∈N

∑
j∈N

∑
v∈K

djxijv = ∑
j∈N

dj (12)

uiv + dj ≤ ujv + Q ∗
(
1− xijv

)
∀i, j ∈ N, v ∈ K, i, j 6= 1 (13)

uiv ≤ Q ∀i ∈ N, v ∈ K, i 6= 1 (14)

CGv1 ∑
i,j∈N

xijv = ∑
i,j∈N

Coordixxijv ∀v ∈ K (15)

CGv2 ∑
i,j∈N

xijv = ∑
i,j∈N

Coordiyxijv ∀v ∈ K (16)

COMPv ∑
i,j∈N

xijv = ∑
i,j∈N

(distxivxijv + distyivxijv) ∀v ∈ K (17)

(Coordi1 − CGv1)
2 = distxiv ∀v ∈ K, ∀i ∈ N (18)

(Coordi2 − CGv2)
2 = distyiv ∀v ∈ K, ∀i ∈ N (19)

xijv ∈ {0, 1} ∀(i, j) ∈ N (20)

COMPv ≥ 0 ∀v ∈ K (21)

distxiv, distyiv ≥ 0 ∀v ∈ K, ∀i ∈ N (22)

Equation (4) guarantees the continuity of the routes avoiding edges leaving and
arriving at the same location. Equations (5) and (6) ensure that each customer is visited
only once. Constraints (7) and (8) establish that exactly one vehicle must leave and arrive
at the depot for each route. Equation (9) establishes that the number of arrivals at a node
is precisely equal to the number of departures from it. At the same time, Equation (10)
ensures that the number of edges is based on the set of customers, the vehicles, and the
initial conditions.

Equation (11) defines that the fulfilled demand by each vehicle does not exceed its
capacity. Equation (12) improves the model’s performance by equating the total demand
with the requested demand. Equations (13) and (14) are related to the sub-tour elimination
constraints. Constraints (15)–(17) calculate the center of gravity and compactness of the
route. In particular, Equations (15) and (16) calculate the x and y coordinates of the gravity
centers of the routes. On the other hand, (17) calculates the squared Euclidean distance
between each visited node and its respective gravity center, making the value zero if the
node is not visited for the given route. Note that this value is divided by the total sum of
the number of nodes, obtaining a comparable compactness value. The sum of the route
compactness is minimized in the objective function (3).
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Equations (18) and (19) calculate the squared differences between the x and y coordi-
nates of the nodes and their corresponding gravity center. Note that constraints (15)–(19)
are quadratic, making the model nonlinear. Likewise, compactness does not operate di-
rectly with the Euclidean distance but rather with its square, which does not affect the
relationship of distances between nodes. Finally, Equations (20)–(22) establish the variables’
nature and non-negativity.

3.4. Model with Minimum Distance and Workloading Balance Constraints

The second model considers the minimization of distance with the balance of work-
loads. The objective function is the following:

Minimize Z = ∑
v∈K

∑
i∈N

∑
j∈N

distij xijv (23)

Equation (23) modifies the original objective function (3) to one of minimum distance.
Subject to constraints (4)–(16) and (18), (19) of the model minimize compactness with

the distance factor (model 1). Additionally, the following constraints have been considered:

∑
i,j∈N

(distijxijvct1Vel) +
(
ct2tdjxijv

)
= CTv ∀v ∈ K (24)

mCT =
∑v∈n CTv

n
(25)

CTv ≤ (1 + desv)mCT ∀v ∈ K (26)

CTv ≥ (1− desv)mCT ∀v ∈ K (27)

xijv ∈ {0, 1} ∀(i, j) ∈ N (28)

CTv, mCT ≥ 0 ∀v ∈ K (29)

Equations (24)–(27) incorporate the workload balance. The vector CTv equivalent to
the workload for each route v is calculated by (24). The workload cost is calculated as the
driving time (distijVel) and the waiting time (tdi), multiplied by their respective costs cti.
The average workload is obtained by (25). This value is used in (26) and (27) to limit the
load on a percentage of the same average. Constraints (28) and (29) determine the nature of
the variables.

3.5. Model with Classical Minimum Distance

The proposed mathematical model is the classical distance (23) and subject to con-
straints (4)–(16), (18), (19), and (28), (29).

4. Instances and Computational Results

The proposed methodology was solved using an Intel Core i5 3.1 GHz computer with
8 GB of RAM. The models were programmed in AMPL, and the CPLEX 12.4 solver was
used. According to [35], it is recommended to carry out tests with variations in the depot
location, customers’ location, and demand to reflect the effect of the initial data on the VRP
approaches. In this way, different instances have been generated to test the efficiency of the
proposed models.

4.1. Relationship between Route Balancing, Compactness, Workload, and Instance Generation

There is a relationship between route compactness and balancing, as well as between
workload and balancing. However, the degree of influence of these factors could be
determined by the initial data with which each model works, even canceling out the
positive effect of compactness and workload balance—Figures 3 and 4 show compactness
and workload balancing with different instances, respectively.
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Figure 3. Example of compactness for two instances.

Figure 4. Example of balancing cargo on different instances.

In Figure 3, compact routes around their respective centroid are obtained. However,
the right-side routes are more balanced than the left-side routes due to the difference in
location and number of customers. In Figure 4, homogeneous demands, travel, and unload
times have been considered. As can be seen, the first case consists of a central depot with
customers on both sides, generating similar routes in terms of the number of nodes and
distances. In the second case, the depot is located at one corner, causing the left-side
route to be a shorter and more significant number of customers than the right-side route.
Mathematically, if the distance traveled and the number of visited customers is considered,
the workload can be balanced between both routes (Figure 4). However, for the driver, the
routes are unbalanced due to visual attractiveness.

Instances have been generated to evaluate and compare the performance of the three
models, mainly involving variations in the initial parameters. Comparisons of minimum
distance concerning work balance and minimum compactness and comparisons of work-
load balance concerning minimum compactness have been performed.

We have used the following notation to explain and analyze the obtained results:

• Final objective function value (zval).
• Difference between the optimal value of Z on the linear relaxation and the real value

of Z (zgap).
• Objective function value of Z on the linear relaxation (zbou).
• Computing time of the model (tcpu).
• Standard deviation of the compactness (considers the dispersion of the customers

between routes) (σcomp).
• Dispersion graphs reflecting the figures of the performed routes. Observation allows

evaluation of the traveled distance, the number of customers, and the degree of overlap
of the routes (visual attractiveness).

We have generated three sets of instances for testing all the proposed models. The first
set is a preliminary set seeking to avoid “data” which could fit into the models. This set of
instances allows predicting the possible performance of the proposed approaches for given
parameters. Then, two sets of instances with a different number of customers, vehicles, and
vehicle capacities are generated to test the possible performance of the proposed approaches
over the customer demand, depot, and customer location.
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4.2. Preliminary Instances

Tests have been performed on changing parameter values (Table 1) to generate in-
stances that do not fit into the proposed models. The computing time limit for the prelimi-
nary instances has been set to one hour for each instance.

Table 1. Parameters of preliminary instances.

Nodes Vehicles Deviation Customers Location Demand Depot Location

10 2 0.500 Random (1–1000) Random (1–100) Center

15 3 0.250 80% center/20% external zone 80% small/20% large Corner

30 6 0.125 Clustering For each grid

60 12

Source: Author.

Generally, the 80% center/20% external zone location strategy positions most cus-
tomers near the center and a minority in external zones, generating inappropriate solutions
regarding load balance. A high concentration of customers in the central zone causes over-
lapping routes and unbalanced load solutions. As the number of customers and vehicles
increases, this result worsens. The demand per quadrant is not particularly unfavorable
for the objectives of the three proposed models. However, it generates a range of complex
possibilities to cover because the value assigned to each quadrant must be considered. Then
the pattern of demands must be varied for many instances.

When considering a high value of desv, the balanced load constraints are irrelevant,
generating unbalanced solutions. However, an excessive decrease of desv generates a
significant increase in the minimum work on the routes. For instances with many customers
per route, more restrictive desv values are used, while in instances with many vehicles and
few customers per route, the value of desv is low and flexible. A minimal value of the desv
parameter generates forced traversals that are longer than they should be, which balances
the work between routes but unbalances the visual factor. Figures 5 and 6 compare routes
with low, high, and average desv values.

Figure 5. Routes with lower values of desv v/s high values of desv.
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Figure 6. Routes with high values of desv v/s average values of desv.

4.3. Comparison of Models

New instances have been generated based on the preliminary comparison, seeking
adverse effects for the different models, contrasting the minimum distance concerning the
minimum compactness and the workload balance. The differences in the workload are
the driving time (associated with the distance traveled) and the waiting time (associated
with the demand of each customer). The time limit for each instance is set to one hour, and
the outputs’ evaluation was performed visually. The summary of the characteristics of the
instances are shown Table 2:

Table 2. Parameters of first set of instances.

Instance N K Q Demand Customers Location Depot Location

1 10 3 40% Random (1–100) Random (0–1000) Center

2 10 3 40% Random (1–100) Random (0–1000) Corner

3 10 3 40% Random (1–100) Clustering Center

4 10 3 40% Random (1–100) Clustering Corner

5 10 3 40% 80% (1–50) and 20% (80–100) Random (0–1000) Center

6 10 3 40% 80% (1–50) and 20% (80–100) Random (0–1000) Corner

7 10 3 40% 80% (1–50) and 20% (80–100) Clustering Center

8 10 3 40% 80% (1–50) and 20% (80–100) Clustering Corner

9 10 2 60% Random (1–100) Random (0–1000) Center

10 10 2 60% Random (1–100) Random (0–1000) Corner

11 10 2 60% Random (1–100) Clustering Center

12 10 2 60% Random (1–100) Clustering Corner

13 10 2 60% 80% (1–50) and 20% (80–100) Random (0–1000) Center

14 10 2 60% 80% (1–50) and 20% (80–100) Random (0–1000) Corner

15 10 2 60% 80% (1–50) and 20% (80–100) Clustering Center

16 10 2 60% 80% (1–50) and 20% (80–100) Clustering Corner

Source: Author.

For example, with clustered customer locations, the minimum distance model per-
forms routes mixing many and few customers. In this case, compactness reduces the
traveled distance on the route with the most significant number of customers and increases
it on routes with few customers. Regarding the depot node, an exciting situation occurred.
When the depot is located in the center, the overlap is low. However, the overlap increases
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when the depot is positioned in a corner. It was possible to appreciate significant balance
differences between routes. The workload balance considering the cost of waiting time
(associated with demand per customer) shows a negative behavior when demands of the
80/20 types are considered to generate unbalanced routes visually. This situation creates
exclusive routes for high-demand customers (Figure 7). Note that larger nodes correspond
to nodes with higher demand.

Figure 7. Routes with loading balance considering waiting time vs. driving time on instance five.

The second set of instances has been generated to compare the values of compactness
and workload concerning minimum distance. For this case, eight instances have been
generated by Table 3:

Table 3. Parameters of second set of instances.

Instance N K Q Demand Customers Location Depot Location

17 13 3 40% Random (1–100) Random (0–1000) Center

18 13 3 40% Random (1–100) Random (0–1000) Corner

19 13 3 40% Random (1–100) Clustering Center

20 13 3 40% Random (1–100) Clustering Corner

21 13 3 40% 80% (1–50) and 20% (80–100) Random (0–1000) Center

22 13 3 40% 80% (1–50) and 20% (80–100) Random (0–1000) Corner

23 13 3 40% 80% (1–50) and 20% (80–100) Clustering Center

24 13 3 40% 80% (1–50) and 20% (80–100) Clustering Corner

Source: Author.

Regarding the second set of instances, it is noted that for the workload constraints
related to waiting times, no tests were carried out with demands of the 80/20 types for
the reasons described above. Regarding the value of Z, the optimal workload balancing
solutions focused on waiting time obtained values an average of 11% higher than the
minimum distance. Figures 8 and 9 shows the resulting routes for two instances considering
workload with waiting time and minimum distance. In these figures, it is observed that
although a perfect balance was not reached, it was possible to affirm that the constraints
modified the solutions by the classic model. Table 4 summarizes the obtained results for
the second set of instances.
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Figure 8. Routes with minimum distance v/s loading balance with waiting time on instance 17.

Figure 9. Routes with minimum distance v/s loading balance with waiting time on instance 20.

The obtained results with the workload constraints presented improvements concern-
ing the minimum distance departures with the visual attractiveness and the load balance
(by considering the distance and the number of customers per route). Table 5 shows the
obtained results by compactness.
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Table 4. Obtained results for the second set of instances.

Minimum Distance Model Loading Balance Model by Considering
Driving Time

Loading Balance Model by Considering
Waiting Time

Instance zval zbou zgap(%) tcpu(s) zval zbou zgap(%) tcpu(s) desv zval zbou zgap(%) tcpu(s) desv

17 4.505 4.505 0.00 12.00 4.811 4.811 0.00 34.00 0.10 4.794 4.794 0.00 32.00 0.025
18 6.754 6.754 0.00 1.95 6.832 6.832 0.00 2.18 0.05 6.858 6.858 0.00 637.00 0.025
19 3.431 3.431 0.00 88.00 3.657 3.657 0.00 210.00 0.10 4.217 4.217 0.00 250.00 0.025
20 6.100 6.100 0.00 5.00 6.412 6.412 0.00 68.00 0.10 7.384 7.384 0.00 743.00 0.025
21 3.712 3.712 0.00 15.00 4.102 4.102 0.00 179.00 0.15 - - - - -
22 6.427 6.427 0.00 440.00 6.427 6.427 0.00 170.00 0.10 - - - - -
23 4.099 4.099 0.00 276.00 4.328 4.328 0.00 636.00 0.03 - - - - -
24 6.314 6.314 0.00 283.00 6.314 6.314 0.00 129.00 0.10 - - - - -

Source. Owner.

Table 5. Summary of the obtained results for the compactness results on the second set of instances.

Instance zval zbou zgap(%) tcpu(s)

17 208.37 48.00 99.00 3600
18 483.77 61.00 99.00 3600
19 126.67 31.00 99.00 3600
20 408.09 65.00 99.00 3600
21 127.38 38.00 99.00 3600
22 454.25 65.00 99.00 3600
23 178.35 37.00 99.00 3600
24 416.51 64.00 99.00 3600

Source: Author.

Note that the obtained results in Tables 4 and 5 are not comparable. The minimum
compactness considers two components. The first component minimizes the dispersion
of each route (using quadratic calculations), and the second minimizes the total traveled
distance. Differences in the compactness model cause values of zbou to be much lower than
values of zval , and all gaps remained above 99%. For the same reason, all outputs finished
processing within their time limit. Beyond the factors described above, the minimum
compactness provided two better-balanced solutions compared to the minimum distance
(Figures 10 and 11), achieving a good distribution of traveled distance, the number of
customers per route, and improving visual attractiveness.

Figure 10. Routes with minimum distance v/s compactness on instance 17.



Sustainability 2022, 14, 12937 15 of 20

Figure 11. Routes with minimum distance v/s compactness on instance 21.

4.4. Comparison of Compactness and Loading Balance

Table 6 summarizes the results of the balanced loads comparing the workload models
with driving time, waiting time, and compactness. The workload balances regarding
driving and waiting times coincided in instances 17, 18, 19, and 20. The results of the Z
values have a difference of 0.35%, 0.37%, 15.3%, and 15.2%, respectively (Tables 4 and 5).
The differentiating factor was presented when the customer location is a cluster shape,
showing higher Z values for the balance due to waiting time. Regarding the execution time
of instance 18, obtaining the optimal solution per waiting time load was 3.4 times faster
than the solution per driving time load (notably, instance 18 was the only deviant in terms
of execution time in the eight workload solutions per driving time.)

Table 6. Comparison of the proposed models with loading balance and compactness.

Model Instances with Balanced Results

Loading Balance with Driving Time 17, 18, 19, 20, 21, 22, 23 and 24

Loading Balance with Waiting Time 17, 18, 19 and 20

Compactness 17 and 21
Source: Author.

This situation could be linked to the fact that in the model constrained by waiting
time, the random distribution of the demands (without bias) represents an advantage. In
contrast, for the constraints by driving time (distance), the demands without a pattern
represent a difficulty. In instances 19 and 20, the driving time equilibrium has observed a
better balance for the obtained solutions.

The compactness and workload solutions per driving time show balanced outputs
concerning the minimum distance for instances 17 and 21. In the second set of instances,
the compactness outputs reached the time limit without reaching the optimum (Table 5).
At the same time, the workload achieved optimal solutions in much less time. It generated
more balanced sets than the minimum compactness in terms of distance traveled and
satisfying demand by the route. The workload balancing method related to waiting
time only coincided with compactness in instance 17. Similar to the previous case, the
workload solution was more balanced and calculated in less time than the minimum
solution compactness.

Finally, tests have been conducted on large instances (number of customers). The
solution time limit for the following set of instances was set to two hours (Table 7):
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Table 7. Parameters of the third set of instances.

Instance N K Q Demand Customers Location Depot Location

25 20 3 40% Random (1–100) Random (0–1000) Center

27 20 3 40% Random (1–100) Random (0–1000) Corner

29 20 3 40% Random (1–100) Clustering Center

31 20 3 40% Random (1–100) Clustering Corner

33 20 3 40% 80% (1–50) and 20% (80–100) Random (0–1000) Center

35 20 3 40% 80% (1–50) and 20% (80–100) Random (0–1000) Corner

37 20 3 40% 80% (1–50) and 20% (80–100) Clustering Center

39 20 3 40% 80% (1–50) and 20% (80–100) Clustering Corner

Source: Author.

The obtained results of this set have been satisfactory, presenting the same trend as
the previous set of instances. The minimum distance model generates routes with fewer
nodes, while the workload model generates more balanced routes in the visual aspect (see
Figures 12 and 13). Regarding the standard deviation of compactness, a reduction was
noted in the case of workload (9% down).

Figure 12. Routes with minimum distance vs. loading balance with driving time on instance 33.

Figure 13. Routes with minimum distance vs. loading balance with driving time on instance 27.
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4.5. Discussion Results

At the operational level, dispatchers plan the available vehicle to drivers according
to their current location, leading to disproportionate routes favoring the vehicle closest to
the loading node. This situation generates discontent because the routes are unbalanced,
generating long routes (with many traveled kilometers and long driving times). The
final result, in terms of cost, is much more unfavorable than the generated optimization
of the minimum distance. Without having a precise method to assign loads, biases are
usually generated where certain companies position themselves better than others, even
producing internal conflicts that lead to the departure of collaborators, reducing the number
of available vehicles. The two described cases are aggravated when the customers become
aware of the abovementioned situations, which affects their loyalty, increases mistrust, and
makes it possible for competitors to enter.

The first observation throughout the three tests has been both the minimum compact-
ness and the workload balance due to driving and waiting times. This situation increases
the computing times and obtains longer routes than the minimum distance. However,
more balanced routes are obtained, as seen in the figures, showing the number of visited
customers and satisfying demands per route with a reduced standard deviation of com-
pactness. However, the workloads and the minimization of the compactness did not have
the same scope.

The minimum compactness does not offer optimal solutions for small instances, dis-
couraging the performance of tests with more data. On the other hand, the results given by
the workload balance due to waiting times and driving times were not the same, making it
necessary to study them separately. The high difference occurred with the “80-20” demand,
generated by a small group of nodes with atypically high demand, causing worse workload
results due to waiting times. Therefore, the workload due to waiting times has been limited
for use only with random demand distributions.

The experiments establish a set of the initial parameters for which the workload
results obtained excellent results in balance. These parameters have been obtained through
different degrees of adjustment for the loading constraints, which have been initially
defined arbitrarily. These constraints have been modified at each experimentation stage
according to the previous results, making their predetermination difficult.

The compaction maximization and workload balance models generate more balanced
routes for real cases. However, both models make the original mathematical formulation
challenging to solve, given the high computing times and the objective function values
concerning the minimum distance model. This aspect is decisive for compaction since,
considering the results, its use in real large-scale instances is unfeasible. However, cus-
tomer compaction is a concept that contributes to balance and is one of many alternatives
to address the WBVRP. Quadratic functions could be reformulated linearly to improve
the results.

The proposed model considering workload balancing with a simple minimum distance
objective function achieves the goal of balancing routes for drivers and carriers under a
given set of initial parameters. Therefore, this model is a feasible alternative for real
short and long-distance routing problems, especially for service providers that outsource
transportation. In the case of long-distance carriers, it is common for trips to involve
deliveries to several customers. However, there are occasions when weekly or even monthly
cargo programs are used, which follow the same logic of last-mile routing decisions.

5. Concluding Remarks and Future Work

This paper proposes mathematical models to solve the vehicle routing problem con-
sidering balanced loads and customer compactness. The first model seeks compactness
maximization, while the second model minimizes distance with load balance. Finally, the
last model considers the minimization of the total distance. Maximizing compactness and
work balance between routes is achieved to a greater or lesser extent to offer balanced out-
puts. The workload balance increases the mentioned criteria less abruptly. The compactness
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model involves quadratic functions that, if reformulated linearly, would probably improve
the results. It is also important to mention that although the workload model has been
studied by separating driving and waiting times, both should work together. However, the
model is characterized by its versatility as it allows both elements to be combined.

According to the obtained results, the model considering workload balance achieves
the objective of balancing the routes for drivers and carriers under a specific set of initial
parameters within the limited computing times. This situation makes this model a feasible
alternative for real short and long-distance routing problems and even for service outsourc-
ing companies. In the case of long-distance carriers, it is not usual for routes to involve
deliveries to several customers; however, there are times when weekly or even monthly
charging schedules are used that follow the same logic as last-mile routing.

As future works, we propose the use of heuristic strategies based on granular search
and genetic algorithms for the solution of the problem considered extensions of works
proposed by [1,36–41]. In the same way, several objectives through multi-objective opti-
mization methodologies should be considered.
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