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Abstract: Ecological environment in mining cities has become an important part of ecological con-
struction. This paper takes Tongling, a mining city, as the research area, and uses Landsat series
remote sensing images from 2000 to 2020 as data sources. Using the principal component analysis
method and the Remote Sensing Ecological Index (RSEI) integrated with four indexes of greenness,
humidity, dryness, and heat, the ecological disturbance of the mining area was evaluated and studied.
Meanwhile, the land cover spatiotemporal classification of Tongling city was extracted by the maxi-
mum likelihood method. Furthermore, landscape metrics were used, based on the information on
open-pit mining areas, to quantitatively analyze the ecological environment quality and its change
characteristics in the study area. The results show that (1) RSEI can better characterize the ecological
quality of Tongling city, greenness and humidity are positively correlated with it, dryness and heat are
negatively correlated with it, and dryness and RSEI have the highest correlation coefficient, indicating
that urban expansion will cause ecological environment deterioration to a certain extent. (2) The
ecological environment quality of the research area showed a “decline-rising” trend, and the mean
value of RSEI decreased from 0.706 to 0.644. Spatially, the areas with poor RSEI are mainly distributed
in the central urban area and the open-pit mining area in the south. (3) Land cover change leads to
changes in landscape metrics, and most landscape-level metrics are positively or negatively correlated
with RSEI. The more concentrated the land cover type distribution is, the smaller the change is, and
the more regional RSEI can be improved. (4) The mean value of RESI of the ten open-pit mining areas
in Tongling city decreased significantly, with a maximum decrease of 52.73%. Among them, the RESI
decline rate in the area around the no.1 open pit mine is 0.034/year. The ecological degradation in
Tongling city is attributed to the rapid expansion of built-up areas and the development of the mining
industry. The research results can provide a scientific basis for protecting the ecological environment
of mining cities.

Keywords: remote sensing ecological index; ecological environmental quality; spatiotemporal
changes; principal component analysis; mining area

1. Introduction

Ecological and environmental problems have gradually become one of the main
factors threatening regional ecological security and sustainable economic and social devel-
opment [1]. Mining is the pillar industry of the country’s economy, and its development
is, to some extent, at the cost of environmental damage [2]. Furthermore, mining has also
caused serious impacts on the sustainable development of the local ecological environ-
ment and the social economy, which is one of the difficulties in current environmental
management [3–5]. With the continuous expansion of the population and the acceleration
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of urbanization, the structural contradiction between economic development and resources
and the environment has become increasingly apparent, and the ecological environment
problems disturbed by human beings have become particularly prominent [6–8]. The
ecological environment of mining cities is under the double pressures of mineral exploita-
tion and urbanization. Therefore, it is very necessary to evaluate the regional ecological
environmental quality of mining cities.

The Environmental Protection Agency (EPA) conducted an environmental survey
of all counties using the Environmental Quality Index (EQI), which can be used to
quantitatively evaluate the regional ecological and Environmental Quality [9]. Based
on the EQI, the Ministry of Environmental Protection of China developed an eco-
environmental quality Index (EI) model [10] based on the biomass abundance index,
vegetation cover index, water network density index, land stress index, pollution load
index, and environmental limitation index, which has been widely used in regional
eco-environmental quality assessment [11]. Moreover, remote sensing technology has
the advantages of a large monitoring range, instantaneous imaging, real-time trans-
mission, fast processing, rapid information acquisition and dynamic monitoring, and
little ground influence, which has improved the assessment of ecological environment
quality [12–14]. Some research combined using remote sensing technology and the EQI
to study ecological environment quality. For example, Li et al. studied the ecological en-
vironment change of Mu Us Sandy Land by combining land cover and the Normalized
Difference Vegetation Index (NDVI). The results showed that the ecological restoration
in the Mu Us is experiencing increasing challenges, due to the growing human activities
(including land cover change) and still-fragile eco-environment [15]. Mozumder et al.
used Landsat as the data source and the Normalized Difference Water Index (NDWI),
Modified Normalized Difference Water Index (MNDWI), Normalized Difference Pond
Index (NDPI), NDVI and field survey data to classify and evaluate the Ramsar wetland
ecosystem. The environmental quality of the wetland ecosystem was closely related to
major contributing anthropogenic factors, such as railway line construction, growing
croplands, and illegal human settlements in the wetland catchment [16]. It can be
seen that changes in land cover or land use have a great impact on the quality of the
ecological environment. Mining areas face difficulties in statistical data collection, low
accuracy of spatial data and subjectivity of ecological index weight [16,17]. Since remote
sensing technology is so widely used in ecological environment quality evaluation, it
set a great example to be used in mining area ecological research [18].

In addition, considering the complexity of the ecological environment, a single EQI
such as the surface temperature or drought index is not enough to evaluate the eco-
logical environment quality [19,20]. So, the comprehensive Remote Sensing Ecological
Index (RSEI) has attracted the attention of scholars. RSEI was proposed by Xu et al. to
evaluate the ecological quality of Fuzhou city [7,8,21]. Principal component analysis
was used to conduct an integrated analysis on the four indexes of greenness, humid-
ity, dryness, and temperature, acquired based on remote sensing images, to rapidly
evaluate the regional ecological environmental quality [17,22]. This method is simple
to calculate and not only quantitatively represents the ecological quality monitoring
and evaluation but also carries out a visual analysis, which has been widely used in
the field of ecological research in many areas [23–27]. For example, Wei showed that
RSEI and EI had strong similarities in the ecological sense, and RSEI was more effec-
tive than EI in reflecting changes in ecological environmental quality [16]. The index
has been improved by many scholars due to the difference in the study area. Based
on Principal Component Analysis (PCA), Li added the Analytic Hierarchy Process
(AHP) and Technique for Order Preference by (TOPSIS) Similarity to an Ideal Solution
(algorithm), which improved the result of RSEI. The results showed that RSEI along
the Grand Canal showed a decline and then an upward trend during 2000–2019. Li
found that the RSEI has an important relationship with human activities, especially
tourism development and urban development [28]. Wu used moderate-Resolution
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Imaging Spectroradiometer (MODIS) data, based on the ecological environment of the
Sahel Region in Africa, and an improved remote sensing ecological index model was
established combining drought, moisture, greenness, and desertification indexes to
reflect the ecological quality of desert areas. Different land-cover types demonstrated
different RSEI values and changing trends. Wu found that RSEI and precipitation were
positively correlated in the Sahel Region [29]. Sun et al. added the white rot Night
Light Index (CNLI) based on RSEI to evaluate the urbanization level and environmental
quality in Ethiopia during 2010–2020. The spatial correlation between the urbanization
process and RSEI was strong [30]. Zhang proposed a new assessment method for urban
ecological environmental quality based on RSEI, which comprehensively considered
the impact of the RSEI index on ecological environmental quality and seasonal changes.
The results showed that rapid urban expansion and land reclamation in Binhai New
Area have a great impact on RSEI [31]. However, the application of these comprehensive
remote sensing index methods in mining areas is relatively few. The application of
mathematical methods such as principal component analysis to the analysis of influenc-
ing factors of ecological environment quality in specific mining areas is also relatively
few [32–34]. Moreover, an in-depth analysis of the impact of Land Cover changes on
RSEI is also rare.

This study takes Tongling city, a typical mining city, as the research area. Con-
sidering the rapid urban expansion in the past two decades, urban expansion and
mining development simultaneously affect the ecological environment of the region for
mining cities. Using remote sensing technology to monitor the ecological environment
is beneficial to quickly understand the change process of the ecological environment.
Therefore, based on the RSEI model, principal component analysis, and maximum
likelihood classification, the remote sensing ecological index and land cover data of
Tongling city were extracted from Landsat series images in this study. Furthermore,
Fragstats 4.2 software was used to calculate landscape metrics, combined with opencast
mine information, and the ecological environment of the study area from 2000 to 2020
was evaluated as a whole. The results can provide a typical scientific basis for protecting
the ecological environment of a mining city and provide data support for subsequent
mining areas to accurately formulate ecological environment restoration plans.

2. Methods and Materials
2.1. Study Area

Tongling city is in east China in the south-central Anhui Province (Figure 1). Its ge-
ographical coordinates are between 117◦04′~118◦09′ EAST longitude and 30◦38′~31◦09′

north latitude. Tongling City belongs to the North subtropical humid monsoon cli-
mate, with a significant temperature difference between winter and summer, frequent
exchanges of warm and cold air masses, a changeable climate, and great inter-annual
variation of precipitation. Low temperatures and continuous rainy weather often occur
in spring and drought in autumn. In the south of the low mountains, hills cross a
north-eastern spread. It is known as “Ancient copper capital of China and modern
copper base”. The history of copper mining began in the Shang and Zhou Dynasties and
flourished in the Han and Tang dynasties, extending for more than 3500 years. Tongling
has provided copper, gold, silver, sulfur, iron, limestone, and all kinds of rare metals
associated with them, among which the reserves of copper, sulfur, and limestone rank
first in East China and China [24,35]. After 2000, there were ten open-pit mining areas in
Tongling city (Table 1), mainly distributed in the southern mountainous area (Figure 1).
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Figure 1. Location map of study area.

Table 1. Name and establishment time of mining area.

Mine Number Name Time of
Establishment

Mine 1 Cement of Hushan, Anhui Tongling Conch
Cement Company 2011

Mine 2 Tongling Fengrun earth mining corporation Ltd. 2003
Mine 3 Tongling Xiaoxiang mining corporation Ltd. 2003
Mine 4 Anhui Niushan mining corporation Ltd. 2001
Mine 5 TCIGCL Xinqiao mining corporation Ltd. 2001

Mine 6 Limestone mine, Tongling Maodi mining
corporation Ltd. 2009

Mine 7 Tongling Yipin mining corporation Ltd. 2005
Mine 8 Tongling Yuanda mining corporation Ltd. 2004

Mine 9 Limestone mine of wulishan, Tongling
Shangfeng Cement Co., Ltd. 2003

Mine 10 Cement of Xiaochong, Tongling Shangfeng
Cement Co., Ltd. 2009

2.2. Data Resources and Pre-Processing

In this paper, three Landsat series remote sensing images provided by the United
States Geological Survey (USGS) were selected as data sources: Landsat 5 Thematic Mapper
(TM) images in 2000 and 2010 and Landsat 8 Operational Land Imager (OLI) images in
2020, with a spatial resolution of 30 m and a line band number of (path 120, row 39)
(https://www.usgs.gov/core-science-systems/nli/landsat accessed on 6 September 2022),
the acquisition time of the three scene images were October 3 every year. Radiometric
calibration, atmospheric correction, and geometric correction were used to preprocess
the three phase images, and the images were trimmed according to the administrative

https://www.usgs.gov/core-science-systems/nli/landsat
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boundary of Tongling city to obtain the three phase surface reflectance images of the study
area. As the Water body affects the principal component load, the water body is masked
according to the Modified Normalized Difference Water Index (MNDWI) [15,36,37]. The
location data of ten mining areas are provided by the Anhui Zhonghui Planning survey,
Design, and Research Institute. The detailed data resources and data processing procedure
are listed in Figure 2.

Figure 2. Data resources and data processing procedure.

2.3. RSEI Evaluation Model

RSEI was used to comprehensively reflect the ecological environment status of the
study area. The RSEI index is based on the integration of four indices closely related to
human beings extracted from remote sensing images and principal component analysis,
so it avoids artificial weighted calculation and is more reasonable [36,38,39]. RSEI can
visualize the ecological environment of the studied region to intuitively feel the changes in
ecological conditions. The detailed Equations are as follows:

RSEI = (W, D, G, T) (1)

RSEI = f (Wet, DNBSI, NDVI, LST) (2)

where W, D, G, and T are four remote sensing indexes: Greenness, humidity, dryness, and
heat indexes, respectively. Wet is the moisture index, DNBSI is the average value of the
Normalized Difference Built-up and Soil Index, NDVI is the vegetation index, and LST is
the surface temperature index.

In the ENVI (Environment for Visualizing Images) 5.3 platform (https://www.envi.
com accessed on 6 September 2022), the NDVI, WET, Normalized Difference Built-up and
Soil Index (NDBSI), and Land Surface Temperature (LST) were calculated to represent
greenness, humidity, dryness, and heat indexes, respectively [1,7,35,38].

Then, MNDWI was used to extract the water body in the study area, mask the four
remote sensing indexes, and combine them into a new image for principal component
analysis. The first component is the initial ecological index. At last, the principal component

https://www.envi.com
https://www.envi.com
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analysis method was used to collect most of the information on the four indicators and can
be used to represent the ecological environment characteristics of the region [40].

2.4. Land Cover and Landscape Metrics Calculation

Maximum likelihood classification is to establish a set of nonlinear discriminant
functions according to the maximum likelihood ratio and Bayes decision criterion method
in two or more types of decisions, assume that each distribution function is a normal
distribution, select training areas, and calculate the probability of belonging of each sample
area to be classified. An image classification method for classification has high precision and
good stability [39]. Therefore, the maximum likelihood method was used in the ENVI5.3
platform to monitor land cover change in Tongling city from 2000 to 2020, to further analyze
the causes of ecological environment change in the mining area.

The Globe Land 30 dataset of Anhui Province in 2010 was downloaded from the National
Earth System Science Data Sharing Service Platform-Loess Plateau Science Data Center (http:
//loess.geodata.cn accessed on 6 September 2022), and the regions of interest were selected to
classify the images of the three phases, including water, arable land, forest and grassland, and
artificial surfaces of 4 types. The classification results were processed by clustering analysis
and were modified by right and wrong regions. The accuracy of classification was evaluated
by random selection points from Google Earth (https://developers.google.com/earth-engine
accessed on 6 September 2022), and the Overall Accuracy (OA) of classification was higher
than 85%, kappa coefficient was all higher than 0.81, indicating that the maximum likelihood
method can be used to extract land cover information in Tongling city, to analyze the causes
of ecological environment change.

Based on previous studies [25,41,42], the I landscape-level scales contagion index
(CONTAG), the aggregation index (AI), Shannon’s diversity index (SHDI), interspersion
and juxtaposition Index (IJI), Mean patch Shape Index (SHAPE_MN), and mean Patch
fractal Dimension (FRAC_MN) are the six landscape pattern indexes. The grid analysis
method was applied, and the size of a single pixel was 30 m × 30 m. The processed land
cover data were input into the Fragstats 4.2 software platform (http://www.umass.edu/
landeco/research/fragstats accessed on 6 September 2022) as the data source, and the
landscape pattern indexes of each grid were obtained.

2.5. Biological Abundance Index Calculation

To further evaluate the results of the RSEI model, we calculated the Biological Abun-
dance Index (BAI) using the ArcGIS platform. BAI was an important indicator used to
evaluate the quality of the ecological environment, which was defined in the National
Environmental Protection Standard of the People’s Republic of China HJ623–2011 Regional
Biodiversity Assessment Standard. It refers to the difference in the number of biological
species of different ecosystem types per unit area, which indirectly reflects the abundance
and poverty of organisms in the assessed area. The higher the value, the better the ecological
environment. The formula is as follows:

BAI = Abio × (0.35 × forest + 0.21 × grassland + 0.28 × wetland + 0.11 × cropland +
0.04 × construction land + 0.01 × unused land)/total area

(3)

The area of each land type was extracted from remote sensing data. In the formula,
Abio represents the normalization constant of the biological abundance index [43].

3. Results and Discussion
3.1. Principal Component and Correlation Analysis

In this paper, the correlation coefficients between RSEI and each sub-index were calcu-
lated by SPSS 26.0 software (Table 2). The correlation between NDVI and NDBSI was as
high as 0.97. NDVI and WET were positively correlated with RSEI, while NDBSI and LST
were negatively correlated with RSEI, that is, RSEI increased as NDVI and WET increased,
signifying better ecological quality. On the contrary, with the increase in NDBSI and LST,

http://loess.geodata.cn
http://loess.geodata.cn
https://developers.google.com/earth-engine
http://www.umass.edu/landeco/research/fragstats
http://www.umass.edu/landeco/research/fragstats
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RSEI decreased and ecological quality decreased. This is consistent with the regional ecolog-
ical response in previous studies [32,38,44,45]. NDBSI has the largest correlation coefficient,
which mainly reflects the distribution of bare soil and buildings, indicating, to some extent,
that urban expansion will cause ecological environment deterioration [33,40]. Both indicate
that dryness is the most important factor affecting the ecological environmental quality,
followed by greenness, which is consistent with the research results of Zhu [40], and reflects
that human activities have caused increasingly serious damage to the environment in recent
years. Therefore, urban planning should consider the ecological environment, balance the
relationship between urban development and ecological environment quality, and promote
sustainable urban development.

Table 2. Correlation matrix among RSEI and four factors.

NDVI WET NDBSI LST RSEI

NDVI 1
Wet 0.25801 1

NDBSI −0.98998 −0.28643 1
LST −0.81658 −0.29619 0.792769 1
RSEI 0.971831 0.284334 −0.97835 −0.68164 1

3.2. Overall Evaluation of Ecological Environment in Tongling City

Overall, Figure 3 lists the Spatial distribution of RSEI in Tongling City. Figure 3 shows
that RSEI in the southeast of Tongling city is higher than that in the northwest. In 2000, the
mean VALUE of RSEI in Tongling city was 0.706, and the mean value of RSEI in 4.67% of
the area was 0–0.6. In 2010, the mean value of RSEI was 0.637, and the mean value of RSEI
ranged from 0 to 0.6, accounting for 21.80% of the total area, increasing by 17.13%. In 2020,
the mean RSEI of Tongling city was 0.644, which was slightly better than that of 2010. The
mean RSEI of 12.55% area was between 0 and 0.6. During the study period, the RSEI value
of Tongling city decreased from 0.706 to 0.644, with a decrease of 9.63%, indicating that the
ecological environment quality of Tongling city showed a downward trend.

Figure 3. Cont.
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1 

 

Figure 3. Spatial distribution of RSEI in Tongling City: (a) RSEI of 2000; (b) RSEI of 2010; (c) RSEI
of 2020.

To further study the ecological effects of RSEI, RSEI values in each year were divided
into five grades with 0.2 intervals, representing ecologically poor, poor, medium, good,
and excellent, respectively. Table 3 showed the classification of the ecological environment.
It can be seen from Table 4 that the area occupied by poor and poor ecological grades is
almost unchanged from 2000 to 2020. From 2000 to 2010, the proportion of the medium
ecological grade in the area increased significantly from 4.66% to 21.65%, the proportion of
the good grade increased by 7.48%, and the proportion of the excellent grade decreased
by 24.61%. It shows that the ecological environment quality of Tongling city decreased
from 2000 to 2010. As can be seen from Figure 3, the overall environmental quality of
Tongling city deteriorated from 2000 to 2010, especially in the northern area along the
Yangtze River. In this paper, RSEI is used to monitor the changes in ecological environment
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quality in mining cities and analyze the causes. This result is consistent with the results
shown in the Bulletin of Environmental Conditions in Anhui Province, which shows that
the comprehensive index of ecological environment conditions in Tongling city decreased
slightly from 2005 to 2010.

Table 3. Area classification of ecological environment.

Grade Index Description

Poor (0 < RSEI < 0.2) The conditions are relatively poor and human life is limited.

Inferior (0.2 < RSEI < 0.4) The area has poor vegetation coverage, less precipitation and
fewer species, which is easy to restrict human life.

Medium (0.4 < RSEI < 0.6) The vegetation coverage is moderate, which is more suitable
for human life and restricts human life to a certain extent.

Good (0.6 < RSEI < 0.8) High vegetation coverage, rich biodiversity, suitable for
human habitation.

Excellent (0.8 < RSEI < 1.0) High vegetation coverage, rich biodiversity and stable
ecological environment.

Table 4. Area and percentage of each RSEI level in Tongling City.

2000 2010 2020

RESI
Mean

Area
(km2) % RESI

Mean
Area
(km2) % RESI

Mean
Area
(km2) %

Poor
(0~0.2)

0.706

0 0

0.637

0 0

0.644

0 0

Inferior
(0.2~0.4) 0.09 0.01 1.41 0.15 1.21 0.13

Medium
(0.4~0.6) 43.47 4.66 206.41 21.65 118.54 12.42

Good
(0.6~0.8) 523.73 56.18 606.83 63.66 756.63 79.30

Excellent
(0.8~1.0) 364.95 39.15 138.59 14.54 77.78 8.15

Total 932.24 100 953.24 100 954.16 100

From 2010 to 2020, the proportion of the area with a medium ecological grade de-
creased significantly, from 21.65% to 12.42%. The proportion of the good grade increased
significantly from 63.66% to 79.30%. The proportion of the excellent ecological environment
decreased from 14.54% to 8.15%. As can be seen from Figure 3, from 2010 to 2020, RSEI
increased in the northern and central areas of Tongling city, resulting in better environmen-
tal quality, while the environmental quality deteriorated in the southern open-pit mine
area. This variation trend of RSEI is in good agreement with Niu’s research results [22].
Niu showed that RSEI in Anqing city, a neighboring city of Tongling, showed a downward
trend from 1999 to 2009, and a slow rise from 2009 to 2019. The results of this study are
consistent with the results of the Anhui Province Environmental Status Bulletin, indicating
that the eco-environmental status index of Tongling city is in the range of 65–70 from 2010
to 2015, while it is in the range of 70–75 from 2015 to 2020, indicating a slight increase
in eco-environmental quality. Compared with 2000, the areas with worse environmental
quality in 2020 are mainly located along the Yangtze River, the central urban area, and
the mining area in the southeast. From 2000 to 2010, the average NDVI of Tongling City
decreased from 0.481 to 0.345. From 2010 to 2020, the average NDVI increased from 0.345
to 0.389. Section 3.1 shows that the correlation coefficient between RSEI and NDVI reached
0.97. NDVI first decreased and then increased slightly, which is completely consistent with
the change in RSEI. The change in NDVI further proves that RSEI is suitable for explaining
the ecological environment quality of Tongling City.
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Figure 4 shows the distribution of BAI in Tongling City from 2000 to 2020. The BAI of
Tongling City is higher in the south than in the north. In 2000, the BAI of Tongling City
was between 30 and 100, with an average of 61.34. The BAI in the southern mountain area
was above 80, and that of the northern cultivated land was the lowest, between 30 and 40.
The BAI of cultivated land in the central area was slightly higher, above 40.
 

2 

Figure 4. Cont.
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Figure 4. Spatial distribution map of BAI in Tongling City: (a) BAI of 2000; (b) BAI of 2010; (c) BAI
of 2020.

In 2010, the BAI of Tongling City was between 0 and 90, with an average of 45.50.
Compared with 2000, the BAI in the middle and north of Tongling City has declined
seriously, with the lowest value in the city center, below 10. The BAI of cultivated land
around the city center decreased to approximately 30. The results showed that the ecological
environment quality of Tongling in 2010 was much worse than that in 2000.

In 2020, the BAI of Tongling City was also between 0 and 90, with an average of 45.84.
The BAI in the city center slightly increased, which may be related to urban greening. The
BAI in the southern mountains improved slightly. The BAI of cultivated land in the north
is much higher than that in 2010. This shows that the ecological environment quality of
Tongling in 2020 is better than that in 2010.

In general, the BAI of Tongling City showed a downward trend, and the ecological
environment quality was becoming worse. The trend is completely consistent with that of
the RSEI model, which proves that the RSEI model is suitable for monitoring the ecological
environment quality of Tongling City.

3.3. Analysis of Land Cover Change in Tongling City

To further analyze the causes of ecological change in Tongling Mining area, Figure 5
lists the spatial distribution map of land cover in Tongling City. As can be seen from
Figure 5, woodland and grassland in Tongling city are mainly concentrated in the south,
while the Yangtze River runs across Tongling City from west to east and cultivated land
and artificial surfaces are mainly distributed along the river. As can be seen from Figure 5,
the crop land area decreased significantly from 2000 to 2020, while the artificial surface area
increased significantly, and the increased area was in the central and eastern riverside zone
of Tongling City.

Tables 5 and 6 show the specific land cover classification area from 2000 to 2020. As
can be seen from Table 5, from 2000 to 2010, the land cover classification area from high to
bottom is crop land > forest land, grassland > water > artificial surface. The water area in
Tongling was almost unchanged, and the crop land area increased by 24.12 km2, mainly
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from forest land and grassland. The area of man-made land increased slightly, and the area
of forest and grassland decreased by 23.85 km2. 

3 

 

Figure 5. Cont.
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Figure 5. Spatial distribution map of land cover in Tongling City: (a) Land cover of 2000; (b) land
cover of 2010; (c) land cover of 2020.

Table 5. Land cover classification matrix of Tongling city from 2000 to 2010 (km2).

2010
2000

Water Forest and
Grassland Cropland Non-Vegetation Sum

water 83.77 2.33 8.14 8.78 103.02
Forest and
grassland 1.09 242.17 18.39 9.93 271.59

Cropland 10.80 38.91 349.36 79.76 478.84
Non-vegetation 13.30 12.02 78.83 77.81 181.95

Sum 108.97 295.44 454.72 176.29 1035.41

Table 6. Land cover classification matrix of Tongling city from 2010 to 2020 (km2).

2020
2010

Water Forest and
Grassland Cropland Non-Vegetation Sum

water 86.17 0.46 10.63 12.95 110.22
Forest and
grassland 2.36 252.61 81.56 9.28 345.42

Cropland 1.58 6.18 237.39 28.06 273.21
Non-vegetation 12.89 12.74 149.25 131.65 306.55

Sum 103.02 271.59 478.84 181.95 1035.41

In Table 6, from 2010 to 2020, the land cover classification area from high to low is crop
land > artificial surface > forest land, grassland > water. The area of water area was flat, the
area of forest land and grassland increased slightly, and the area of artificial land increased
significantly, increasing to 124.60 km2. The area of crop land decreased significantly, from
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478.84 km2 to 273.21 km2, and mainly changed to artificial land, forest land, and grassland.
According to the results of Tables 5 and 6, combined with Figure 5, the urban expansion of
Tongling city is mainly completed on crop land, and it expands to the northeast based on
the urban expansion in 2000.

3.4. Landscape Pattern Variations of Tongling

Landscape-level metrics can measure the overall structure, function, or changes of
the entire region by computing all patches. Those indexes could be used to calculate
dominance, evenness, diversity, fractal dimension, clumpy, the habitat fragmentation index,
etc. In this study, after careful selection, six landscape-level metrics were applied to identify
these features (Table 7).

Table 7. Six landscape-level metrics of each RSEI grade in Tongling from 2000 to 2020.

Year IJI (%) CONTAG (%) AI (%) SHDI SHAPE_MN
(km2) FRAC_MN

2000 69.2496 57.5713 94.7248 1.1185 1.3840 1.5092
2010 64.6028 60.3458 95.3242 1.1948 1.3425 1.0556
2020 68.3044 57.3776 95.2078 1.2905 1.3335 1.0537

IJI, the shortened form of the ‘interspersion and juxtaposition index’, measures the
patch adjacency and the degree of the interspersion or intermixing of patch types. During
the study period, the value of IJI first decreased and then increased, showing a downward
trend. The significance of this index is opposite to CONTAG. The smaller its value is,
the more landscape types tend to be composed of large patches, and the more stable
the ecological environment is. CONTAG indicators, the abbreviation of the ‘contagion
index’, describe the degree of agglomeration or extension of different patch types in a
landscape. High sprawl indicates that some dominant patch types in the landscape form
good connectivity. On the contrary, it indicates that the landscape is a dense pattern with
many elements, and the fragmentation degree of the landscape is high. From 2000 to
2020, the value of CONTAG increased first, then decreased, but was still higher than the
first period. It shows that the patch area increased from 2000 to 2010. Combined with
land cover change data, woodland and grassland patches decreased while cultivated land
patches increased during this period. Therefore, it is highly likely that the increase in
the CONTAG value is caused by the increase in cultivated land area. From 2010 to 2020,
the CONTAG value decreased, meaning that the number of patches increased, and the
average area decreased. Combined with the land cover change data, the cultivated area
decreased during this period, which was transformed into an artificial surface. The decrease
in the CONTAG value may be related to the increase in small construction land patches in
Tongling during the study period.

AI is the shortened version of the ‘aggregation index’. The smaller the value is,
the more discrete the landscape is. Combined with CONTAG data, the Combined AI
value increased by 0.483% from 2000 to 2020. Further, we observed the improvement of
patches aggregation.

SHDI is the shortened version of ‘Shannon’s diversity index’. This index can reflect
landscape heterogeneity and is especially sensitive to the uneven distribution of patch
types in the landscape. It was applied here to reflect the diversity of RSEI Grades. From
2000 to 2020, SHDI has been increasing, representing the patches becoming more complex.
Combined with land cover change data, during the study period, the rapid expansion of
construction land and the accompanying decrease in cultivated land area, together with the
increase in woodland and grassland to varying degrees, led to the increase in landscape
diversity. Consistent with the conclusion of Yang [46], SHDI in the Yangtze River Basin
studied by Yang has been increasing from 2001 to 2019. By 2019, SHDI increased to 1.25. In
Tongling City, SHDI reached 1.29 in 2020, which may be related to the resolution of pixels.
In this paper, 30 m was adopted, while Yang [47] adopted 500 m.
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SHAPE_MN is used to reflect the complexity of shapes. From 2000 to 2020, the value
of SHAPE_MN has been declining, and the decrease from 2000 to 2010 is larger than that
from 2010 to 2020. This means that the shape of patches was becoming more regular.

FRAC_MN, the abbreviation of ‘mean patch fractal Dimension’, also measures the
patch shape complexity. Similar to SHAPE_MN, it has been declining during the study
period, among which the decline rate from 2000 to 2010 is larger than that from 2010 to
2020, further demonstrating that the shape of patches was becoming more regular.

In conclusion, from 2000 to 2020, the change in landscape metrics in Tongling city
may have been caused by the decrease in cultivated land area and the rapid expansion of
construction land. That is, urban expansion causes changes in landscape metrics.

3.5. Landscape Pattern Change Impact on RSEI

Landscape changes have had an impact on RSEI. The relationship between RSEI grades
and landscape-level metrics is analyzed in Figure 6. Changes in Landscape have different
effects on different ecological levels. In the Inferior grade, the R2 of AI, FRAC_MN, and
SHAPE_MN components all exceed 0.91, showing a high correlation. The remaining three
components also have a high correlation with the RSEI of the ecological Inferior grade,
with R2 greater than 0.31. In the Medium grade, IJI has the highest correlation, followed
by AI component > CONTAG component > FRAC_MN, and R2 exceeds 0.70. The SHDI
component has the lowest R2, which is weakly correlated with the RSEI of the Medium
grade. In the Good grade, the SHDI component had a high correlation with the RSEI of this
grade, while IJI and CONTAG components had a very weak correlation with the RSEI of the
Good grade. In the Excellent grade, SHAPE_MN, FRAC_MN, AI, and SHDI components
are highly correlated with the RSEI of this grade, while the CONTAG component has a
very weak correlation with the RSEI of the Excellent grade.
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Figure 6. Relationships between six landscape-level metrics changes and the area percentage of RSEI
Inferior, Medium, Good, and Excellent grades. (a1–a4) show four RSEI grades and IJI. (b1–b4) show
four RSEI grades and CONTAG. (c1–c4) show four RSEI grades and AI. (d1–d4) show four RSEI
grades and SHDI. (e1–e4) show four RSEI grades and SHAPE_MN. (f1–f4) show four RSEI grades
and FRAC_MN.

Besides those poor correlations, RSEI is generally well correlated with landscape
changes. This indirectly indicates that the change in landcover affects RSEI. However, these
effects are different. SHAPE_MN, FRAC_MN and IJI components have a strong negative
correlation with the RSEI of Inferior, Medium, and Good grades, while having a strong
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positive correlation with Excellent grades. AI and SHDI components have a strong positive
correlation with the RSEI of Inferior, Medium, and Good grades, and a strong negative
correlation with Excellent grades.

The results showed that most landscape-level metrics were positively or negatively
correlated with RSEI. If the ecological grade of Tongling city is improved to the Excellent
grade, it can be achieved by increasing FRAC_MN and SHAPE_MN components and
reducing AI and SHDI components. The results are consistent with those obtained by Ji [25]
and Wang [42]. In other words, the more concentrated the distribution of land cover type
is, the less the change is, and the more the regional RSEI can be improved.

3.6. Evaluation of Ecological Environment Quality in Tongling Open-Pit Mining Area

In Figure 7, Mine 1 and Mine 2 were selected to analyze the annual changes of the
four indicators and RSEI. The results show that RSEI is very integrative regarding the four
aspects of greenness, wetness, dryness, and heat. RSEI values comprehensively reflect
and quantitatively describe the ecological quality and can effectively reflect the ecological
changes of Mine 1 and Mine 2. Among these four indicators, NDVI and Wet decrease
with the decrease in RSEI, and NDBSI and LST increase with the decrease in RSEI. Among
them, the changes in Wet and LST are not as obvious as those of NDVI and NDBSI. This
conclusion also verifies the results of the correlation test in Table 2.
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Figure 7. The changes in four indicators and RSEI in Mine 1 and Mine 2 from 2000−2020: (a) Mine 1;
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Sustainability 2022, 14, 12694 18 of 22

Table 8 summarizes the analysis results of RSEI of ten open-pit mining areas in
Tongling city. It can be seen from Table 8 that the mean value of RESI of the open-pit
mining areas in Tongling city decreased significantly from 2000 to 2010, with a maximum
decline of 44.83%, indicating that the ecological environmental quality of these mining
areas declined. From the four sub-indexes, the greenness index, which had a positive effect
on the ecological environment, decreased, but the dryness index, which had a negative
effect on the ecological environment, increased more, and the negative effect offset the
positive effect. Therefore, the quality of the ecological environment in these mining areas
has become worse. Among them, the mean RSEI of Mine 3 and Mine 9 both decreased by
more than 40%, NDVI decreased by more than 65%, and the correlation was more obvious,
which further proved the rationality and effectiveness of RSEI. This result is consistent with
the conclusion of GAO [47].

Table 8. Changes in RSEI and four sub-indexes in open-pit mining areas of Tongling city from 2000
to 2020.

Open
Pit

Mines

2000 2010 2020

NDVI Wet NDBSI LST RSEI NDVI Wet NDBSI LST RSEI NDVI Wet NDBSI LST RSEI

Mine 1 0.75 –0.09 –0.18 0.31 0.84 0.55 –0.1 –0.11 0.32 0.78 0.26 –0.09 0.06 0.22 0.57
Mine 2 0.56 –0.13 –0.07 0.36 0.68 0.19 –0.22 0.06 0.54 0.51 0.21 –0.06 0.04 0.47 0.56
Mine 3 0.73 –0.11 –0.13 0.33 0.83 0.27 –0.17 0.03 0.45 0.59 0.29 –0.02 0.01 0.36 0.61
Mine 4 0.12 –0.1 0.08 0.41 0.57 0.12 –0.05 0.09 0.57 0.46 0.13 –0.03 0.05 0.43 0.58
Mine 5 0.26 –0.1 0.02 0.5 0.65 0.19 –0.08 0.01 0.37 0.61 0.24 –0.01 –0.01 0.37 0.61
Mine 6 0.81 –0.08 –0.19 0.28 0.86 0.43 –0.09 –0.04 0.21 0.65 0.2 –0.04 –0.02 0.29 0.61
Mine 7 0.77 –0.08 –0.16 0.29 0.85 0.47 –0.09 –0.04 0.23 0.67 0.16 –0.06 0.06 0.46 0.58
Mine 8 0.75 –0.08 –0.16 0.25 0.83 0.42 –0.07 –0.01 0.15 0.63 0.22 –0.06 0.06 0.49 0.58
Mine 9 0.72 –0.01 –0.15 0.33 0.84 0.23 –0.13 0.02 0.48 0.58 0.09 –0.07 0.06 0.49 0.55
Mine 10 0.79 –0.11 –0.19 0.36 0.87 0.55 –0.15 –0.05 0.38 0.69 0.29 –0.09 0.09 0.42 0.59

From 2010 to 2020, the mean value of RESI of Mine 2, Mine 3, and Mine 4 in the east of
Tongling city increased slightly, but the mean value of RSEI of seven large mining areas
in the west continued to decline, with Mine 1 having the largest decline. It belongs to the
Anhui Tongling Conch Cement Company. The company is currently one of the largest
single-plant clinker production bases in the world, with an annual production capacity
of 10 million tons of clinker and 5.8 million tons of cement. The Mine 1 open-pit mining
area was established in 2011. The research results show that before 2010, that is, before
mining in this area, RESI was always greater than 0.75, and the RESI around it was in the
range of 0.8~1. By 2020, the RSEI of the mine area had decreased to 0.57, while the RSEI
of the surrounding area was around 0.6. After mining for 9 years in the Mine 1 open-pit
mining area, RESI in surrounding areas decreased by more than 0.3, with a decrease rate of
0.034/year. The results show that mining will not only change the ecological environment
of the mining area, but also radially affect the ecological environmental quality of the
surrounding area [18].

Combing the further analysis of land cover and landscape, land cover change causes
landscape change. However, most landscape-level metrics are positively or negatively
correlated with RSEI. This indirectly proves that land cover change affects RSEI. During
the study period, the rapid expansion of construction land and the concomitant decrease in
the cultivated land area led to changes in landscape metrics, resulting in fluctuations in
RSEI. Therefore, urban expansion is one of the reasons for the deterioration of ecological
environment quality in Tongling city, which is consistent with the result of Hu [8]. Besides,
open-pit mining will also have an impact on the ecological environment of this city. From
2010 to 2020, RSEI increased and environmental quality became better in the northern and
central parts of Tongling city, while ecological environmental quality continued to decline
in the southern part of Tongling city, mainly due to the obvious disturbance of open-pit
mining area. Ten open-pit mining areas are all located in the southern mountainous area of
Tongling city, and the RSEI of seven mining areas decreased significantly, with the largest
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decrease of 36.85%. This stage is the mining development period of Tongling city, resulting
in the decline of ecological quality in the southern mountainous area. This is consistent with
the research conclusion of Zhu [18,40]. It shows that the main driving factor of ecological
environment deterioration is the change in land use/cover, most of which comes from
urban expansion. Furthermore, in mining cities, open-pit mining will have a more serious
impact on the ecological environment of the cities.

In conclusion, land cover change is restricted by natural, social, economic, and tech-
nological conditions. Natural factors set the basic outline of land cover. However, over
centuries, environmental changes caused by human factors such as industrialization, urban-
ization, economy, and technology even exceed those caused by natural factors in intensity
and have a decisive impact on short-term changes in land cover. Especially for mining
areas, social and economic factors are more important. Specifically, with the acceleration
of urbanization and industrialization, more areas of cultivated land at the edge of cities
and towns have been transformed into mining areas and residential areas, and leading
industries such as mining have promoted the employment of local people. At the same
time, it also leads to the transfer of the labor force, which in turn will change the traditional
farming mode and lead to the destruction of the ecological environment.

4. Conclusions

In this paper, three Landsat satellite images from 2000 to 2020 were used in the
ENVI 5.3 platform for radiometric calibration, atmospheric correction, and other pre-
processing, the indicators of greenness, humidity, dryness, and heat were extracted year
by year to construct RSEI, and land cover data of corresponding years were extracted as
well. Landscape metrics were calculated in Fragstats 4.2, and combined with opencast
mine information, the temporal and spatial changes of regional ecological quality at three
different periods in Tongling, a typical mining city, in the most recent 20 years were
analyzed. The following conclusions are drawn.

Firstly, NDVI and WET were positively correlated with RSEI, while NDBSI and LST
were negatively correlated with RSEI. The correlation coefficient between NDBSI and RSEI
was the largest, indicating that urban expansion would cause ecological environment
deterioration to a certain extent. Therefore, urban planning should consider the ecolog-
ical environment, balance the relationship between urban development and ecological
environment quality, and promote sustainable urban development.

Secondly, from 2000 to 2010, the mean value of RSEI decreased by 0.07 (10.83%),
and the proportion of the ecological grade increased significantly from 4.66% to 21.65%,
that of the good grade increased by 7.48%, and that of the excellent grade decreased by
24.61%. From 2010 to 2020, the mean value of RSEI increased by 0.007 and remained almost
unchanged. However, the proportion of areas with a medium ecological grade decreased
by 9.23%, that with a good ecological grade increased to 79.30%, and that with an excellent
grade decreased from 14.54% to 8.15%. In general, the ecological quality of Tongling city
showed a downward trend of “decline-rising” during the study period.

Thirdly, From the perspective of space, ecological quality has obvious spatial hetero-
geneity, and the poor level of RSEI is mainly distributed in the central urban area and the
open-pit mining area in the south. Ecological degradation is attributed to the rapid expan-
sion of built-up areas and the development of the mining industry, which is characterized
by the significant increase in normalized built-up area and soil index values in these areas.

Fourthly, the relationship between landscape-level metrics and RSEI grade percentage
represented that most landscape-level metrics had a positive or negative correlation. The
change in land cover resulted in a change in the landscape index. This indirectly proves
that land cover change affects RSEI. During the study period, the rapid expansion of
construction land and the concomitant decrease in the cultivated land area led to changes
in landscape metrics, resulting in fluctuations in RSEI. If the ecological grade of Tongling
city is raised to an Excellent grade, it can be achieved by reducing land cover change. This
conclusion does not necessarily apply elsewhere.
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At last, from 2000 to 2020, the mean value of RESI of ten open-pit mining areas in
Tongling city decreased significantly, with a maximum decrease of 52.73%. The decline rate
of RESI in the area surrounding the No.1 open-pit mine was 0.034/year. It is quantitatively
proven that mining will not only change the ecological environment of the mining area but
also radially affect the ecological environment quality of surrounding areas.
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