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Abstract: Cohesion is the attraction between adjacent particles within the same material, which
is the main inter-controlled factor of fine-grained sediment stability, and thus plays an important
role in debris flow hazard early warning. However, there is no quantitative model of cohesion and
its inter-controlled factors, including effective internal friction angle, permeability coefficient and
density. Therefore, establishing a quantitative model of cohesion and its inter-controlled factors
is of considerable significance in debris flow hazard early warning. Taking Beichuan county in
southwestern China as the study area, we carried out a series of experiments on cohesion and
its inter-controlled factors. Using the value of cohesion as the dependent variable and values of
normalized density, normalized logarithm of permeability coefficient and normalized effective
internal friction angle as the independent variables, we established a quantitative model of cohesion
and its inter-controlled factors by the least-squares multivariate statistical method. Fitting of the
model showed that its determination coefficient (R2) was 0.61, indicating that the corresponding
correlation coefficient (R) was 0.78. Furthermore, t-tests of the model showed that except for the
p value of density, which was 0.05, those of other factors were less than 0.01, indicating that cohesion
was significantly correlated to its inter-controlled factors, providing a scientific basis for debris flow
hazard early warning.

Keywords: debris flow; fine sediments; cohesion; Beichuan

1. Introduction

Debris flow is gravity sediment flow with a large amount of soils and stones caused by
rainstorms or snow/ice melting. It often causes houses to collapse and results in damaged
roads, electricity lines and other facilities, thus posing a serious threat to the safety of
local people’s lives and property [1]. For example, on August 20, 2019, catastrophic debris
flow in Sichuan affected 446,000 people, leading to a direct economic loss of 15.89 billion
yuan [2]. Therefore, rapid debris flow early warning plays an important role in ensuring
the safety of mountainous people.

There are numerical debris flow hazard simulation methods, which are essential for
the development of a hazard early warning system [3–6], such as the full three-dimensional
(3D) smoothed particle hydrodynamics (SPH) method, the modified MPS method, the
coupled moving particle simulation–finite element method and the liquid–gas-like phase
transition model in sand flow under microgravity. In such models, quantitative debris flow
parameters are important to the debris flow hazard simulations.

With particle size (represented by diameter) less than 2 mm, fine-grained sediments
are Quaternary sediments and the main materials that flow in water during debris flow.
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Their stability is closely related to the debris flow initial water volume [7–15]. Therefore,
debris flow early warning needs to quickly detect their stability. It is mainly controlled by
external and internal factors. External factors include water sources, such as rainfall, rainfall
intensity, runoff and topographic conditions, e.g., slope, surface coverage and structure.
Internal factors include cohesion, permeability coefficient and effective internal friction
angle [16–18].

Cohesion is the attraction within a material, such as electrostatic attraction, van der
Waals force, cementation and valence bonds. In the case of effective stress, cohesion is
obtained by reducing the friction from the total shear strength, which is the inter-controlled
factor of the debris flow stability. Its value mainly reflects the strain capacity of soil to resist
external stress, and is related to the effective internal friction angle (the internal friction
between soil particles, mainly including the surface friction of soil particles and the bonding
force between them), the permeability coefficient (the unit flow under the unit hydraulic
gradient, indicating the difficulty of fluid passing through the pore skeleton), density (mass
per unit volume) and moisture (the ratio of the weight of water contained in the soil to the
weight of dry soil) [19–27].

As there is no quantitative model of cohesion and its inter-controlled factors in debris
flow, carrying out cohesion research and discovering its inter-controlled factors to establish
a quantitative model is of great significance in debris flow hazard early warning.

2. Materials and Methods
2.1. Study Area

The study area is mainly located in Beichuan county, with geographical coordinates
of 104◦23′–104◦31.7′ E, 31◦48.5′–31◦53.5′ N, covering an area of about 140 km2 (Figure 1).
Since the Wenchuan earthquake in 2008, six heavy debris flow disasters have occurred,
resulting in nearly 10,000 people left homeless, more than half of the buildings buried and
a large area of farmland flooded [28].
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2.2. Materials and Equipment

To establish a model of cohesion and its inter-controlled factors of fine-grained sed-
iments in the study area, we collected multi-resource materials: remote sensing images,
digital elevation model (DEM), soil and its parameters such as cohesion, permeability
coefficient, density and particle size using the corresponding equipment listed in Table 1.
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Table 1. Materials and equipment.

Materials Equipment Manufacturer/Provider

Remote sensing images Gaofen (GF) Land satellite remote sensing application
center, China

Digital Elevation Model (DEM) Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) Ministry of International Trade and Industry, Japan

Soil Ring knife (200 mL) Longnian Hardware Tools Store, China

Cohesion ZJ strain-controlled direct
shear instrument

Nanjing soil instrument factory Company Limited
(Co., Ltd.), China

Permeability coefficient TST-55 permeameter Zhejiang Dadi Instrument Co., Ltd., China

Density MDJ-300A solid densitometer Shanghai Lichen Instrument Technology Co.,
Ltd., China

Moisture Electric heating constant temperature
drying oven

Shanghai-southern Electric Furnace Oven
Factory, China

Particle size Microtrac S3500 American Microtrac Incorporated (Inc.)

2.3. Methods

A technical flowchart of this research is shown in Figure 2, which mainly includes the
steps of data acquisition, parameter measurement experiment and model establishment.
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2.3.1. Data Acquisition

(1) Background data
GF-2 satellite remote sensing images with a spatial resolution of 0.8 m and DEM with

a spatial resolution of 30 m were acquired first. Then, a fine-grained sediment map was
extracted from the GF imagery to determine the locations of sampling sites.

(2) Sample collection
From 19 to 25 March 2021, with cloudy weather and 11–15 ◦C temperature, 200 samples

(600 mL for each sample) were collected from 11 sampling sites using ring knives according
to the guide GB/T 36197-2018 [29], whose locations are shown in Figure 1.

(3) Database establishment
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A database composed of remote sensing images, DEM, fine-grained sediments map,
soil locations, pictures and descriptions was established according to the principles of GB/T
30319-2013 [30].

2.3.2. Parameter Measurement Experiment

Experiments were carried out according to the specification SL237-1999 [31]. Measured
parameters include particle size, cohesion and its inter-controlled factors, such as effective
internal friction angle, permeability coefficient, density and moisture. Detailed information
about the experiments can be found in Reference [28].

(1) Particle size measurement experiment
Microtrac S3500 in Section 2.2 was used to measure particle size; the main steps include

setting the sample number and parameters on the instrument, particle size automatic
measurement, saving data and cleaning the pipeline.

A histogram of fine-grained sediments’ particle size is shown in Figure 3. We can
see that the minimum soil particle size in the study area is 0.45 um and the maximum
is about 90 um, most of which is distributed in the range of 10–20 um. According to the
standard for the engineering classification of soil (GB/T 50145-2007) [32], they are classified
as silt loams.
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(2) Cohesion measurement experiment
A ZJ strain-controlled direct shear instrument in Section 2.2 was used to measure the

soil cohesion and effective internal friction angle. The main steps of the experiment include
sample preparation, adding shear normal stress σ of 50, 100, 200 and 300 kpa to obtain
shear strength τ, then calculating cohesion and effective internal friction angle by showing
the 4 pairs of data in the coordinate system, in which σ is on the horizontal axis and τ is on
the vertical axis.

Histograms of fine-grained sediments’ cohesion and effective internal friction angle
are shown in Figure 4. We can see that cohesion is distributed from 13.95 to 39.55 kPa with
the main range of 17.15–26.75 kPa, and the effective internal friction angle is distributed
from 16.16◦ to 23.68◦, with the main range of 18.98–21.80◦.

(3) Cohesion inter-controlled factor measurement experiments
A series of measurement experiments were carried out to acquire cohesion inter-

controlled factors, such as permeability coefficient, density and moisture.
Firstly, the TST-55 permeameter in Section 2.2 was used to carry out the permeabil-

ity coefficient experiment, whose main steps include sample preparation, flowing water
through the sample and recording related parameters such as initial water head, starting
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time and the end water head. Then, we calculated the permeability coefficient according to
its formula.
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A histogram of the fine-grained sediments’ permeability coefficient is shown in
Figure 5. We can see that the permeability coefficient is distributed from 0.47 to 2.85 m/d,
with the main range of 1.15–2.17 m/d.

Secondly, the MDJ-300A solid densitometer in Section 2.2 is used to measure density;
the main steps include sample preparation, weighing the sample and its bag, and then
calculating density.

A histogram of fine-grained sediments’ density is shown in Figure 6. We can see that
density is distributed from 1.34 to 1.73 g/mL, with the main range of 1.34–1.54 g/mL.
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Finally, an electric heating constant temperature drying oven in Section 2.2 was used
to measure moisture. The main steps include sample preparation and weighting, drying
the sample for more than 8 hours, weighting dried samples and then calculating moisture.

A histogram of fine-grained sediments’ moisture is shown in Figure 7. We can see that
moisture is distributed from 4.01% to 30.69%, with the main range of 4.01–12.02%.
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2.3.3. Model

(1) Data standardization
To eliminate the impacts of magnitude dimensions and orders for different units, data

standardization was carried out using Equation (1).

zij =
(
xij − xi

)
/si (1)

where zij is the standardized value, xij is the measured value, xi is the mean value and si is
the standard deviation.

(2) Close factors to cohesion selection
As shown in Table 2, in order to determine the factors close to cohesion, the correlation

coefficients between cohesion and effective internal friction angle, permeability coefficient,
density and moisture were calculated.

Table 2. Coefficients between cohesion correlated to its factors.

Effective Internal
Friction Angle (◦) ln(p) (m/d) Density

(g/cm3) Moisture (%)

Cohesion
(KPa) −0.66 −0.58 0.36 0.32

p: permeability coefficient; ln: natural logarithm.

From Table 2, we can see that with the correlation coefficients of−0.66, −0.58, 0.36 and
0.32, the effective internal friction angle, logarithm of permeability coefficient, density and
moisture, respectively, are related to cohesion. The correlation coefficients of the former
two are negative, indicating that cohesion decreases with the increase in effective internal
friction angle and permeability coefficient, while the others are positive, indicating that
cohesion increases with the increase in density and moisture.

Figure 8 shows the fitting relationship between cohesion and its inter-controlled factors.
From which, we can see that the fitting determination coefficient (R2) between cohesion
and the permeability coefficient is 0.31, which is less than 0.34 of the fitting determination
coefficient between cohesion and the logarithm of permeability coefficient, logarithmic
transformation on the permeability coefficient should be made before regression. We also
applied logarithms on the effective internal friction angle and density, and then calculated
determination coefficients between cohesion with them. The results showed that their
logarithmic determination coefficients were 0.44 and 0.12, respectively, which are no more
than those of 0.44 and 0.13 in their linear regression format.
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According to the principles of the statistical significance test, when the correlation
coefficient (R) is more than 0.3 and the p value of the t-test is no more than 0.05, the factor
passes the t-test. However, the t-test on the correlation between cohesion and its inter-
controlled factors (Table 3) showed that the p value of moisture was 0.45, which is much
more than 0.05, indicating that moisture did not pass the t-test, and it was then deleted
from the cohesion inter-controlled factors.

Table 3. The t-test of the correlation between cohesion and its inter-controlled factors.

Coefficient p Value Lower Limit
95.0%

Upper Limit
95.0%

Intercept 22.91 0.00 22.40 23.43
Density 0.86 0.05 −0.03 1.76

ln(p) −1.59 0.00 −2.23 −0.96
Effective internal

friction angle −2.49 0.00 −3.04 −1.95

Moisture −0.33 0.45 −1.20 0.54
p: permeability coefficient; ln: natural logarithm.

Therefore, close factors to cohesion are effective internal friction angle, logarithm of
permeability coefficient and density.

(3) Model establishment
After selecting the close factors to cohesion, a model between them is established

using the least-squares multivariate statistical method.
Firstly, a model between cohesion and each inter-controlled factor is established by

the correlation fitting method, such as scatter plot analysis in Microsoft Excel. Then, a
transformation on each factor is carried out according to the model between cohesion and
each inter-controlled factor so that the cohesion and each inter-controlled factor are linearly
correlated. Finally, a model of cohesion and its inter-controlled factors is established by the
least-squares multivariate statistical method, whose principles are as follows.

By minimizing the summation of squared errors, the least-squares multivariate statis-
tical method finds the best matching function.

y = f (x, w)

In order to determine w, the function can be solved as

L(y, f (x, w)) =
n

∑
i=1
|yi − f (xi, wi)|2 (2)

where wi (i = 1, 2, . . . , n) can be calculated by minimizing the function.

3. Results and Discussion
3.1. Results

Using the experimental data, the model of cohesion and standardized inter-controlled
factors is established as

y = 22.91 + 0.62x1 − 1.57x2 − 2.48x3

where y is cohesion, x1 is the normalized density, x2 is the normalized logarithm of perme-
ability coefficient ln(p) (p is the permeability coefficient) and x3 is the normalized effective
internal friction angle.

The fitting correlation of the model is shown in Figure 9.
From Figure 9, we can see that the model’s determination coefficient (R2) is 0.61, indi-

cating that the corresponding correlation coefficient (R) is 0.78. In the model, the absolute
value of each variable coefficient indicates its closeness to cohesion. Because the absolute
coefficients of normalized density, normalized logarithm of permeability coefficient and
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normalized effective internal friction angle are 0.62, 1.57 and 2.48, respectively, the closest
parameter to cohesion is the effective internal friction angle, followed by the logarithm of
permeability coefficient and density in the study area.
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Figure 9. Fitting correlation between the measured and the predicted cohesion.

The results of the t-tests on each regression coefficient are shown in Table 4. We can
see that except for the p value of density, which is 0.05, others are less than 0.01, indicating
that cohesion has a significant correlation with its inter-controlled factors.

Table 4. The t-tests on the model.

Coefficient p Value Lower Limit
95.0%

Upper Limit
95.0

Intercept 22.91 0.00 22.40 23.43
Density 0.62 0.05 0.01 1.22

ln(p) −1.57 0.00 −2.20 −0.93
Effective internal

friction angle −2.48 0.00 −3.03 −1.93

p: permeability coefficient; ln: natural logarithm.

3.2. Discussion

Cohesion is negatively correlated to effective internal friction angle and logarithm
of permeability coefficient and positively correlated to density; the reasons for this are
analyzed as follows.

(1) The fixed shear strength of a sample makes a negative correlation between cohesion
and the effective internal friction angle.

The effective internal friction angle is determined by the friction resistance and link-
age between soil particles. Larger factors that lead to the increase in the soil friction
angle—such as a coarser surface, more edges and corners and greater spaces between soil
particles—result in the weakening of the gravity between soil particles and the reduction in
cohesion [23,33].

In a sample, the correlation of cohesion and the effective internal friction angle can be
expressed by

τf = σtgϕ + c (3)

where c is the cohesion (kPa), τf is the shear strength (kPa), φ is the effective internal friction
angle (◦), σ is the normal pressure (kPa) and σtgφ is internal friction.

Therefore, when shear strength τf and normal pressure σ are fixed, the greater the
effective internal friction angle is and the smaller the cohesion becomes, thus leading to a
negative correlation between them.

(2) Attraction controlled by distance between soil particles makes a negative correlation
between cohesion and the permeability coefficient, and a positive correlation between
cohesion and density.
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The value of the permeability coefficient mainly reflects the number, size and con-
nectivity of soil pores. The greater the permeability coefficient is, the larger the distance
between soil particles becomes, leading to smaller attraction and the weakening of cohe-
sion, and thus leading to a negative correlation between cohesion and the permeability
coefficient [23].

The greater the soil density is, the smaller the distance between soil particles is and the
greater the mutual attraction between particles becomes, leading to greater soil cohesion.
Therefore, there is a positive correlation between cohesion and density [34].

(3) The correlation between cohesion and moisture is not significant in the study area.
Many studies showed that soil moisture has some influence on cohesion, but their

correlation varies with the content of water and soil components: (1) with the increase in
water content, soil cohesion increases first and then decreases [35], and (2) soil cohesion
differs with the soil components. For example, it is higher in red soil, mid-range in kaolin
and the lowest in sandy soil [36].

Therefore, the correlation between moisture and cohesion is complex, as cohesion does
not show a consistent trend with the change in moisture, thus leading to a small correlation
coefficient between them. Furthermore, the soil type in the study area is silt loam, in which
the correlation between cohesion and moisture is not as significant as in red soil or kaolin
in other places.

4. Conclusions

We designed a series of soil experiments to establish a model of cohesion and its
inter-controlled factors. The main conclusions are as follows.

(1) The cohesion inter-controlled factors of fine-grained sediments in Beichuan debris
flow were discovered.

The selection of close factors to cohesion showed that with the correlation coeffi-
cients of −0.66, −0.58 and 0.36, effective internal friction angle, logarithm of permeability
coefficient and density, respectively, were related to cohesion. Therefore, the cohesion
inter-controlled factors of fine-grained sediments in Beichuan include effective internal
friction angle, logarithm of permeability coefficient and density, as analyzed in Section 3.2.

(2) A model of cohesion and its inter-controlled factors in Beichuan debris flow
was established.

A model of cohesion and its inter-controlled factors (effective internal friction angle,
logarithm of permeability coefficient and density) in Beichuan debris flow was established
by the least-squares multivariate statistical method. The results show that the absolute
coefficients of normalized density, normalized logarithm of permeability coefficient and
normalized effective internal friction angle were 0.62, 1.57 and 2.48, respectively, indicating
that the closest parameter to cohesion is the effective internal friction angle, followed by
the logarithm of permeability coefficient and density in the study area. The results of t-tests
on each regression coefficient showed that except for the p value of density, which was
0.05, those of other factors were less than 0.01, indicating that cohesion had a significant
correlation with its inter-controlled factors.

(3) The quantitative model of cohesion and its inter-controlled factors provides a
scientific basis for debris flow hazard early warning.

Fine sediments with particle sizes less than 2 mm are easily transported by water,
especially during high-intensity rainfall or rapid snow melt. Thus, these materials play
an important role in the debris flow early warning system. Debris flow early warning
needs to quickly detect the stability of these fine-grained sediments, being one of the factors
controlling disaster scales.

Cohesion reflects the strain capacity of soil to resist external stress, and is closely
related to soil stability. Although cohesion varies with water content, we can quickly
obtain its value by the quantitative model presented in this article when the fine-grained
sediments on the surface are in their natural state. Then, dangerous areas can be identified
by the early warning system according to the value of soil stability estimated by cohesion.
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In other words, less stability indicates higher danger, and thus provides a scientific basis
for debris flow early warning.
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