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Abstract: Graph convolution network-based approaches have been recently used to model region-
wise relationships in region-level prediction problems in urban computing. Each relationship rep-
resents a kind of spatial dependency, such as region-wise distance or functional similarity. To
incorporate multiple relationships into a spatial feature extraction, we define the problem as a multi-
modal machine learning problem on multi-graph convolution networks. Leveraging the advantage
of multi-modal machine learning, we propose to develop modality interaction mechanisms for this
problem in order to reduce the generalization error by reinforcing the learning of multi-modal coordi-
nated representations. In this work, we propose two interaction techniques for handling features in
lower layers and higher layers, respectively. In lower layers, we propose grouped GCN to combine
the graph connectivity from different modalities for a more complete spatial feature extraction. In
higher layers, we adapt multi-linear relationship networks to GCN by exploring the dimension trans-
formation and freezing part of the covariance structure. The adapted approach, called multi-linear
relationship GCN, learns more generalized features to overcome the train–test divergence induced
by time shifting. We evaluated our model on a ride-hailing demand forecasting problem using
two real-world datasets. The proposed technique outperforms state-of-the art baselines in terms of
prediction accuracy, training efficiency, interpretability and model robustness.

Keywords: multi-modal machine learning; graph convolution networks; multi-task learning; transfer
learning

1. Introduction

The deployment of urban sensor networks is one of the most important progresses in
the urban digitization process. Recent advances in sensor technology enable the collection
of a large variety of datasets. Multi-modality is one of the most significant features in
the knowledge discovery process in urban computing. Data from different sources are
often correlated with each other. For region-level prediction problems, such as crowd
flow prediction [1,2] or taxi demand prediction [3–5], it has become a common practice to
incorporate a large variety of auxiliary datasets, such as weather, Point of Interests (also
known as POI) , road network and events. In this paper, we define each auxiliary dataset as
a modality and study multi-modal learning on multi-graph convolution networks (MGCN)
for spatiotemporal prediction problems in urban computing. This task is challenging due
to complex spatial dependencies and a temporal shifting generalization gap.

Designing a spatial feature extraction method is challenging due to complex region-
wise spatial dependencies. GCN-based models [6,7] are first used for traffic prediction on
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road networks. Geng et al. [5] proposed Multi-GCN (MGCN) for generic spatiotemporal
prediction tasks by stacking three GCNs. Each GCN encodes a unique modality (relation-
ship) of auxiliary data (geo-distance, POI similarity and road network) as graph and extract
spatial dependencies from such relationship.

The spatial feature extraction by MGCN architecture is incomplete due to the lack of
cross-graph connectivities. Figure 1 shows an example for MGCN. Consider the vertex
(region) pair A and D. According to graph topology, A and D are disconnected in all three
graphs. MGCN is incapable of extracting features from D for A or vice versa. However,
we argue that the A-D relationship is important. The region pair A3-B3 and B2-D2 are
closely related on road connectivity and POI similarity. A and D are related region pairs for
spatial feature extraction. To complete the physical meaning for spatial feature extraction
by MGCN, the ideal graph connectivity is shown in Figure 1b. It is produced by merging
all edges from separate graphs, so that any random walk path is a compound of any kind
of relationships.
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E1 F1
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(a). Graph connectivity on MGCN
(b). Compound graph
connectivity with interaction

Neighborhood

POI similarity

Road
connectivity

Figure 1. (a) shows graph connectivity for MGCN [5] in each graph. Xi represents the vertex (region)
X on the i-th graph. Weighted edges between vertices denote a region-wise relationship. There is
no interaction among graphs. (b) shows compound graph connectivity by adding a graph-wise
interaction to MGCN. Vertices are connected as long as there exists an edge in any graph.

Improving model generality to overcome the temporal shifting generalization gap is
another challenging task. The temporal pattern for time series data varies along with time.
Formally,

P(Xt|Xt−1, Xt−2, . . .) 6= P(Xt′ |Xt′−1, Xt′−2, . . .), t 6= t′

The gap above defines the divergence between temporal pattern distributions in
two different time windows t and t′. Such a time-shifting gap is often caused by time
series fluctuations induced by periodicity, seasonality or miscellaneous factors such as
weather variation or events. We further discovered that this gap is usually accumulative.
A longer temporal interval between two timestamps causes a larger divergence between
two distributions. Due to this problem, machine learning models for time series prediction
tasks expire frequently. Improving model generality makes the model more robust and
avoids fitting to local time series fluctuations.

We propose several graph interaction techniques to address the above problem by en-
hancing the learning of multi-modal coordinated representations and reinforcing the model
performance. Yosinski et al. [8] studied feature transferability in deep learning. It shows
that features in lower layers are more general and those in higher layers are more specific.
According to this phenomenon, we designed two kinds of graph interaction mechanisms
correspondingly for lower layers and higher layers.

In lower layers, input spatiotemporal signal maintains its physical properties as
engineered features. According to the case in Figure 1, generating latent features via



Sustainability 2022, 14, 12397 3 of 17

compound graph connectivity makes great sense in terms of spatial feature extraction.
For lower layer spatial feature extraction, we designed grouped GCN (GGCN), which
enables random walk graph convolution on compound graph connectivity. The objective
of GGCN is to produce a more abstract multi-modal latent feature representation based on
graph convolution operations. This technique addresses the first problem on completeness
in spatial feature extraction.

Higher layer features provide high level abstractions for the input signal. It becomes
meaningless to explicitly extract feature from a certain region. Leveraging some advances
from multi-task learning [9], we adapt multi-linear relationship learning [10] to graph
convolution networks and try to find shared information among modality-specific rep-
resentations. According to characteristics in GCNs, we propose multi-linear relationship
GCN (MRGCN), which imposes a tensor normal distribution as the prior distribution of
multi-modality graph convolution kernels to learn an explainable, robust and fine-grained
relationship among modalities. To further enhance the model generality, we propose to
freeze part of the covariance structure in the covariance update algorithm in order to
improve output feature independency and alleviate the feature co-adaptation problem. The
proposed model generates more general high level feature abstractions. This technique
also reduces model training time.

On real-world ride-hailing demand data, our model outperforms state-of-the art
baselines by a significant margin. Leveraging the advantage of multi-modal and multi-task
learning, our model requires less data and time to reach a low prediction error. In summary,
this paper makes the following contributions:

• We propose grouped GCN to produce a compound graph connectivity on a multi-
modality graph representation. It makes spatial feature extraction on GCN more
complete in urban computing.

• We propose multi-linear relationship GCN to learn better coordinated representations
among modalities. It improves the generality for high level abstractions.

• We conduct experiments on two large-scale real-world datasets. The proposed ap-
proach achieves more than a 10% error reduction over state-of-the-art baseline methods
for ride-hailing demand forecasting.

2. Related Work

Region-level prediction in urban computing. Region-level prediction is a fundamental
task in data-driven urban management. There is a rich amount of topics, including citizen
flow prediction [11–13], traffic demand prediction [3,14,15], arrival time estimation [16]
and meteorology forecasting [17,18]. For these topics, the region-wise relationships are
measured as geographical distance. The spatial structures for these prediction tasks are
formulated as regular graphs, which are inherently Euclidean structures. Convolution
neural network-based models are used for effective prediction.

Non-Euclidean structures exist in station-based prediction tasks, including bike-flow
prediction [19], traffic volume prediction [6,7,20] and point-based taxi demand predic-
tion [4]. The spatial structures for these problems are no longer regular. Graph convolution
networks are usually leveraged for spatial feature extraction in these tasks. Non-Euclidean
structures also exist when incorporating auxiliary data to model region-wise relationships.
Yao et al. [15] encoded a region-wise relationship as a graph and used graph embedding as
external features for convolution neural networks. Geng et al. [5] used MGCN to model
region-wise relationships under multiple modalities.
Multi-modality in urban computing. The core issue for multi-modal machine learning
is to build models that can process or relate information from multiple modalities [21].
Traditional multi-modal machine learning problems focus on human sensory modalities,
including audio–visual speech recognition [22], multi-media analysis [23] and media de-
scription [24]. In urban computing, we usually need to harness knowledge from a diverse
family of related datasets. Wei et al. [25] first categorized the diversity of urban computing
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datasets, such as POI and air quality, as multi-modality and explored feature transferability
among different modalities.

Multi-modal fusion is one of the most challenging problems in urban computing.
Most existing works incorporate multi-modality auxiliary data as handcrafted features in a
straightforward manner. Tong et al. [4] used multi-modality data as input features for a
linear regression model. Zhang et al. [2] and Yao et al. [15] concatenated auxiliary data to
high level abstractions for region-level spatiotemporal prediction networks.

GCN-based approaches encode multi-modality data as region-wise relationships and
perform as a static structure in deep learning. The spatial feature extraction process on
GCN is associated with these modalities. According to applications in traffic volume pre-
diction [6] and taxi demand prediction [5], GCNs are effective in spatial feature extraction
on spatial-variant modality data. However, all techniques above fail to build a relationship
among modalities, which is expected to improve the generality of the learning framework.
Multi-task relationship learning. Multi-task relationship learning is a basic approach for
multi-task learning. Zhang and Yeung [26] first proposed a regularized multi-task model
MTRL by placing a matrix-variate normal prior on the model parameters:

W ∼MN (0, Σr, Σc)

where Σr and Σc are the row and column covariance. Long et al. [10] proposed Multilinear
Relationship Network (MR Network), which learns the multilinear relationship on different
modes for the joint-task parameter tensor as:

W = [W1; W2; . . .; Wt]

W ∼ T ND f×Dc×Dt(O, Σ f , Σc, Σt)

where W refers to the joint weight by concatenating all fully connected weights from all
tasks. D f , Dc and Dt denote the feature dimension, class dimension and task dimension
in the joint weight. Σ f , Σc and Σt represent covariance for each mode. Experiment results
showed that imposing a multilinear relationship regularizer on the last few fully connected
layers in CNN-like structures increased the feature generality and transferability in task-
specific layers.

However, MR Networks only learn multilinear relationships on fully connected layers.
Other deep learning structures, such as CNN or GCN, have more complicated physi-
cal meanings.

3. Methodology

A = {A0, A1, . . ., A|M|} denotes adjacency matrices for different graphs. Each graph
corresponds to one of the |M| modalities. In the ride-hailing demand prediction prob-
lem, each graph represents a kind of pair-wise spatial relationship for regions, including
neighborhood (geo-distance) AN , POI similarity AS and road connectivity AC [5].

AN,i,j =

{
1, if region i and j are adjacent
0, otherwise

AS,i,j =sim(Pvi , Pvj)

AC,i,j =max(0, conn(vi, vj)− AN,i,j)

AN defines the adjacency relationship between regions. We construct AN by connecting a
vertex to its 8 neighbors in a 3× 3 grid. AS is the cosine similarity between POI vectors
of two regions. Each entry in the POI vector represents the number of POIs in a specific
category. AC indicates the connectivity between two regions. Two regions are connected as
long as there is a highway or subway that directly connects them.
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We define the one-step spatiotemporal prediction task for a certain modality (graph
Ai) on a spatiotemporal observation x as:

xt = G(xt−1, xt−2, . . ., xt−k; Ai) (1)

where G represents any random walk-based graph convolution network. xt ∈ R|V| is the
temporal slice of a spatiotemporal observation at time t.

When the graph convolution operation G : (R|V|× f1 ;R|V|×|V|) → R|V|× f2 is defined
as the polynomial of the graph laplacian (in this work, we use a symmetric normalized
laplacian: L = I − D−

1
2 AD−

1
2 ) L with degree up to K:

GW(X; A) =
K

∑
α=0

LαXWα (2)

the above definition refers to the graph convolution operation of ChebNet [27]. In this
work, we use this variation of graph convolution operations.

In the multi-modality formulation of this problem, each modality refers to a repre-
sentation learning process of the same spatiotemporal observation on different graphs.
Following the convention in [21], we formally joined a representation of a multi-modality
learning problem on a multi-graph convolution network as:

xt = FAi∈A(GW(xt−1, xt−2, . . ., xt−k; Ai)) (3)

where FA∈A denotes the interaction function across multi-graphs. In previous work [5], it
is defined as a stacking function in anterior layers and sum function in the output layer.
The major contribution of this work focuses on the design of this interaction function.

Figure 2 shows the proposed framework. According to an analysis on feature general-
ity [8] for deep neural networks, we proposed two techniques for building modality-wise
interactions targeted for lower layers and higher layers, respectively, in stacked MGCNs.
In lower layers, the hidden features are concrete. The feature extraction in lower layers is
usually general. Considering these facts, we propose to build inter-modality connections to
enable inter-graph spatial feature extraction. To distinguish feature extraction parameters,
we penalize inter-graph weight and intra-graph weight differently by group regularization.
In higher layers, the hidden features are highly abstract that they can no longer maintain
their physical properties. Applying inter-modality connections is not applicable. High level
features are usually task specific, which is harmful to model generality and transferability.
In these layers, we propose to learn a multilinear relationship on training parameters of
joint modalities in order to improve the model generality and avoid overfitting the model
to local fluctuations.

3.1. Grouped GCN

Figure 3 shows one layer transformation of grouped GCN (GGCN). In lower layers,
we use GGCN to build compound graph connectivity, which enables cross-graph spatial
feature extraction.
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Figure 2. Overview of the proposed graph interaction mechanism for stacked MGCNs. The multi-
modality representation of input signals is generated by multi-graphs. In lower layers of deep neural
networks, we use grouped GCN to enable inter-graph spatial feature extraction. In higher layers, we
use multi-linear relationship GCN to learn a modality-wise relationship by imposing a tensor normal
distribution on the joint representation of parameters. Finally, we aggregate modalities to produce
an output.
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Figure 3. One layer transformation for grouped GCN. Weights marked in red represent intra-modality
weights. Green ones represent inter-modality weights.

Li ∈ R|V|×|V| denotes the graph laplacian matrix of the i-th modality. Xl
i ∈ R|V|× fl

denotes the input signal of the ith modality of the lth layer (l, i ∈ Z+). When l = 1, X1
i

represents the raw input and X1
i = X1

j , ∀i, j, we define the lth layer parameter W l as:

W l =


wl

1,1 wl
1,2 . . . wl

1,|M|
wl

2,1 wl
2,2 . . . wl

2,|M|
. . . . . . . . . . . .

wl
|M|,1 wl

|M|,2 . . . wl
|M|,|M|

, (4)

wl
i,j ∈ R fl× fl+1×K denotes the weight matrix to transform the ith modality input to the

jth modality output via ChebNet transformation Gwl
i,j
(Xl

i ; Ai), where fl and fl+1 are the
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feature dimension of the lth and (l + 1)th layer. K represents the degree of the Chebyshev
polynomial, which is sliced during the computation of ChebNet.

The jth modality output is computed as:

Xl+1
j = σ(

|M|

∑
i=1

Gwl
i,j
(Xl

i ; Ai) + bl
j) (5)

We denote all weights that transform an input to output within sthe ame modality,
i.e., wl

i,j for ∀i = j, as intra-modality weights. Similarly, we define the inter-modality weight

as wl
i,j for ∀i 6= j. It is obvious that when all inter-modality weights are set to 0, the graph

convolution operation defined above degrades to MGCN.
Adding cross-modality weights as stated above introduces a tremendous increment on

the number of parameters with a factor of O(|M|). This may boost the model complexity
and cause overfitting. To address this issue, we used grouped sparsity [28,29] to regularize
the complexity of parameters. We designed flexible group regularization loss for layer l:

Jl
1 = α ∑

i=j
||wl

i,j||+ ∑
i 6=j
||wl

i,j|| (6)

Different from traditional group regularization, we use a tunable parameter α to
control the trade-off on penalties for intra-modality weights and inter-modality weights.
To maintain the difference among modalities, we prefer a smaller α value in order to
introduce less penalty to intra-modality weight. The inter-modality feature extraction
focuses on those highly strong relationships. This will help to maintain model generality
from multi-modality throughout the proposed GGCN architecture.

The design strategy has several properties that maintain the advantage of GCN models.
Firstly, the increment for computational complexity for GGCN is limited. The factor of
time complexity increment is O(M), which is the polynomial of the number of modalities.
In practice, the number of modalities are usually not large. Secondly, the extra computation
above to compute intra-modality transformation and inter-modality transformation are
naturally independent. It is easy to design a parallel implementation. Finally, GGCN is a
linear combination of different graph laplacians, which keep the numerical stability of the
original MGCN model when using the normalized symmetric laplacian.

3.2. Multi-Linear Relationship GCN

In high level layers, latent features no longer maintain their properties as spatiotempo-
ral observations. Instead of building cross-modality connections, we propose to learn multi-
linear relationships (MR) on joint-modality weights (we only keep intra-modality weights in
high level layers) by imposing a tensor normal distribution as the prior distribution.

The dimensionality transformation of graph convolution operations in ChebNet
is shown in Figure 4. There are five dimensions in the whole system in total, includ-
ing regions/vertices (R, |R| = |V|), inputs (I), outputs (O), Chebyshev Polynomial (C,
|C| = K) and modalities (M). For each single modality task, the representation of input
signals on graph laplacian Li is in a three-dimensional space of region, input and Cheby-
shev polynomial: {Lα

i X|α = 0, 1, . . ., K} ∈ R|V|×|I|×K. The model parameter for the ith
modality is in a three-dimensional space of input, output and Chebyshev polynomial:
W l

i = {wl
i,α|α = 0, 1, . . ., K} ∈ R|I|×|O|×K. The joint representation for multi-modality

weight is defined as a four order tensor

W l = [W l
1, W l

2, . . ., W l
|M|] ∈ R|I|×|O|×K×|M|

Firstly, we impose a tensor normal distribution as prior distribution for W l

W l ∼ T N|I|×|O|×K×|M|(Ml , Σl) (7)
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whereMl is the mean tensor. Σl = Σl
I ⊗ Σl

O ⊗ Σl
C ⊗ Σl

M is the Kronecker decomposable
covariance structure. The density function is estimated as:

p(W l) = 2π−
∏4

k=1 dk
2 (

4

∏
k=1
|Σk|

−∏4
k=1 dk
2dk )× e−

1
2 (W

l−Ml)TΣ−1(W l−Ml) (8)

where d = [|I|, |O|, K, |M|] and represents dimensions for each mode, Σ = [Σl
I , Σl

O, Σl
C, Σl

M].
| · | represents the determinant. According to Long et al. [10], for Maximum-a-Posteriori
(MAP) estimation for model parameters, learning the posterior distribution of W l given
training data (X, Y) is equivalent to minimizing the negative logarithm for the density of
∏l P(W l), where (ignores terms irrelevant to W l because they have no gradient during
back propagation):

Jl
2 =

1
2
(vec(W l)T(Σl)−1vec(W l)) (9)

where vec(·) is the flattening operation to transform a high-dimensional tensor to a 1-d
vector. The flip-flop algorithm for updating the covariance matrix of a certain mode Σi is:

Σl
di
=

di

∏4
k=1 dk

(W l)(i)(⊗k 6=iΣk)(W l)T
(i) + εIdi

(10)

where εIdi
is a trade-off term for numerical stability. (W l)(i) is the vectorization along the

ith mode. Such operation outputs a matrix of shape R(di)×(∏k 6=i dk)

O
I

C

Input

Output

Cheby. Polynomial
(degree)

Regions

R

I

C

R

O

⨁

⊗
⊗

⊗
⊗

…

…

𝐿$𝑋 𝑊$ 𝑊' 𝑊(𝐿'𝑋𝐿(𝑋

Representation on
single modality Trainable weight

Output

Modality

Task 1

Task 2

Task 3

Figure 4. The dimensionality transformation for graph convolution operations in MGCN. Single
modality GCN slices input and weight on the C mode, multiplies slice pairs and sums up the product.

We further discovered that the covariance update rule above should not be applied to
input (I) and output (O) modes. Instead, freezing the covariance matrix of input (I) and
output (O) mode to the identity matrix Id will improve model generality and transferability.
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Observing Equation (2) of ChebNet on the lth layer:

GW(Xl ; A) =
K

∑
α=0

LαXlWα (11)

where LαXl ∈ R|V|× f1 , W ∈ R f1× f2 , usually |V| >> f1 > f2 is due to two facts:

• |V| is very large. LαXl is usually sparse.
• In higher layers of DNNs, the feature dimension is usually decreasing, i.e., f1 > f2.

According to lemma on matrix multiplication:

Lemma 1. For matrix multiplication B = AW, Rank(B)≤ min{Rank(A), Rank(W)}.

The rank for GCN output feature matrix is bounded:

Rank(GW(Xl ; A)) ≤ min{Rank|V|(LαXl),

Rank| f1|(LαXl), Rank| f1|(Wα), Rank| f2|(Wα)}

where Rank| f2|(Wα) is the rank on the f2 mode of matrix Wα. Increasing the Rank(Wα) on
both modes ( f1 and f2) will lift the upper bound of the output rank. It is known that the
co-adaptation problem [30] limits the generality and transferability of DNNs. Initializing
and freezing the covariance matrix along the input and output dimension to II and IO
will induce a high rank matrix Wα, which lifts the upper bound of rank of output features.
The inter-neuron dependency is smaller for a high rank output feature matrix, so that the
co-adaptation problem is alleviated and model generality is increased.

3.3. Multi-Modality Fusion

The final layer is the modality fusion layer in order to aggregate features from different
modalities and output a prediction result. For a one-step spatiotemporal prediction prob-
lem, the output shape is R|V|×1. The design of the modality fusion is straightforward. First,
we make sure the last MRGCN layer reduces the feature dimension to 1. Then, the modality
fusion layer is designed as a modality-wise average:

Ol+1 =
1
|M|

|M|

∑
j=1

Xl
j , Xl

j ∈ R|V|×1

3.4. Training Algorithm

We combine all loss functions and summarize it for the entire network:

JW(X, Y) = ∑
s∈S

J0( fW(xs), ys) + αlow ∑
l∈Llow

Jl
1 + αhigh ∑

l∈Lhigh

Jl
2

= ∑
s∈S

1
|S| || fW(xs)− ys||2

+αlow ∑
l∈Llow

(α
i,j=1,..,|M|

∑
i=j

||W l
i,j||+

i,j=1,..,|M|

∑
i 6=j

||W l
i,j||)

+
αhigh

2 ∑
l∈Lhigh

(vec(W l)T(Σl)−1vec(W l))

where the J0 term is the prediction loss of the model. In this work, we use the rooted mean
squared error (RMSE) to measure distance between the predicted value and true value.
In stacked MGCNs, we set 1, 2, . . ., lk-th layers to Llow and use GGCN to construct graph
interactions. The remaining layers lk, lk + 1, . . . are set to learn multilinear relationships by
MRGCN. The J1 terms are the GGCN regularizer for each lower layer. The J2 terms are the



Sustainability 2022, 14, 12397 10 of 17

relationship regularizer for MRGCN in the higher layers. αlow and αhigh are the trade-off
parameters for regularizers.

The overall training algorithm for the entire network, including GGCN and MRGCN,
is shown below (Algorithm 1).

Algorithm 1 Training algorithm for GCN with interactions

Set layers Llow = {1, 2, . . ., lk} to grouped GCN
Set layers Lhigh = {lk+1, . . .} to multi-linear relationship GCN
Initialize Σl

d = Id, ∀l ∈ Lhigh and d ∈ {|I|, |O|, |C|, |M|}
Initialize all weights
repeat

Extract (xi, yi) from training set as current training batch
Update model parameter W according to JW(xi, yi)
Update covariance matrices Σl

C and Σl
M, ∀l ∈ Lhigh

Evaluate current model using the validation set
until converge (validation error no longer decreases for several epochs)

4. Experiments

In this section, we compare our graph interaction techniques with state-of-the-art
baselines on region-level demand forecasting for ride-hailing service.

4.1. Dataset

We conducted our experiments on two real-world, large-scale ride-hailing datasets
collected in two cities: Beijing and Shanghai. Both of the datasets were collected in the
main city zone in 2017. We split data to training set (1 March to 31 July 2017), validation
set (1 August to 31 October 2017) and test set (1 November to 31 December 2017). The POI
data used for AS contains 13 primary categories, including business building, residential
building, entertainments, etc. The road network data used for AC is extracted from railway,
highway and subway dataset from OpenStreetMap [31].

4.2. Experiment Setting

The ride-hailing forecasting problem is a one-step spatiotemporal prediction problem
to learn predictor f : R|V|×T → R|V|×1. According to previous works [2,3,5], we set T to
5. Physically, it means predicting the ride-hailing demand in the next time interval using
the most recent three ones (closeness), the one in the same time yesterday (period) and the
one in the same time last week (trend) [1]. V is the set of regions acquired by partitioning
the main city zone to 1 km × 1 km rectangular grids. Under this setting, there are a total
of 1296 regions in Beijing and 896 regions in Shanghai. We set 30 min as the time interval
for both training data and test data. Each entry in the spatiotemporal tensor represents the
number of ride-hailing demand of a certain region in 30 min.

We propose a 4-layer MGCN, where the first two layers are GGCN and the last two
layers are MRGCN. The output dimensions for these layers were set to 32, 64, 32, 1. For all
graph convolution operations, the max Chebyshev polynomial K was set to 4. In GGCN,
the tunable α was set to 0.1 to maintain intra-modality properties. In MRGCN, the trade-off
parameter ε was set to 1× 10−6. We monitored RMSE on the validation set with early
stopping. The regularizers αlow and αhigh were both set to 1× 10−4. The neural network
was implemented using tensorflow [32] and optimized using adam optimizer [33], with
the learning rate as 5× 10−4 and the batch size as 32. All experiments were conducted in
an environment with 10 GB RAM and 9 GB GPU memory of Tesla P40.

4.3. Performance Comparison

Table 1 shows experiment comparisons between the proposed methodology, variations
and baselines:
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• MGCN: Use one separate GCN to learn prediction task in each modality. There is no
graph interaction among modalities.

• STMGCN [5]: Use RNN-based model to extract temporal features ahead of MGCN.
• Share weight: A common technique in multi-task learning. The GCN weight is shared

across modalities in each layer.
• Domain adaptation network (DAN) [34]: Minimizing modality divergence by mini-

mizing cross-modality feature divergence. The divergence used is mean maximum
discrepancy (MMD).

• MRGCN4Σ: The proposed multi-linear relationship GCN with all four covariance
matrices updated.

• MRGCN2Σ: Proposed method to freeze covariance matrices for input and output
coordinates.

Table 1. Experiment performance in Beijing and Shanghai. The proposed approach achieves the best
result among all methods.

Method RMSE in Beijing RMSE in ShanghaiLower Layers Higher Layers

STMGCN 10.78 8.30
MGCN 11.82 8.64
GGCN 9.51 8.18

MRGCN2Σ 9.68 8.30
GGCN Share weight 9.59 8.13
GGCN DAN 9.48 8.02
GGCN MRGCN4Σ 9.47 7.92
GGCN MRGCN2Σ 9.31 7.88

All proposed methods above are 4-layer MGCNs, with similar hidden feature sizes
and same training configurations (learning rate, batch size, etc). We evaluated the model
performance according to the prediction error (RMSE) on the test set. The epoch of converge
shown in Table 2 and the Table 3 measures the time consumption for each model to reach
its optima. Different models converged to different optima. Achieving a lower error
usually costs longer training time. We set the benchmark to 10.78 in Beijing, which is the
performance of baseline [5] on the same dataset.

Table 2. Number of epochs required to converge to optima or benchmark. The multi-task-based
method reduced training time by at least 50%. The experiment was performed in the Beijing dataset.
The best results were shown in bold.

Method Epoch of Converge Epoch to Break 10.78Lower Layers Higher Layers

STMGCN 115 115
MGCN 110 -
GGCN 130 55

MRGCN2Σ 95 32
GGCN Share weight 78 32
GGCN DAN 72 24
GGCN MRGCN4Σ 51 25
GGCN MRGCN2Σ 82 27

Table 3. Training speed for each model to achieve best performance in the ride-hailing demand
forecasting task.

STMGCN GGCN MRGCN GGCN + MRGCN

Min training length 5 months 5 months 3 months 3 months
Training time 110 min 130 min 45 min 60 min
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The experiments showed the following facts. Firstly, according to the performance of
GGCN, it improved the prediction accuracy for MGCN by invoking more complexity in
spatial feature extraction on graphs. With the help of intra-modality transformations, spatial
feature extraction was more complete and the model was more expressive. The performance
improved by GGCN was even more significant than incorporating an RNN-based temporal
feature extraction process (STMGCN). However, with the increment of the parameter size,
the model was more prone to overfitting and required longer training time.

Secondly, MRGCN also improved model performance. Compared with GGCN, the in-
fluence on prediction error was slightly inferior. There is no significant difference in model
capacity and model structure between MRGCN and MGCN. We infer that the multi-linear
relationship approach improves prediction performance by improving model generality,
so that MRGCN2Σ is less prone to overfit to the local fluctuations in the training set and
overcomes the gap between the training set and test set. Multi-task learning based ap-
proaches, including share weight, DAN and MRGCN, all shortened the model training
time. Among these approaches, the share weight method reduced model complexity by a
factor of O(|M|), which brought down the prediction performance. The performance of
MRGCN and DAN were almost the same.

Thirdly, we show that freezing input and output coordinates in MRGCN is effective.
Compared with MRGCN4Σ, MRGCN2Σ decreases the prediction error. This validates our
assumption that freezing the covariance for input and output dimension on the weight
tensor may induce higher independency among neurons, which alleviates the co-adaptation
problem, and thus improves model generality.

Training speed is another important factor to evaluate machine learning models.
Table 3 shows the training time required to achieve the optimal performance of each model.
We used the grid search to determine the minimum training length of each model. Given a
larger training set than this, the model could not converge to a significantly lower validation
error. Compared with the baseline, the proposed method reduces the amount of training
set and the length of training time by approximately 50%. Among all tested approaches,
MRGCN2Σ achieved the lowest prediction error on average and on test data after the 4th
week. This is an important feature for industrial use. The life cycle for a more generalized
model is longer, which reduces the frequency for a model update.

4.4. Model Generality

Figure 5 shows the generalization ability for different models, which validates the
above arguments in detail. The data relative divergence (blue bar) was computed as the
Kullback Leibler divergence [35] between the temporal pattern of the last week in the
training set and temporal patterns of each week in the test set. We discovered that the gap
between the training set and test set was accumulative. This indicates that the test data will
become more and more divergent from the training data with time shifting. Models are
expected to be more general to overcome this phenomenon. According to prediction error
by weeks, the prediction error for STMGCN (the gray line) keeps increasing as the test data
becomes more divergent. We believe this phenomenon is not caused by model capability,
but model generality. For methods including GGCN and MRGCN, the model performance
was less influenced by this generalization gap. There was no difference between the model
capacity of STMGCN (MGCN) and MRGCN. The network architecture and connectivity
were almost the same. This shows that MRGCN has a better generalization ability to avoid
overfitting to the training set.

Figure 6 shows the feature inter-dependency of different models. The feature covari-
ance is calculated as the negative logarithm of L2-norm of the covariance matrix along
the feature mode. Feature covariance measures the inter-dependency between different
neurons in a hidden layer of deep neural network. A higher value represents a lower
absolute value for covariance between neurons and a higher neuron dependency. Accord-
ing to the above plot, the neuron independency could be greatly improved by MRGCN.
According to Yosinski et al. [8], co-adapted neurons are the major cause for optimization
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difficulty in middle layers. Compared with baseline methods, the proposed MRGCN2Σ
successfully reduced the coherence among hidden layer units and improved generality and
transferability for deep neural networks.
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Figure 5. The experiment to test model generality to overcome divergence in the temporal data.
The relative data divergence in the test set accumulates along with time. Multi-task learning-based
approaches maintain a low prediction error when the data divergence is large.
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Figure 6. Feature dimension-wise covariance for different models. It is calculated as the negative
logarithm of the L2-norm of the covariance matrix of latent features along the feature mode. A higher
value indicates higher feature independence.

4.5. Modality Relationship

MRGCN learns explainable relationships between modalities by maintaining a modality-
wise covariance matrix. In this part, we first show that all modalities are helpful to the
learning task. Then, we will explore the relationship between the modality-wise relationship
learnt from optimization and relationship between graphs.

Figure 7 is the Hinton diagram showing the modality-wise relationships for the 3rd
and 4th layers in GGCN+ MRGCN2Σ. N, P, R represent modality for Neighborhood AN ,
POI similarity AS and road connectivity AC. Similar to the interpretation by [10], we
could draw several conclusions. Firstly, most of the tasks are positively correlated (green),
implying that all modalities could reinforce the learning of others. This conclusion reaches
a consensus with ablation study [5] in Table 4.
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N
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R P N
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MRGCN 3 layer MRGCN 4 layer

Figure 7. Hinton diagram for modality relationships. The magnitude for relationship is represented
by the rectangle size. A green rectangle represents a positive relationship. A red rectangle represents
a negative relationship.

Table 4. Ablation study for ST-MGCN. Removing any one modality will result in great damage to
the prediction accuracy.

Removed Component RMSE

Neighborhood 11.47
POI similarity 11.42

Road connectivity 11.69
ST-MGCN 10.78

Secondly, we discovered that the relationship between N and R was weak and random.
These two tasks were seemingly related. Compared with that, the relationship R-P and N-P
were stable and robust. We try to explain this phenomenon by comparing the graphs AN ,
AS and AC.

Table 5 shows the density of each graph, which measures the connectivity of the graph
in each modality. According to the graph definition, AS is defined as POI similarity between
any region pair, which induces a dense adjacency matrix. AN and AC are sparse. We mea-
sured the graph similarity by F-measure and edited distance in Table 6. According to the
graph definition, edges in AN are all removed from AC, so that the edge set EN

⋂
EC = ∅.

From the view of graph connectivity, the prediction task on these modalities were hardly
related. The relationship AS-AC and relationship AS-AN were quite similar because AS
was dense. The analysis above helps to understand Figure 7. The relationship between
neighborhood (N) and road connectivity (R) was quite random due to the inherent inde-
pendency between these two modalities. MRGCN learns similar modality relationships
for similar graph-pairs. The relationship N-P and R-P were maintained to be similar in
both layers.

Table 5. The density of each graph. The graphs are undirected. Density is calculated as 2|E|/|V|(|V| − 1).

AN AS AC

1.3× 10−3 1.4 1.4× 10−3

Table 6. Two measurements to show similarity between different graphs. F-measurement considers
matched and unmatched edges proportional to graph size. Edit distance measures difference between
two edge sets.

AN -AS AS-AC AC-AN

F-measure 0.15 0.17 0
Edit distance 1.1× 106 1.1× 106 8.8× 102
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5. Conclusions and Future Work

In this work, we propose two graph interaction techniques for multi-modal multi-
graph convolution networks. We use GGCN in lower layers to complete graph connectivity
for better spatial feature extraction by graph convolution networks. In higher layers, we
use MRGCN to learn robust modality relationships. MRGCN alleviates the co-adaptation
problem by lifting the upper bound for feature dependency and thus improves the model
generality. The experiment on ride-hailing demand prediction shows that our proposed
model outperforms baselines in effectiveness, efficiency and robustness. For future work,
we plan to investigate the following aspects: (1) evaluate the model with other spatial
temporal prediction tasks and other region-wise relationships and (2) explore the impact of
sparse and dense graphs on this framework.
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Abbreviations

Notation Type Meaning
R/V set Set of all regions (vertices)
M set Set of all modalities
K scalar Degree of chebyshev polynomial
Id Rd×d Identity matrix with row/column size d
Ai R|V|×|V| Adjacency matrix of ith modality
Li R|V|×|V| Symmetric normalized graph laplacian of ith modality
xt R|V|×1 A spatiotemporal observation (such as ride-hailing demand) value at time t
Xl

j R|V|× f f -dimensional feature of jth modality on lth layer

Ol R|V|×1 Output layer as the lth layer
σ function Activation function
f1, f2 scalar Input feature dimension and output feature dimension

For grouped GCN
bj R|V|× f Bias for jth modality
W l R|M|×|M|×K× f1× f2 Weight of lth layer
wl

i,j RK× f1× f2 Weight for transforming Xl
i to Xl+1

j
wl

α R f1× f2 Weight corresponding to a specific chebyshev polynomial term
For multi-linear relationship GCN
|I|, |O| scalars Input and Output dimension used to measure weight dimension
W l R|M|×K× f1× f2 Weight of lth layer
W l

i,α R f1× f2 Weight of lth layer for ith modality and αth chebyshev polynomial term
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d array of 4 dimension of each mode in Σ
Σl

di
Rdi×di Covariance for the dith mode

Σl R∏ di×∏ di Kronecker decomposable covariance structure for tensor normal distribution
Lhigh set Higher layers assigned to multi-linear relationship GCN
Llow set Lower layers assigned to grouped GCN
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