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Abstract: The demand for electricity related to Information and Communications Technologies is
constantly growing and significantly contributes to the increase in global greenhouse gas emissions.
To reduce this harmful growth, it is necessary to address this problem from different perspectives.
Among these is changing the computing scale, such as migrating, if possible, algorithms and processes
to the most energy efficient resources. In this context, this paper explores the possibility of running
scientific and engineering programs on personal computers and compares the obtained power
efficiency on these systems with that of mainframe computers and even supercomputers. Anecdotally,
this paper also shows how the power efficiency obtained for the same workloads on personal
computers is similar to that obtained on supercomputers included in the Green500 ranking.
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1. Introduction

Currently, among the most important challenges of society is to reduce energy con-
sumption in order to maintain or promote the sustainability of our planet. As an example
of this challenge, the European Union (EU) aims to reduce greenhouse gas emissions by
40% by 2030 [1]. Energy, necessary for the vast majority of our activities, is also among the
greatest sources of pollution. Energy production, supply, and consumption generate 75%
of greenhouse gas emissions in Europe. The EU Green Deal sets the objective of making
Europe climate neutral by 2050.

A report coordinated by Victor Zhirnov and published by the U.S. Semiconductor
Industry Association, in collaboration with the Semiconductor Research Corporation (SRC)
and the National Science Foundation (NFSF), states that while world energy production has
grown linearly, the demand for electricity from computers has grown exponentially [2,3].
In typical situations, the lower-edge system-level energy required per one bit transition
is considered to be approximately 10–14 joules, which is the estimate used for laptops and
PCs as well as supercomputers [3,4]. Among the conclusions of the report is that, if this
trend continues to increase, the electrical consumption of this vast amount of technological
equipment could exceed the world’s electricity production by the year 2040 [5].

Other researchers estimate that, in the worst-case scenario, Information and Communi-
cations Technologies (ICTs) could contribute up to 23% of global greenhouse gas emissions
in 2030 [6,7].

Most of the above forecasts and those included in other papers are not rigorous because
they wrongly assume that energy consumption in the Internet of Things (IoT) sector grows
proportionally with the number of devices, users or data traffic. Analyses carried out in the
middle of the last decade concluded that the growth of energy consumption around 2010
in countries such as Sweden, Germany and the US [8–12] was decreasing. Additionally,
Andrae and Edler analyzed and modelled the electric power use for ICTs in separate
studies in 2015 [6] and 2019 [13]. Figure 1 shows the evolution of the energy consumed
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per year (TWh) calculated using data from those studies. It can be seen that the estimated
consumption from 2019 to 2030 is lower than the results and expectations of 2015.
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The reduced consumption growth can be due to the following actions, and can come
close to being extremely successful (as shown in the figure) if they are taken [11,14]:

• Improvements in the management of systems and data centers aimed at optimizing
energy efficiency. For example, an interesting way to reduce energy consumption in
data centers is, as suggested in [15], to reduce the number of servers that are powered
on to a minimum and switching unused servers off or to low power mode.

• Widespread adoption of more efficient technologies. An example of this is to change
from Hard Disk Drive (HDD) to Solid State Drive (SDD) technology, which has
enabled a significant reduction in the consumption of mass data storage. More efficient
technologies are also sought to reduce the environmental impact from the design and
manufacturing phases of ICT resources [16].

• Changes in scale. A clear example would be in the move from smaller to large data
centers that could be called hyperscale centers (such as Google Cloud, Amazon Web
Services, Microsoft Azure, OVHCloud, Rackspace Open Cloud, or Microsoft Azure). In
larger centers, power consumption can be better managed. Among the most important
factors in energy consumption in data centers is air conditioning, and it is cost-effective
to relocate hyperscale centers to locations where climatic conditions are more favorable.
For example, one of Google’s largest data centers is located in Finland, where, being a
Nordic country (very cold), air conditioning costs are lower than in warmer countries.
This center uses the icy seawater of the Gulf of Finland to completely cool all its
facilities [17]. This concept also includes proposals for energy-autonomous data
centers [18].

The concept of scaling is connected to computation offloading, according to which
processes that require intensive computing tasks are transferred to an external platform,
which can be from a hardware accelerator to a cluster, grid, or cloud system [19–23].
According to the thesis defended in the present work, the offloading of programs or
applications should not be done to a platform that speeds up the application the most, but
to one that has greater energy efficiency if it can also satisfy time requirements. Among
these platforms, personal computers should be considered, as is done in this paper.

In relation to changes in scale, the proliferation of smartphones and small mobile
devices also results in a reduction of energy consumption since each of them offers a
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multitude of functions and services that were previously carried out by independent
consumer devices (calculators, telephones, alarm clocks, planners, etc.), and can now be
performed by a simple device designed for optimal energy consumption [8].

There is even a trend ensuring that the proportion of use-stage electricity by consumer
devices will decrease and be transferred to networks and data centers [6].

A distributed system can include computers ranging from high-performance main-
frame, servers, personal computers, and processors to small nodes in a sensor network.
There are works that suggest, in distributed systems, algorithms and processes should be
migrated to the most energy efficient resources [18].

Among the resources available for computing are personal computers (PCs), which
include laptops (notebooks), desktops and workstations. PCs have improved considerably
in their processing power and can be, as discussed in this paper, competitive from an
energy point of view with servers and even with high-performance mainframe computers
on the Green500 ranking for the same workloads. There are programs that a few decades
ago could only be run on servers or clusters, that can be now run on PCs and, although the
execution time difference is still extraordinary, the energy efficiency is better.

It should also be considered that there are complex calculation problems that need to
be executed on portable computers and it is interesting to analyze the behavior of these
systems by relating their performance rate of execution with their energy consumption.
An example of this situation is presented in some biomedical applications that need to be
performed with mobile equipment, as is the case in genomics, where, for example, real-time
Polymerase Chain Reaction (PCR) tests are frequently needed and are implemented on
portable personal computers (PCs) [24–26].

This paper tries to analyze the energy efficiency of executing scientific-technical prob-
lems on personal computers, and compares it with that obtained on servers and large
computers. The aim is to show how shifting the execution of scientific-technical appli-
cations to smaller computers, such as PCs, can contribute to the overall reduction of
energy consumption.

There is a growing amount of work related to the energy efficiency and performance
evaluation of computing systems, mainly focused on aspects related to scheduling and dis-
tribution of tasks in clusters [27–31], data centers, and systems in the cloud [32–36]. Unlike
the works cited, in this paper the analysis focuses on measuring the energy consumption of
personal computers, using the Linpack benchmark to evaluate performance. The use of
Linpack allows direct comparison of the energy efficiency figures obtained with those of
the GREEN500 ranking, which is the list of the 500 most powerful computers and servers
in the world. This list is updated every six months [37].

In accordance with the aforementioned objectives, this section of this paper (Section 1)
described the importance of reducing the energy consumption of computing systems
and ICTs to achieve a sustainable world. The actions and ideas that are being devel-
oped to achieve this objective have also been outlined, among which is the migration of
scientific-technical applications to personal computers whenever the time requirements
of the applications allow it. Now that the context of the work and related works has been
defined, in Section 2 the materials and methods are presented. This includes the descrip-
tion and justification of the reference application (Section 2.1), the energy consumption
measurement tools used (Section 2.2), the platforms and processors under test (Section 2.3),
and the methodology used to perform the experiments (Section 2.4). On the other hand,
Section 3 shows the experimental results obtained, which are interpreted and discussed in
Section 4. This paper ends with some conclusions in Section 5.

2. Materials and Methods

In this section, the reference application used to measure different execution parame-
ters, including the performance rate of execution and the average power consumed, is first
described (Section 2.1). Then, the energy consumption measurement tools used in this study
are justified (Section 2.2). Additionally, the systems to be analyzed (SUT, Systems under
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Test) are examined in terms of their computing power and energy performance (Section 2.3).
Finally, the methodology used to perform the experiments is described (Section 2.4).

2.1. Reference Application

Linpack, which is a benchmark traditionally used to evaluate computing speed, ini-
tially designed for supercomputer [38], is used as a reference application for the compara-
tive study between the performance of the five systems. Linpack is a computer program
that solves a dense system of linear equations (A·x = b), it determines the amount of time
to factor and solve the system, and converts that time into a computing performance rate
and assesses the results with partial pivoting to ensure their accuracy.

The performance rate of execution, R, is given as millions of floating-point operations
per second (Mflop/s, or, in short, MFlops). This measurement is carried out with addition
or multiplication operations using 64 bit floating point data. The results are also given in
multiples of MFlops: GFlops (billions of floating-point operations per second) and TFlops
(trillions of floating-point operations per second).

This work uses the Linpack Xtreme program released on Windows 10, 8, 7 (32 bit and
64 bit), version v1.1.5 of 31 December 2020 [39]. Linpack Xtreme is a console front-end
developed by Intel with the Intel Math Kernel Library Benchmarks (2018.3.011) build of
Linpack. Linpack Xtreme requires and generates the parameters shown in Table 1, and can
be executed to solve:

• N = 15,000 linear equations (Quick, 2 GB benchmark),
• N = 20,000 linear equations (Standard, 2 GB benchmark) or
• N = 32,000 linear equations (Extended, 8 GB benchmark).

Table 1. Parameters used in Linpack Xtreme.

Parameters to be Set:

Number of equations to solve

Leading array dimension

Number of times to run Linpack (which can be performed from 1 to 5 times, successively)

Data space alignment value (in Kbytes)

Maximum memory to be used

Generated Results:

CPU frequency (GHz)

Number of CPUs

Number of cores

Number of threads

Size

LDA (leading array dimension)

Data alignment value (Kbytes)

Time (s)

Residual

Residual (norm)

Raverage (GFlops)

Rmaximal (GFlops), Maximal Linpack performance achieved

Figure 2 shows An example of a screenshot generated after a run of Linpack Xtreme.
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2.2. Energy Consumption Measurement Tools

Within the Green Computing domain, among the main objectives is to obtain energy
consumption models that allow the prediction and clear identification of each element’s
contribution to the consumption of the system under study. The implementation of the
models and predictions requires accurate measurements of the energy consumption in the
systems to be modelled. These measurements can be made in the following ways:

1. By using external power meters (wattmeters, ammeters, voltmeters) on the system,
in series with the power cables to the wall outlet. With these external power meters,
no granularity is obtained since only the overall power consumption of the system is
measured, being, therefore, inadequate for a detailed analysis.

2. By using separate metering hardware to be connected inside the system by the user.
This additional hardware can include devices such as current sensors, current clamps,
data acquisition cards, and microcontrollers. Measurements can be performed, for
example, on the different DC power supply lines output from the system power
supply, thus obtaining a certain degree of granularity. The cause of this behavior is
due to the different lines supplying power to different parts of the computing system
(motherboard, disk, etc.), although it is not possible to obtain measurements inside
the chip.

3. By using counters and hardware registers that are included as utilities or interfaces
by the processor manufacturers for thermal and power management. With this type
of interface, it is possible, for example, to develop tools to control the operation
(ON/OFF) of fans or to monitor power consumption. An example is the RAPL
(Running Average Power Limit) interface introduced by Intel in their Sandy Bridge
processor architecture.

Both an external energy smart wattmeter (openZmeter) and a monitoring tool (Intel
Power Gadget) based on the RAPL control register interface are used in this work. The
openZmeter is used to measure global energy consumption in the SUTs, from which the en-
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ergy efficiency is calculated (Section 3), while the Power Gadget allows to obtain separately
the specific energy efficiency of the processors of the analyzed systems (Section 4). Further-
more, the simultaneous use of these two tools makes it possible to check the consistency
between the measurements (waveforms, execution times, etc.) made with openZmeter and
those made internally. Additionally, with the use of the Power Gadget, other collateral
measurements to the objective of this work are obtained, such as RDTSC (number of cycles),
elapsed time, CPU frequency, CPU utilization (%), and package temperature, which are in-
cluded because they are related to the energy consumption of the complete equipment and
can be analyzed in more detail in future works. These two tools are briefly described below.

2.2.1. OpenZmeter

In the literature, there are several articles that have shown comparative studies about
different smart energy meters [40]. In this research, the OpenZmeter (Figure 3) was used
because it covers the requirements needed for the present work.
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OpenZmeter (in short, oZm), is an efficient low-cost single and tri-phase smart electric
energy meter described in [40]. The consumption pattern and power quality events are
visualized through a user-friendly Supervisory Control and Data Acquisition (SCADA)
tool. It also has an Application Programming Interface (API) for real-time query of all
parameters that are displayed on the web interface itself.

The features of oZm that determined its selection are:

• Electrical measurements: Root Mean Square (RMS) voltage and current values; active,
reactive, and apparent power and energy; power factor, harmonics, and frequency in
real time through the API and stored in a database.

• Voltage measurement with a precision of 0.1% for RMS values. Frequency measure-
ment with a precision of 10 MHz (in the range 42.5–57.5 Hz for 50 Hz power systems
or 55.8–64.2 Hz). Current measurement up to 35 A RMS (integrated Hall-effect sensor).

• Sampling frequency of 15,625 Hz (64 microseconds between samples).
• Connectivity: USB ports (Wi-Fi dongle, 3G/LTE/4G, etc.), Ethernet port, and Wi-Fi.

SPI, I2C, UART and PWM. Measurements can be visualized, for example, by accessing
oZm via WiFi or the cloud via an MQTT-based synchronization service.

• Free and open system: Open-source software and hardware.

Data are stored in an SQL-like database (PostgreSQL) located in oZm and can be
retrieved through the API at any moment. The computed data include time aggregations
for minutes, day, week, month, or year. These data are analyzed with statistical tools [41]
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and the results can be then displayed to the user through a graphical interface specifically
designed for oZm.

The main view (dashboard) of the oZm user interface (Figure 4) includes a summary
of the main variables:

• The active energy consumption (kWh) for a fixed or variable time span (see top of
Figure 4). Data can be shown in different time periods using aggregations based on
nominal values of 3 s, 1 min, 10 min, or 1 h.

• Plots of RMS voltage, RMS current, frequency, and active power for a 3 s aggregation
interval.
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The measurements stored in the database can be analyzed in more detail by obtaining,
for instance, average, maximum, and minimum magnitudes of voltage in a time period
using different aggregation scales, and the voltage waveform. Table 2 shows an excerpt of
a CSV file exported from oZm.

To a certain extent oZm, with its associated software, could be considered as a digital
oscilloscope for waveform diagnosis. For more information, see [42].
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Table 2. Sample of the parameters measured by oZm corresponding to a fragment made with one of
the tested systems during the execution of Linpack (Section 4).

Time Active
Power

Reactive
Power

Power
Factor Phi Voltage

THD
Current

THD

6:53 36.768 –7.407 0.448 23.068 3.61 296.687
6:54 27.966 –5.26 0.501 10.54 3.53 344.986
6:55 21.681 –4.636 0.478 12.179 3.552 364.808
6:56 20.624 –4.542 0.474 12.676 3.579 368.612
6:57 19.029 –4.366 0.466 13.081 3.533 377.501
6:58 19.432 –4.36 0.465 12.831 3.595 383.131
6:59 19.214 –4.136 0.462 12.33 3.676 388.315
7:00 18.982 –4.301 0.464 12.857 3.647 384.47
7:01 19.07 –4.414 0.464 13.232 3.638 383.253
7:02 18.992 –4.368 0.466 13.126 3.673 381.309
7:03 19.835 –4.492 0.469 12.929 3.615 376.45
7:04 20.227 –4.477 0.466 12.666 3.679 383.472
7:05 16.921 –4.239 0.449 14.662 3.642 399.679
7:06 16.903 –4.204 0.454 14.285 3.682 394.078
7:07 16.252 –4.207 0.449 14.95 3.686 394.636
7:08 16.644 –4.348 0.454 15.116 3.609 384.211

THD: measure of the Total Harmonic Distortion present in the voltage or current signals.

2.2.2. Intel Power Gadget

The Intel Power Gadget tool uses the Running Average Power Limit (RAPL) interface,
included by Intel in its Sandy Bridge processor architecture. RAPL is a tool that makes it
possible to monitor and act on the processor’s power consumption and associated circuits.
Indeed, RAPL allows the measurement of power consumption with a very fine granularity
and a high sampling rate, and also makes it possible to limit the average power consumption
of the different components inside the processor, which prevents the processor temperature
from reaching an undesirable value [43]. With RAPL, it is possible to develop applications
that capture real-time measurements of the power consumption of the CPU package and
its components, as well as that of the DRAM memory managed by the CPU.

The RAPL interface provides this information through control register-counters (MSR,
model-specific register) accessible from the instruction set included in the architecture
specifically for debugging, program execution tracing, computer performance monitor-
ing, and toggling/altering certain CPU features. Moreover, it considers different energy
consumption zones or domains (Figure 5). Both monitoring and limiting energy consump-
tion can be independently executed from each of the domains. These domains are the
following [44]:

• Package (PKG). This domain includes the entire socket, i.e., of all cores and also the
non-core components (L3 last level cache, memory controller, and integrated graphics).

• Power Plane 0 (PP0). This domain includes all processor cores on the socket.
• Power Plane 1 (PP1). This domain includes the graphics processor integrated on the

socket (if it has one, as for example in desktop models).
• DRAM. Domain of the random-access memory (RAM) attached to the integrated

memory controller.
• PSys. Domain available on some Intel architectures, to monitor and control the thermal

and power specifications of the entire system on the chip (SoC), instead of just CPU or
GPU. It includes the power consumption of the package domain, System Agent, PCH,
eDRAM, and a few more domains on a single-socket SoC.
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Not all architectures generate data from all the domains described above. For multi-
socket server systems, each socket reports its own RAPL values.

The Intel Power Gadget is the other tool, in addition to oZm, used to perform the
energy measurements in this work and is based on the use of the energy register-counters
associated with the RAPL interface just described. This tool is enabled for Intel Core
processors (from 2nd Generation up to 10th Generation) and is supported on Windows and
Mac OS. It contains an application, driver, and libraries to monitor and estimate real-time
processor package power information in watts (W) using the energy domain registers of
the processor.

The Intel Power Gadget was chosen because:

(1) It largely meets the needs for performing the measurements shown in Section 4,
(2) It has been developed by the manufacturer of the processors under study,
(3) It is freeware, and
(4) It collects data from the RAPL interface.

The in-depth study of the RAPL interface, using different benchmarks, implemented
by K.N. Khan and M. Hirki [45] concludes that the RAPL readings are highly correlated
with the socket power, sufficiently accurate and produce negligible performance overhead.
Figure 6 shows graphs obtained during the execution of the Intel Power Gadget tool. An
example of the data generated by Intel Power Gadget (once installed on the various test
platforms) is shown in Table 3. The meaning of each of the parameters is provided in
Table 4.
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Table 3. Sample data provided by Intel Power Gadget for the first 10 s.

System Time RDTSC Elapsed Time
(sec)

CPU Utilization
(%)

CPU
Frequency_0

(MHz)

Processor
Power_0 (W)

Cumulative
Processor

Energy_0 (J)

Cumulative
Processor
Energy_0

(mWh)

11:44:17:227 3.04 × 1012 0.988 28 2900 11.976 11.829 3.286
11:44:18:247 3.04 × 1012 2.008 16 1200 7.69 19.674 5.465
11:44:19:254 3.04 × 1012 3.015 21 2900 9.021 28.759 7.989
11:44:20:247 3.05 × 1012 4.009 26 2900 11.621 40.307 11.196
11:44:21:246 3.05 × 1012 5.007 41 2900 13.08 53.371 14.825

Etc.

IA Power_0
(W)

Cumulative
IA Energy_0

(J)

Cumulative
IA Energy_0

(mWh)

Package
Temperature_0

(C)
Package Hot_0 GT Power_0

(W)

Cumulative
GT Energy_0

(J)

Cumulative
GT Energy_0

(mWh)

9.514 9.398 2.61 69 0 0.024 0.024 0.007
5.282 14.785 4.107 59 0 0.04 0.064 0.018
6.646 21.478 5.966 66 0 0.017 0.081 0.023
9.226 30.646 8.513 71 0 0.012 0.093 0.026

10.528 41.161 11.434 69 0 0.023 0.116 0.032
Etc.

Package PL1_0
(W).

Package PL2_0
(W)

Package
L4_0(W)

Platform
PsysPL1_0 (W)

Platform
PsysPL2_0(W)

GT Frequency
(MHz)

GT Utilization
(%)

35 44 112 0 0 99,999,999 0
35 44 112 0 0 99,999,999 0
35 44 112 0 0 99,999,999 0
35 44 112 0 0 99,999,999 0
35 44 112 0 0 99,999,999 0

Etc.
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Table 4. Parameters supplied by Intel Power Gadget.

Parameter Observation

System Time Current time (hh:mm:ss).
RDTSC Time Stamp Counter (TSC), number of CPU cycles since its reset.
Elapsed Time In seconds.
CPU Utilization Central processor unit usage percentage (%).
CPU Frequency_0 CPU frequency (MHz).
Processor Power_0 Power consumed by UC + ALU + FPU + integrated graphics + others (W).
IA Power_0 Power consumed by UC + ALU + FPU (W).
Package Temperature_0 Chip temperature (◦C).
DRAM Power_0 Power consumed by DRAM attached to the integrated memory controller (W).
GT Power_0 Power consumed by the discrete graphic processor (W).
Package PL1_0 Limit (threshold) for average package1; power that will not be exceeded (W).
Package PL2_0 Limit (threshold) for average package2; power that will not be exceeded (W).
Package PL4_0 Limit (threshold) for average package4; power that will not be exceeded (W).

Platform PsysPL1_0 Limit (threshold) for average platform1; power that will not be exceeded. The platform is
the entire socket (W).

Platform PsysPL2_0 Limit (threshold) for average platform2; power that will not be exceeded (W).
GT Frequency Frequency of the integrated graphic processor unit (GPU) (MHz).
GT Utilization (%) Usage percentage of the integrated graphic processor unit (GPU) (%).

2.3. Platforms and Processors under Test

Table 5 shows the characteristics of the five systems under test (SUT). Four laptops
and one desktop system (HP Pavilion) were selected, all of them with Windows OS. These
computers belong to the authors’ research group at the University of Granada and were
acquired over the years, so that the results provide an insight into the evolution of their
performance over time.

Table 5. Systems under test.

SUT1 SUT2 SUT3 SUT4 SUT5

Reference: Sony Vaio
SVZ1311C5E

ASUS Notebook
X550J

Toshiba Portege
Z30-C

HP Pavilion
All-in-One K1987LF

ASUS Expertbook
B9400CEA

Processor: Core i5-3210M
2.5 GHz

Core i5-4200H
2.8 GHz

Core i7-6500U
2.5 GHz

Core i5-10400T
2 GHz

Core i7-1165G7
2.8 GHz

Kernels: 2 cores, 4 threads 2 cores, 4 threads 2 cores, 4 threads 6 cores, 12 threads 4 cores, 8 threads

Memory capacity: 8 GB 8 GB 16 GB 16 GB 16 GB

Hard disk: SSD 256 GB HDD 500 GB SSD 1 TB SSD 512 GB SSD 1 TB

Mainboard: SONY VAIO ASUS X550J TOSHIBA HP 86ED ASUS Tek

Graphics card: Intel HD Graphics
4000

NVIDIA GeForce
GTX 850M

Intel HD Graphics
520 UHD Graphics 630 Intel Iris Xe

AC/DC adapter: Out: 19.5V-33mA.
In: 100-240V-1.5A

Out: 19V-6.32 A
In: 100-240V-6.32 A

Out: 19.5V-2.37A.
In: 100-240V-1.2A

Out: 19.5 V-7.7 A
In: 100-240 V-2.5 A

Out: 5-15V 3A.
In: 100-240V-1.5A

Operating system: Windows 10 Home Windows 10 Pro Windows 10 home Windows 10 Home Windows 10 Pro

Other Processor Features:

Generation: 3rd 4th 6th 10th 11th

Lithography: 22 nm 22 nm 14 nm 14 nm 10 nm

Frequency: 2.5–3.10 GHz 2.8–3.4 GHz 2.5–3.10 GHz 2–3.6 GHz 4.7 GHz

Cache size: 3 MB 3 MB 4 MB 12 MB 12 MB

Max. memory size: 32 GB 32 GB 32 GB 128 GB 64 GB

Processor launch
date: Q2, 2012 Q4, 2013 Q3, 2015 Q2, 2020 Q3, 2020

TDP: 35 W 47 W 15 W 25 W 12 W

TJuntion: 105 ◦C 100 ◦C 100 ◦C 100 ◦C 100 ◦C
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Other characteristics of the processors can be found in [46]. TDP is the average power
(watts, W) dissipated by the processor when operating at base frequency with all cores
active under an Intel-defined, high-complexity workload; and TJunction is the maximum
temperature allowed at the processor die.

2.4. Methodology

To analyze the performance rate when executing scientific problems and the energy
efficiency of the computers under test, Linpack Extreme is run on each of the SUTs and,
simultaneously, measurements with Intel Power Gadget and oZm are taken and stored.
The information obtained is shown in Tables 2 and 3.

The results generated in both applications are synchronized in time, and mean values,
standard deviations, etc., are calculated. The time periods in which Linpack is being
executed or not are also identified. To better interpret the results, the evolution of power
consumption over time of the measurements obtained with Intel Power Gadget and oZm is
also plotted.

To carry out the tests on each device, 5 runs of the Linpack Xtreme program are
performed, which is the maximum value in the parameters established by Intel for each
trial (see Table 1). It should be considered that the present work does not try to obtain exact
values of the results but rather to qualitatively assess the adequacy of PCs from the energy
point of view to execute scientific applications. Even so, the average and presented values
are obtained, in the case of oZm, from more than 3 samples per second and, in the case
of the Power Gadget, from 10 samples per second, which are sufficient for the required
precision.

Measurements are performed without any additional air conditioning system, unlike
with computers of a certain size that require expensive cooling equipment that consumes a
large amount of energy, which should also be included in their measures.

The following section (Section 3) shows the results obtained after the above calculations.

3. Experimental Results

Table 6 summarizes the results obtained during the execution of Linpack on the five
systems under test. First, the performance execution rate generated by Linpack Extreme
are shown. Then, those obtained from the Intel Power Gadget outputs are displayed, and
the table shows the average power in:

1. The processor domain (UC + ALU + FPU + GT + other circuits on the chip)
2. The IA domain (UC + ALU + FPU)
3. The GT domain, and
4. The DRAM domain.

Table 6. Summary of the main results obtained in the five systems under test.

Systems under Test→ SUT1 SUT2 SUT3 SUT4 SUT5

Linpack Extreme Results:

Number of CPUs 1 1 1 1 1
Number of cores 2 2 2 6 4

Number of threads used 2 2 2 6 4
Number of trials to run 5 5 5 5 5

Number of equations to solve 20,000 20,000 20,000 20,000 20,000
Data alignment value (KB) 4 4 4 4 4

Time of a trial 164.29 ± 4.42 72.9 ± 1.58 85.45 ± 3.40 48.19 ± 0.80 40.01 ± 2.29
R average (GFlops) 32.1 ± 0.83 73.17 ± 1.56 62.50 ± 2.36 110.71 ± 1.80 133.71 ± 8.27
R maximal (GFlops) 32.64 74.64 63.92 112.23 148.47

Intel Power Gadget Results:

RDTSC (number of cycles) 1.22 × 1012 1.94 × 1011 2.19 × 1011 9.20 × 1010 1.12 × 1011

Elapsed Time (s) 158.01 ± 19.05 69.61 ± 2.58 84.4 ± 3.3 46.17 ± 0.7 39.90 ± 2.17



Sustainability 2022, 14, 12829 13 of 23

Table 6. Cont.

Systems under Test→ SUT1 SUT2 SUT3 SUT4 SUT5

CPU Frequency (GHz) 2.882 3.390 2.486 3.281 4.606
CPU Utilization (%) 75.15 ± 1.64 69.61 ± 2.58 57.54 ± 3.08 51.12 ± 1.04 51.45 ± 0.51
Processor Power (W) 19.85 ± 0.06 37.59 ± 0.25 15.55 ± 0.17 30.03 ± 0.06 21.22 ± 1.94

IA Power (W) 16.99 ± 0.05 27.68 ± 0.35 10.31 ± 3.29 29.19 ± 0.06 16.84 ± 2.02
GT Power (W) 0.0203 ± 0.0003 2.33 ± 0.09 0.007 ± 0.002 2.33 ± 0.09 0.0118 ± 0.0004

DRAM Power (W) - 3.353 ± 0.005 2.66 ± 0.40 2.825 ± 0.007 0
Package Temperature (◦C) 82.94 ± 0.49 96.13 ± 0.88 70.75 ± 6.08 64.39 ± 2.45 82.05 ± 1.05

oZm Results:

Active power (Pavrg) (W) 45.94 ± 1.12 35.95 ± 1.06 93.42 ± 0.80 68.72 ± 1.54 33.42 ± 2.41
Time of trial run (s) 166.28 ± 4.20 85.45 ± 3.40 72.92 ± 1.58 48.19 ± 0.80 39.9 ± 2.17

It is worth mentioning that there are some subsystems from which no specific mea-
surements are obtained, such as buses, disks, I/O ports, and internal cooling devices
(fans). Finally, the average execution time and the average power consumption of five trials
measured with oZm are included.

In each case, Linpack is run five consecutive times and the tables show the results of
these five measurements. Linpack Extreme, Intel Power Gadget, and oZm data shown in
the table correspond to the same five runs.

When the Linpack test is performed, it is obviously running in parallel to the OS and
other system programs. In an attempt to obtain an estimate of the magnitudes specifically
attributable to the execution of Linpack, an evaluation of the baseline (or idle) parameters
has been performed. Here, we define the “core phases” [47] as the time intervals in which
the Linpack program is running, and the “idle or baseline phases”, as those corresponding
to intervals in which Linpack is not running, but in which the system is ready to start its
execution. It should be noted that idle phases are not a state of suspension or hibernation.

The power consumed and other parameters in the idle phases have been estimated
by averaging the values obtained in the time intervals where the program was not run-
ning, either before or after execution of a run of the five trials. These average values are
considered system constants or reference values when the workload under analysis is not
being executed.

Considering the previous criteria, Tables 7–11 and Figures 7–11 show the estimated
values attributable to the Linpack executions, as well as the consumed power graphs
obtained by both Intel Power Gadget and openZmeter. In the plots, the core phases are
shown in orange, while the rest of the measurements correspond to the idle phases.

Table 7. SUT1 results in the core and idle (baseline) phases.

SUT1 (Sony Vaio) Total in Core Phase Baseline Phases Attributable to
Linpack Execution

Intel Power
Gadget measures

CPU Utilization (%) 75.15 ± 1.64 29.69 ± 12.42 45.46

Processor Power (Watt) 19.85 ± 0.06 11.90 ± 2.52 7.95

IA Power (Watt) 16.99 ± 0.05 12.52 ± 0.45 4.47

GT Power (Watt) 0.0203 ± 0.0003 0.017 ± 0.002 0.0033

DRAM Power (Watt) - -

Package Temperature (◦C) 82.94 ± 0.49 73.41 ± 0.98 9.53

openZmeter Active power 45.94 ± 1.12 30.37 ± 4.98 15.57
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Table 8. SUT2 results in the core and idle (baseline) phases.

SUT 2 (ASUS Notebook) Total in Core Phase Baseline Phases Attributable to
Linpack Execution

Intel Power
Gadget measures

CPU Utilization (%) 69.61 ± 2.58 15.63 ± 1.61 53.98

Processor Power (Watt) 37.59 ± 0.25 12.19 ± 1.56 25.40

IA Power (Watt) 27.68 ± 0.35 15.05 ± 3.82 12.63

GT Power (Watt) 2.33 ± 0.09 2.7 ± 0.31 –0.37

DRAM Power (Watt) 3.353 ± 0.005 1.88 ± 0.10 1.473

Package Temperature (◦C) 96.13 ± 0.88 85.37 ± 5.73 10.76

openZmeter Active Power 93.42 ± 0.80 58.53 ± 12.08 34.89

Table 9. SUT3 results in the core and idle (baseline) phases.

SUT3 (Toshiba Portege) Total in Core Phase Baseline Phases Attributable to
Linpack Execution

Intel Power
Gadget measures

CPU Utilization (%) 57.54 ± 3.08 15.63 ± 1.61 53.98

Processor Power (Watt) 15.55 ± 0.17 1.30 ± 0.38 14.25

IA Power (Watt) 10.31 ± 3.29 5.66 ± 2.23 4.65

GT Power (Watt) 0.01 ± 0.00 0.01 ± 0.00 0

DRAM Power (Watt) 2.66 ± 0.40 1.70 ± 0.10 0.96

Package Temperature (◦C) 70.75 ± 6.08 62.59 ± 9.59 8.16

openZmeter Active Power 35.95 ± 1.06 18.37 ± 3.98 17.58

Table 10. SUT4 results in the core and idle (baseline) phases.

SUT 4 (HP Pavilion) Total in Core Phase Baseline Phases Attributable to
Linpack Execution

Intel Power
Gadget measures

CPU Utilization (%) 51.12 ± 1.04 0.85 ± 0.26 50.27

Processor Power (Watt) 30.03 ± 0.06 1.14 ± 0.40 28.89

IA Power (Watt) 29.19 ± 0.06 14.69 ± 3.74 14.5

GT Power (Watt) 2.33 ± 0.09 2.70 ± 0.31 –0.37

DRAM Power (Watt) 2.825 ± 0.007 0.89 ± 0.07 1.94

Package Temperature (◦C) 64.39 ± 2.45 57.53 ± 5.72 6.86

openZmeter Active Power 68.72 ± 1.54 30.74 ± 6.06 37.98

Table 11. SUT5 results in the core and idle (baseline) phases.

SUT5 (ASUS Experbook) Total in Core Phase Baseline Phases Attributable to
Linpack Execution

Intel Power
Gadget measures

CPU Utilization (%) 51.45 ± 0.51 2.54 ± 1.73 48.91

Processor Power (Watt) 21.22 ± 1.94 2.31 ± 0.25 18.70

IA Power (Watt) 16.84 ± 2.02 1.03 ± 0.95 15.81

GT Power (Watt) 0.0118 ± 0.0004 0.025 ± 0.007 –0.02

DRAM Power (Watt) - - -

Package Temperature (◦C) 82.05 ± 1.05 47.06 ± 4.51 34.99

openZmeter Active Power 33.42 ± 2.41 11.79 ± 3.81 21.63
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4. Discussion

Power efficiency (PE) is used to compare energy consumption in relation to power as
it has become widely used in the community and in particular in the Green500 ranking.
Green500 is a biannual list that ranks the supercomputers included in the TOP500 according
to their energy efficiency [37,48].

Power efficiency is determined by obtaining the quotient between Linpack’s maximal
performance rate of execution (Rmax) and average power (Paver) readings taken during such
a run (the core phase of the run); including the power of the interconnection subsystem
participating in the workload, i.e., the idle power. All in all, the power efficiency represents
the performance rate per watt (Flops per Watt), that is:

PE =
Rmax

Pavr
. (1)

The measurements of power or energy are typically made in Green500 at multiple
locations in parallel across the computer system. Such locations can be, for example,
at the entrance to each separate rack, or at the output connector of multiple building
transformers [49].

For the energy efficiency measurements of the systems under test in this work, similarly
to Green500, we use the value generated with the Linpack runs as Rmax and the average
power of all the electrical supply delivery to operate the computer system. That is, of the
one obtained by oZm. Figures 12 and 13 show the previous results in bar charts. As it can
be seen, the most recent generations of equipment show a higher performance rate.
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Note that the power consumed (W) by the processors does not depend directly on their
performance rate, as might seem intuitive. Keep in mind that the power consumed depends
on various factors, such as the density of the microprocessor’s transistors, whose growth
has been determined by Moore’s Law. In this context, Dennard scaling holds, which states
that if the density of the transistors is doubled, the power consumption stays approximately
the same. Combining this property with Moore’s Law, it can be stated that over time the
number of transistors in a dense integrated circuit (IC) doubles about every 24 months
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while the performance per watt does so approximately every 17 months. This forecast is no
longer being fulfilled since transistors are reaching an atomic size for which the traditional
physics models are no longer valid. As stated in [50], “transistors are still getting faster
generation-to-generation but not at the same rate than what used to be achieved in the
90s, since the major emphasis in transistor design has now shifted from speed to limiting
power consumption.”

One data source available from Intel Power Gadget is the power of the processor (CPU)
(see Table 6), which can be combined with the performance ratios of execution (Ravr and Rmax)
obtained with Linpack. This is shown in Figure 14. It is also possible to obtain the energy
efficiency of the specific domain of the isolated processors (UC + ALU + FPU + GT + other
circuits on the microprocessor chip), as detailed in Table 12 and represented in Figure 15,
where bars are included to depict the variability of the results. It is recalled that the standard
deviation is a measure of the amount of variation or dispersion of a set of values and, in the
present case, these deviations correspond to the fact that not all the machine instructions of
a processor consume the same energy, and to the out-of-order execution, cache hits, and
other run-time optimizations. These tests have been executed in multitask OS (Windows),
so the CPU have to spend some time in another small processes, internal Kernel activities
or attending network packets, so that during the execution of a program the values can
spread over a wide range around the mean. In Figures 7–11, it is possible to observe both
the power variations in the successive core phases and in the idle phases (baseline), which
determine the value of the standard deviation. Even from Figure 11, it can be seen how
the first run of Linpack contains at the beginning instructions different from the other four,
probably to initialize the parameters and data of the program. All these variations are
mathematically represented by the standard deviation, being greater as the fluctuations
between the energy consumed by the instructions increase.
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Table 12. Energy efficiency of the microprocessors in the execution of Linpack measured with the
Power Gadget.

Processor
Power (Watt)

Baseline Phases
(Watt)

Atributable
to Linpack
Execution

(Watt)

Rmax
(GFLOPS)

Power
Efficiency

(GFLOPS/Watt)

RSD (Relative
Standard

Deviation)

i5-3210M (3rd gener.) 19.85 ± 0.06 11.90 ± 2.52 7.95 ± 1.69 32.64 4.1 ± 0.87 0.21
i5-4200H (4th gener.) 37.59 ± 0.25 12.19 ± 1.56 25.40 ± 3.27 74.64 2.9 ± 0.38 0.13
i7-6500U (6th gener.) 15.55 ± 0.17 1.30 ± 0.38 14.25 ± 4.18 63.92 4.5 ± 1.32 0.29
i5-10400T (10th gener.) 30.03 ± 0.06 1.14 ± 0.40 28.89 ± 10.14 112.28 3.9 ± 1.36 0.36
i7-1165G7 (11th gener.) 21.22 ± 1.94 2.31 ± 0.25 19.01 ± 2.40 148.47 7.8 ± 0.99 0.13
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As a curiosity, Table 13 compares the energy efficiency of the Green500 supercomputers
with the small systems analyzed. Information on the position of each platform in the
Green500 and Top500 is included, and the maximum computing performance rate, average
power, and power efficiency are also shown. Measures have been obtained in all cases with
Linpack benchmark. Rows corresponding to the positions that the equipment under test
would occupy within the classification have been added to the table.

Table 13. Position in terms of power efficiency of the systems under test within the Green500 list
(June 2022) [51].

Platform Position in
Green500

Position in
TOP500 Rmax TFLOP/s Power (KW) Power Efficiency

(GFLOPS/Watt)

Frontier TDS-HPE Cray EX235a,
AMD Oak Ridge National
Laboratory United States

1 29 19,200 309 62.684

Frontier-HPE Cray EX235a,
AMD Oak Ridge National
Laboratory United States

2 1 1,102,000 21 52.227

* SUT5. ASUS 2 – – 0.148 0.03347 4.436
JOLIOT-CURIE

SKL-CEA/TGCC-GENCI,
FRANCE

92 124 4070 917 4.434

* SUT2. Toshiba 1 – – 0.064 0.0359 1.779
occigen2. National de Calcul
Intensif-Centre Informatique
National de l’Enseignement
Suprieur (GENCI-CINES)

FRANCE

167 255 2490 1430 1.745

* SUT4. HP – – 0.112 0.06872 1.633
HKVDPSystem, IT Service

Provider, CHINA 172 388 1980 1216 1.627

* SUT3. ASUS – – 0.075 0.09342 0.7989
* SUT1. SONY – – 0.037 0.04594 0.7923

Thunder-SGI ICE X, Xeon
E5-2699v3/E5-2697 v3,

Infiniband FDR, NVIDIA Tesla
K40, Intel Xeon Phi 7120P, HPE,
Air Force Research Laboratory,

United States

183 171 3130 4820 0.649

* System under test.
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As can be seen, the equipment under test obtains a higher power efficiency than some
of the TOP500 supercomputers. It is important to note that in all cases the performance
rate of the supercomputers is much higher than that of the systems under test. Thus, for
example, although the SUT5 is more energy efficient than the JOLIOT-CURIE SKL (4.44 vs.
4.43 GFLOPS/W), a program that would take t = 1 second to be run on the supercomputer,
would take exactly:

tSUT5 =
RSKL

RSUT5
=

4065.6
0.148

= 27, 470 s = 7 h, 37 min, 50.27 s (2)

The energy consumed in the execution of NI float-point instructions can be easily
obtained on a computer with power efficiency, PE. Indeed, by definition, power efficiency is:

PE =
NI
t
P

=
NI
P·t . (3)

Considering that the energy consumed, E, is the product of the average power, P, and
the time elapsed in the execution of the program, t, it has:

E = P·t = NI
PE

. (4)

That is, the total energy consumed during the execution of NI instructions is lower if
the power efficiency is lower, regardless of the execution time of those NI instructions.

5. Conclusions and Future Work

In this work, the possibility of using PCs as a plausible, energy efficient option for the
execution of non-complex scientific or engineering computer programs has been explored.
For this purpose, five personal computers with different processors of different generations
have been used, and measurements of performance rates of execution, electric power
consumed, and power efficiency of the five systems under test have been calculated.

To demonstrate the plausibility of the proposed thesis, the results obtained have been
compared with the rank and details of the 500 most powerful computer systems in the
world (TOP500), including their energy efficiencies (GREEN500). The test tools and method
followed for the measures presented are analogous to those used in the indicated rankings.

To meet the stated objective, a complete methodology has been presented to determine
the energy efficiency of complete computer systems. Specifically, the energy efficiency of
a computer system has been determined by executing Linpack, a reference application
considered to be among the most used in scientific and engineering systems. This has been
done using the (a) external meter oZm and the (b) Intel Power Gadget, an internal power
meter that considers the counters and hardware registers included in the processor.

The Linpack program has been used as a reference for the measurements. This
program is considered a very suitable benchmark to measure the computing power of a
device executing instructions with float-point data, which is the most computationally
complex type of data, requiring fast processing times and is representative of scientific and
engineering applications.

The fact that a system has a higher power efficiency than another means that it
consumes less energy (Wh) running the same program, regardless of the execution time.
Despite the complexity of supercomputers, in some cases, their energy efficiency is similar
to, or higher than, that of PCs when executing the same programs, as occurs in the first
78 supercomputers in the Green500 (Table 13).

Although the objective of this paper is only to compare the energy efficiency of PCs
with high-performance computers in scientific-technical applications, the results obtained
can be analyzed and exploited in greater depth. In this way, as future work it is possible to
isolate and analyze in detail the behavior of Processor Power, IA Power, GT Power, DRAM
Power, and the set of other computer components. The consumption of this last set of
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components would be obtained by the difference between the oZm measurements and
those provided by Intel Power Gadget, and would include the consumption associated
with data transfer via buses external to the processor, I/O ports, peripherals, power supply,
etc. On the other hand, although the precision obtained with 5 measurements is a priori
sufficient to make the comparative analysis with the GREEN500 systems, a more exhaustive
analysis with more than 5 runs should be carried out to obtain a more reliable mean values.
The main pitfall here is that a program such as Linpack, running on laptops, entails a very
long execution time.

It is concluded that the power efficiency of PCs for the same workload is comparable
to that of more powerful computers, which means that, in many cases where execution
time is not constrained, it may be appropriate to migrate program execution from servers
or workstations to personal computers in order to contribute to reducing the overall energy
consumption produced by ICTs.

It should be noted that, according to the predictive models on electricity use by ICTs
developed by Andrae and Edler [6], consumption of these technologies will increase from
13% of global electricity use in the world in 2022 to 21% in 2030, and could reach more than
half (51%) of the earth’s total demand in the worst-case scenario. It is therefore necessary
to analyze different options, as in this paper, to reduce the contribution of ICTs to the
environmental impact.
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