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Nikolina Kelava Ugarković
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Abstract: Live weight monitoring is an important step in Hanwoo (Korean cow) livestock farming.
Direct and indirect methods are two available approaches for measuring live weight of cows in
husbandry. Recently, thanks to the advances of sensor technology, data processing, and Machine
Learning algorithms, the indirect weight measurement has been become more popular. This study
was conducted to explore and evaluate the feasibility of machine learning algorithms in estimating
the body live weight of Hanwoo cow using ten body measurements as input features. Various
supervised Machine Learning algorithms, including Multilayer Perceptron, k-Nearest Neighbor,
Light Gradient Boosting Machine, TabNet, and FT-Transformer, are employed to develop the models
that estimate the body live weight using body measurement data. Data analysis is exploited to
explore the correlation between the body size measurements (the features) and the weights (target
values that need to be estimated) of cows. Data analysis results show that ten body measurements
have a high correlation with the body live weight. High performance of all applied Machine Learning
models was obtained. It can be concluded that estimating the body live weight of Hanwoo cow is
feasible by utilizing Machine Learning algorithms. Among all of the tested algorithms, LightGBM
regression demonstrates not only the best model in terms of performance, model complexity and
development time.

Keywords: Hanwoo cow; live weight estimation; machine learning; deep learning

1. Introduction

In South Korea, among all types of beef in the market, people prefer native beef
despite their prices being much higher than that of imported products. Among four
types of native cattle breeds being raised for beef demand, Hanwoo is the most popular
one [1]. With highly marbled fat, thin muscle fibers, and minimal content of connective
tissues, Hanwoo beef is well-known for its distinctive flavor [2]. To maintain the valuable
characteristics of beef, the livestock management procedure takes an important role. In that
procedure, livestock live weight monitoring is critical since it is considered one of the most
important traits affecting animal condition [3]. In the management procedure, accurately
estimating or measuring live weight is of fundamental importance to any livestock research
and development.

Currently, there are two main approaches available to measure the live weight of
livestock, including direct and indirect methods. The direct measurement method using
scales can get very high accuracy. However, it still has some limitations. First of all,
the measurement process in this approach requires removing bulls from cages or pad-
docks, and guiding them one by one to the weighting station or the site of scale. This
process is highly time-consuming and cumbersome. Sometimes workers who stay close
to the bulls might get hurt as some cattle individuals are very stubborn. Secondly, this
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process is believed to be able to cause stress and potentially harmful to bulls, even leading
to weight loss or death [4]. Because of those disadvantages of the direct measurement
methods, various ways of indirect measurement have been proposed as the alternative
approach [4–12]. The indirect approach is considered an estimation of the true value of live
weight since it indirectly computes that value using sensor data and computational tech-
niques. Weight estimation using body size measurements has been used extensively in the
livestock industry, for both carcass weight and live weight. A typical indirect live weight
measurement method consists of three steps. In the first step, different body characteristics
and size of cattle are collected by sensors such as 2D camera [4], thermal camera [13], 3D
camera [14,15] and ultrasonic sensor [16,17]. In the second step, body features are extracted
by data processing techniques. Finally, body features are fed into a regression model to
estimate the body weight.

The task of estimating body weight using body measurements can be considered a
regression problem where the body measurements are input features and body weight is
the target value that the regression model needs to predict. The estimation of dairy Holstein
cattle live weight was reported by Tedde et al. with Root Mean Square Error (RMSE)
ranging from 52 to 56 kg [12]. A study on estimating the live weight of pigs was conducted
by Sungirai et al. [11,18]. Regarding sheep live weight estimation, a study was conducted by
Sabbioni et al. [10]. It should be noted that one estimation model, when applied to different
cattle breeds could have different prediction performances. For example, regression analysis
was exploited to predict body weight from body measurements in Holstein, Brown Swiss,
and crossbred cattle with R2 scores of 92%, 95%, and 68%, respectively [8]. In the case
of the Hanwoo cattle, the study of live weight estimation was carried out by Jang et al.
with the performance demonstrated by RMSE and MAPE errors of 51.4% and 17.1%,
respectively, using body size measurements including body length, withers height, chest
width, and body width [7].

Machine Learning (ML) has a long history dating back to the year 1959, and the
term was coined by Arthur Samuel [19]. ML algorithms can be categorized into three
types of learning: reinforcement learning, unsupervised learning, and supervised learning.
Among three categories of learning algorithms, supervised learning is employed for the
task of estimating live body weight of cattle in livestock. Supervised learning algorithms
try to learn from the labeled datasets to approximate the mapping function between inputs
(features) and outputs (target values). There are a huge number of supervised learning
algorithms, such as Linear Regression, k-Nearest Neighbor (kNN), Support Vector Machine
(SVM), Decision Tree, and Artificial Neural Network (ANN) or Neural Network (NN).
Among existing supervised learning algorithms, ANN is considered an arbitrary accuracy
function approximation [20]. ANN is a ML algorithm that utilizes data computational struc-
ture inspired by the nervous system of the superior organisms [21]. A typical NN consisted
of an input layer, hidden layers, and an output layer. Deep Learning (DL) or Deep Neural
Network (DNN) are special neural networks that consist of many layers of data processing
units. The main advantage of DNN over NN is the ability to automatically learn features
from raw data, without the hand-craft features. Nowadays, DL and DNNs are dominant
in almost every kind of unstructured data: serial data, 2D data, and 3D data. Various
types of DNN have been proposed for different types of data. For example, Convolutional
Neural Network (CNN) models are suitable for image data [22] while attention-based
neural network models are dominant in natural language processing applications [23].
In tabular data, tree-based ensemble learning is still believed to outperform other types
of learning algorithms [24,25]. However, some DNN models proposed recently can have
comparable performance in tabular data tasks [24].

In this paper, a dataset including 33,536 samples of Hanwoo cows is used to develop
live weight predictive models. Each sample consists of 10 body measurements along with
the age and body weight. Although previously, live weight body estimation of Hanwoo
was studied by Jang et al. [7] with only 4 body measurements, the predictive performance
is still low (RMSE 51.4 and MAPE 17.1%). In this paper, a dataset with more features
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and much more samples, besides conventional ML algorithms, more advanced ML-based
sophisticated predictive models are employed to develop live weight predictive models.
The main contributions of this paper are as follows:

• Analyze ten body measurements of Hanwoo and their impact on the prediction of
body weight.

• Investigate ML algorithms in estimating live body weight.
• Improve predictive performance over previous studies.

2. Materials and Methods
2.1. Hanwoo Body Measurement Data

The Hanwoo data used in this research was provided by the National Institute
of Livestock Science, Korean Rural Development Administration. The data consist of
33,546 records of male individuals with ages of 6, 12, 18, and 24 months. The total numbers
of individuals in four age groups are 4088, 16,574, 7185, and 5699 respectively. The dataset is
split into training, validation, and test datasets with a ratio of 70%–15%–15%. The training
and validation datasets are used for developing predictive models. During the training pro-
cess, the validation dataset helps avoid the over-fitting phenomenon of the training process.
The test dataset is used to evaluate the performance of trained models on unseen data.

2.2. Body Size Measurements

Each data sample is an observation of a cow individual, consisting of ten size measure-
ments measured in centimeters (cm), age in month, and weight in kilogram (kg). The body
size measurement annotations are taken from [26]. Details are demonstrated in Figure 1
and Table 1. The statistical summary of the data is in Tables 2–5.
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Figure 1. Hanwoo cow body measurements.
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Table 1. Hanwoo cow body measurements.

Feature Name Description Annotation

Chego Wither height A–B
Sibza Hip height C–D

Chejang Body length E–F
Hungsim Chest depth G–H
Gojang Rump length I–J

Hongpok Chest width K–L
Yogak Rump width M–N

Gonpok Pelvic width O–P
Jagol Hip bone width Q–R

Hungque Chest girth Circumference of G–H

Table 2. Statistical summary of 6-month age cows.

Chego
(cm)

Sibza
(cm)

Chejang
(cm)

Hungsim
(cm)

Hungpok
(cm)

Yogak
(cm)

Gojang
(cm)

Gonpok
(cm)

Jogol
(cm)

Hungwe
(cm)

Weight
(kg)

Mean 102.168 105.003 108.249 50.309 29.036 28.914 36.322 32.225 19.222 131.345 183.366
STD 5.422 5.205 7.393 4.070 4.473 4.219 4.401 4.128 3.583 7.400 25.367
Min 85 87 85 32 16 17 24 20 11 106 104
Q1 99 102 103 48 26 26 34 30 17 127 167
Q2 102 105 108 50 29 28 36 32 19 132 184
Q3 106 109 113 52 31 31 39 34 20 136 201

Max 119 123 132 65 47 42 50 45 32 155 266

Table 3. Statistical summary of 12-month age cows.

Chego
(cm)

Sibza
(cm)

Chejang
(cm)

Hungsim
(cm)

Hungpok
(cm)

Yogak
(cm)

Gojang
(cm)

Gonpok
(cm)

Jogol
(cm)

Hungwe
(cm)

Weight
(kg)

Mean 120.866 123.228 135.840 62.432 38.411 37.976 45.709 40.628 22.206 169.321 362.839
STD 4.424 4.527 6.708 2.782 3.762 2.945 3.217 3.102 2.641 8.201 44.940
Min 105 107 113 42 26 25 32 27 14 141 218
Q1 118 120 132 61 36 36 44 39 20 164 332
Q2 121 123 136 62 38 38 46 41 22 169 360
Q3 124 126 140 64 41 40 48 43 24 175 392

Max 135 139 157 77 53 51 60 54 30 197 508

Table 4. Statistical summary of 18-month age cows.

Chego
(cm)

Sibza
(cm)

Chejang
(cm)

Hungsim
(cm)

Hungpok
(cm)

Yogak
(cm)

Gojang
(cm)

Gonpok
(cm)

Jogol
(cm)

Hungwe
(cm)

Weight
(kg)

Mean 129.598 130.950 148.816 70.228 44.386 44.712 49.506 45.579 24.536 193.284 498.297
STD 6.090 6.178 7.951 3.522 4.388 3.593 3.871 3.930 3.348 10.501 66.607
Min 110 111 124 59 31 32 38 34 16 159 296
Q1 126 128 144 68 42 42 47 43 22 186 452
Q2 130 132 149 70 44 45 50 46 24 194 496
Q3 134 135 155 73 47 47 52 48 27 201 541

Max 148 150 172 81 57 59 61 57 34 224 700

Table 5. Statistical summary of 24-month age cows.

Chego
(cm)

Sibza
(cm)

Chejang
(cm)

Hungsim
(cm)

Hungpok
(cm)

Yogak
(cm)

Gojang
(cm)

Gonpok
(cm)

Jogol
(cm)

Hungwe
(cm)

Weight
(kg)

Mean 136.937 137.843 158.914 76.848 50.985 50.288 53.036 50.231 27.653 217.597 652.760
STD 4.256 4.278 7.166 3.107 3.936 3.193 3.618 3.608 3.088 9.225 66.245
Min 124 125 136 66 39 41 42 39 20 189 458
Q1 134 135 154 75 48 48 50 48 25 211 606
Q2 137 138 159 77 51 50 53 50 27 217 648
Q3 140 141 164 79 54 52 56 53 30 224 696

Max 150 151 181 88 63 60 64 61 37 246 865
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2.3. Machine Learning-Based Predictive Models

In this work, one of the major goals is to investigate the performance of supervised
ML algorithms in estimating Hanwoo cow live weight. Currently, there are a huge number
of supervised ML algorithms. Therefore, an exhaustive investigation considering all of
the algorithms is not feasible in the scope of this research. As a result, three representa-
tive algorithms are taken into consideration, including Light Gradient Boosting Machine
(LightGBM) [27], TabNet [28], and FT-Transformer [29]. In tabular data, tree-based en-
semble learning is still believed to outperform other types of learning algorithms [24,25].
Nowadays, among various types of tree-based machine learning algorithms that have
been proposed, LightGBM is considered one of the most efficient algorithms [27]. Whiles,
DNN models are extensively employed for unstructured data. Recently researchers have
been attempting to use DNN models, the most prominent are TabNet and FT-Transformer,
for solving tabular data tasks.

Besides three modern ML models, kNN and MLP are two traditional ML algorithms
taken into consideration to make a comparison. Among the five models using in this
work, TabNet and FT-Transformer are DNN models, whiles kNN, MLP, and LightGBM
are shallow ML models. In order to evaluate the performance of weight estimation, two
metrics are exploited including Root Mean Squared Error (RMSE) and Mean Absolute
Percentage Error (MAPE).

2.3.1. Machine Learning Models

LightGBM is a Gradient Boosting Decision Tree (GBDT) algorithm invented by Ke
et al. [27]. LightGBM incorporated two novel techniques: Gradient-based One-Side Sam-
pling (GOSS) and Exclusive Feature Bundling (EFB). GOSS help to exclude a significant
proportion of data samples with small gradients and keep the remaining data samples for
estimating information gain. EFB helps to bundle mutually exclusive features to reduce the
number of features. In this work, the LightGBM Python Package (version 3.3.2) was used
to build the model with 100 base learners (decision tree) and the maximum tree depth of
base learners is 32.

MLP is a conventional NN whose parameters are updated by the back-propagation
training process [30]. MLPs are universal function approximators as shown by Cybenko’s
theorem [31]. Model kNN is a non-parametric ML algorithm since it does not make any
assumptions on the data [32]. kNN algorithm uses feature similarity to predict the target
values of new samples. This means that the target value of a new sample is computed by its
distances to the data samples in the training dataset. Model MLP composes of two hidden
layers with 30 and 20 neurons, respectively; and model kNN with k = 11 were built with
the the Scikit-Learn Python Package (version 1.0.2).

2.3.2. Deep Neural Network Models

TabNet is a DNN model employing the attention mechanism for tabular data invented
by Sercan O Ark and Tomas Pfister in 2021 [28]. A TabNet model consists of an encoder
component and a decoder component as shown in Figure 2. The encoder component
composes of a feature transformer, an attentive transformer, a feature masking, a split
block, and a Rectified Leaky Unit (ReLU) layer. The decoder component composes of a
feature transformer and a Fully-connected Layer (FC) in each step. In this work, the model
TabNet was built with Pytorch-Tabnet Python Package (version 4.0). To train the model
with back-propagation training, Adam optimization algorithm [33] was adopted with
parameters learning rate = 0.02, betas = (0.9, 0.999), and epsilon = 10−15.
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Figure 2. Architecture of TabNet [28].

FT-Transformer was invented by Gorishniy Y. et al. [29] in 2021 is a simple and
efficient adaptation of transformer architecture-based for the tabular data. The synonym FT-
Transformer stands for Feature Tokenizer Transformer. The architecture of FT-Transformer
consists of Feature Tokenizer module and Transformer module as shown in Figure 3.
Feature Tokenizer module transforms the input features x into embedding T. After to-
kenizing, the stacked embedding T0 is obtained by stacking the embedding T token
[CLS]. Transformer layers F1, . . . , FL are applied to obtain Ti, where Ti = Fi(Ti−1). In
this work, model FT-Transformer was built with RTDL Python Package (version 0.0.13) [29].
To train the model with back-propagation training, AdamW optimization algorithm [33]
was adopted with parameters learning rate = 0.001, betas = (0.9, 0.999), epsilon = 10−8,
and weight decay = 0.01.

Feature Tokenizer Transformer

[CLS] [CLS] PredictT

T0 TL

Figure 3. Architecture of FT-Transformer [29].

3. Results
3.1. Correlation Analysis

Pearson correlation [34] is employed to measure the linear correlation between two
body size measurements. The correlation results are shown in Table 6. All the correspond-
ing p-values are also computed and showed very small values which indicate that all
measurements have significant correlations with the live weight of the cattle body. Of all
body measurements, Hungwe has the highest correlation with body weight under all ages
of cows. The analysis also shows that all body size measurements highly correlate with
each other, as in Figure 4.
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Table 6. Pearson correlation between body measurements and body weight.

Feature 6-Month
Cow

12-Month
Cow

18-Month
Cow

24-Month
Cow STD

Chego 0.695 0.627 0.669 0.559 0.059
Sibza 0.720 0.680 0.666 0.551 0.073

Chejang 0.736 0.799 0.753 0.703 0.040
Hungsim 0.558 0.699 0.707 0.670 0.069
Hungpok 0.464 0.708 0.676 0.569 0.111

Yogak 0.474 0.628 0.700 0.616 0.095
Gojang 0.520 0.619 0.577 0.490 0.058
Gonpok 0.466 0.710 0.682 0.662 0.111

Jagol 0.295 0.544 0.650 0.612 0.160
Hungwe 0.896 0.913 0.923 0.904 0.012

Chego
Sibza

Chejang
Hungsim

Hungpok
Yogak

Gojang
Gonpok

Jagol
Hungwe

Weight

Chego

Sibza

Chejang

Hungsim

Hungpok

Yogak

Gojang

Gonpok

Jagol

Hungwe

Weight

0.99

0.92 0.92

0.92 0.91 0.93

0.85 0.85 0.87 0.91

0.87 0.86 0.9 0.93 0.9

0.84 0.85 0.88 0.88 0.85 0.88

0.85 0.84 0.89 0.9 0.88 0.92 0.87

0.68 0.67 0.73 0.73 0.72 0.77 0.73 0.79

0.92 0.91 0.93 0.96 0.91 0.92 0.84 0.89 0.72

0.91 0.9 0.93 0.94 0.9 0.92 0.83 0.89 0.74 0.98

Figure 4. Correlation values between body measurements.

It can be observed that Hungpok, Yogak, Gonpok, and Jagol change their correlation
with live weight a lot among four categories of months. For example, in 6-month data,
the correlation value between Jagol feature and weight is only 0.295, while in 18-month age
data the correlation value is 0.65. Based on that observation, body size measurements are
organized into three groups: group A is of stable correlation variables (Hungwe, Chego,
Sibza, Chejang, Hungsim, and Gojang); group B includes unstable correlation variables
(Hungpok, Yogak, Gonpok, and Jagol), and group C consists of all variables.

3.2. Live Weight Prediction Results

Each considered ML model will be developed with three different groups of variables:
A, B, and C. Moreover, the age values of individuals are also considered an independent
variable and used as input features to train predictive models. The training and validation
datasets are used during the training process. The training dataset is used to update the
model parameters while the validation dataset is used to stop the training process early
to prevent overfitting. The test dataset is reserved for evaluating trained models. All final
evaluation results computed on the test dataset are shown in and Figure 5.
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Figure 5. Estimation errors (RMSE and MAPE) of five models using different features.

Among three groups of features A, B, and C, it can be observed that group B which
consists of unstable features (Hugok, Yogak, Gonpok, Jagol) has the poorest performance.
Group A which consists of stable features (Chego, Sibza, Chejang, Hungsim, Hungpok,
Yogak, Gojang, Gonpok, Jagol, Hungwe) has better performance. Group C which includes
all features gives the best performance of all groups.

Compared between the two cases of using and not using age as an input feature, it can
be observed that when a model uses age as an input feature, it often has lower RMSE and
MAPE values. In the cases of feature groups A and C, the differences between using age
and not using age are very small. However, in the case of feature group B, the difference is
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quite obvious. For example, in the FT-Transformer case, using age can have 36.818% and
7.179% for RMSE and MAPE, respectively. But if not using age, the performance decreases
dramatically to 52.009% and 11.236% for RMSE and MAPE, respectively.

Among the five compared models, LightGBM has the best performance. After con-
sidering all combinations of cases, it can be noted that the best performance is in the case
of using 10 features, which means 10 body size measurements without age, with model
LightGBM (RMSE = 24.754, MAPE = 4.721%). The worst case is the case with the FT-
Transformer model, using only four features Hungpok, Yogak, Gonpok, and Jagol; in this
case, RMSE = 52.009, MAPE = 11.236%.

In order to attenuate the effect of the randomness in analyzing the results of predictions,
experiences with each model are conducted 6 times with the random initialization of
parameters and split of training set—validation set. Dispersion analysis of RMSE and
MAPE errors are shown in Table 7 and Figure 6. In all the cases, it can be observed that
the kNN model has the smallest dispersion and the MLP model has the biggest dispersion.
The reason explaining for that small dispersion value is that kNN is a non-parametric
model. kNN is not affected by the random initialization of parameters. In general, all
models but MLP have small dispersion which indicates that the prediction results of these
models are reliable.

Table 7. Dispersion analysis of RMSE and MAPE errors in case of using all features.

Model Features RMSE MAPE(%)

MLP
Use all features
and use age as
another feature

28.547 ± 0.263 5.430 ± 0.091
kNN 25.512 ± 0.096 4.847 ± 0.017

LightGBM 24.745 ± 0.135 4.721 ± 0.023
TabNet 25.090 ± 0.388 4.888 ± 0.185

FT-Transformer 25.451 ± 0.956 4.998 ± 0.212

MLP

Use all features
(not use age)

31.617 ± 3.911 6.205 ± 0.777
kNN 25.610 ± 0.049 4.864 ± 0.008

LightGBM 25.089 ± 0.072 4.754 ± 0.019
TabNet 25.272 ± 0.243 4.835 ± 0.069

FT-Transformer 25.493 ± 0.192 5.053 ± 0.053

MLP kNN LightGBM TabNet FTTransformer
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Figure 6. Dispersion analysis of RMSE and MAPE errors in case of using all features; (a,c): Using age
as a feature; (b,d): Not using age.

3.3. Feature Importance

The feature importance of body measurements according to the LightGBM model
in the case of using all features is shown in Figure 7. It can be observed that Hungwe is
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the most important feature while Jagol is the least important feature. The second most
important feature is Chejang. All other features have lower and similar importance but
still have a large contribution to the prediction result of the LightGBM model. This result
indicates that all features should be included in the predictive models.

Figure 7. Feature importance according to LightGBM model.

4. Conclusions

In this work, ten body measurements of Hanwoo cow were used as the input features
for the estimation of the body live weight. Pearson correlation analysis showed that all of
the body measurement has the high correlation with the body weight. Among all features,
the girth of chest girth (Hungwe) has the highest correlation with the body weight, while the
width of hip bone (Jagol) has lowest correlation with the body weight. Experiment results
showed that using different sets of features affects the performance of weight estimation.
Using all features together provided the best performance in all cases of the estimation
models. Age value was used as another feature to estimate body weight, and that often
give a slightly better results in most case. Five different ML models have been investigated
and evaluated. The tree-based model LightGBM regression demonstrated the highest
performance. The results of this work will be used to develop an indirect live weight
estimation for Hanwoo, in which machine vision technology is utilized to automatically
measure ten body features of cows.
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STD Standard Deviation
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kNN k-Nearest Neighbor
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