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Abstract: Free vibration and wave analysis of thick rectangular graphene are studied by employing
the wave propagation method. To consider small-scale effects and thickness of a plate in nanoscales,
equations of motions are represented by the Eringen nonlocal theory coupled with the Mindlin
plate theory of thick plates. To solve the governing equations of motion with the wave propagation
technique, propagation and reflection matrices are derived. These matrices are combined to obtain
exact natural frequencies of graphene sheets for all six possible boundary conditions. To check
the accuracy and reliability of the method, natural frequencies are compared with the results of
the literature, and excellent agreement is observed. Additionally, wave analysis of the graphene
sheet is performed and different types of waves in the graphene sheet are captured. Deriving the
dispersion relation of the graphene sheet, bifurcation frequencies (cut-off and escape frequencies)
are analytically found. Finally, the effects of graphene sheet thickness and nonlocal parameter on
the natural frequencies and bifurcation frequencies are investigated. It is observed that natural
frequencies are highly dependent on the graphene sheet’s thickness and nonlocal parameter. More
importantly, the number and order of bifurcation frequencies depend on these two parameters as
well. Our findings are valuable for the sustainable design and fabrication of graphene-based sensors,
in which structural health monitoring of embedded graphene sheets is of great importance.

Keywords: rectangular graphene sheet; bifurcation frequencies; vibration analysis; wave analysis;
graphene

1. Introduction

Nanotechnology is a branch of technology that deals with nanoscale materials and
structures. Nanomaterials have been the subject of much research in recent years, and this
is motivated by their superior mechanical properties and new applications in nanoscience,
nanomanufacturing, and smart nanostructure technologies. There are different nanostruc-
tures among which graphene sheets have been of high interest to researchers due to a
wide range of applications [1–6]. However, there are always complications in the design,
manufacturing, and health monitoring of such structures on this scale. Considering these
structures as waveguides can significantly facilitate the analysis of such structures. The
wave propagation method formulates the waveguide hypothesis of a medium and is a
powerful tool to analyze a structure.

There are many applications associated with graphene ranging from structural health
monitoring to medicine and biology. Structural health monitoring (SHM) and sensor
technologies play a vital role in monitoring the condition of structures and identifying
damage that may have occurred while in service.
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Conventional, rigid, bulky, and discrete sensors may not be suitable for embedment,
and there is a pressing need to develop flexible, robust, wireless, and thin filmlike sensors
that can be easily embedded in structures. The majority of flexible strain sensors are based
on graphene sheets and nanoplates as sensing elements [7–11].

Graphene, owing to its extraordinary multiple properties, such as ultrahigh carrier
mobility, excellent electrical conductivity, superior thermal conductivity, large theoretical
specific surface area, high optical transmittance, high Young’s modulus, and outstanding
mechanical flexibility [12], is a promising 2D material in many applications, especially for
the development of wearable sensors and implantable devices in health monitoring.

Graphene-based sensors used for human health monitoring have been reported, in-
cluding wearable sensors, as well as implantable devices, which can measure body temper-
ature, respiration rate, and electromyogram signals in real-time [13–17].

In these applications, the wave properties of graphene sheets are an important param-
eter for structural health monitoring of the embedded graphene.

In nanoscales, due to the significant effects of long-range interatomic and intermolecu-
lar electrostatic forces on mechanical behavior (called small-scale effects), classical contin-
uum mechanics theories are insufficient for analyzing their static and dynamic behavior.
Methods are developed to consider small-scale effects in analyzing different systems on
nano or micro scales.

The molecular dynamics simulation methods [18] is a type of N-body simulation by
which one can study the physical movements of atoms and molecules. Although a large
number of studies have employed this method for micro and nanoscale analysis [19–25],
it is not time-efficient, especially when the number and range of atoms increase. Erin-
gen [26] introduced nonlocal elasticity theory that encompasses both features of lattice
parameters and classical elasticity. Many studies have employed this well-known the-
ory that formulates small-length scale effects by considering a material length scale as a
parameter in its constitutive equations. Peddieson et al. [27] proposed the formulation
of a nonlocal version of the Euler–Bernoulli beam by applying nonlocal elasticity and
showed that this theory is a potential remedy for the analysis of nanostructures. Hence,
axial vibration of nanorods and single-walled carbon nanotubes [28], a first-known dy-
namic stability analysis of carbon nanotube-reinforced functionally graded (CNTR-FG)
cylindrical panels under static and periodic axial force [29], and the vibration behavior
of quadrilateral single-layered graphene sheets (SLGSs) in a magnetic field using classic
plate theory and incorporating nonlocal elasticity theory [30] are solved by employing
this theory. Additionally, the dynamic and buckling behavior of graphene sheets are the
focus of some literature. Pradhan and Phadikar [31] integrated the nonlocal theory into
classical plate theory (CLPT) and first-order shear deformation theory (FSDT) of plates and
solved the governing equations for simply supported boundary conditions using Navier’s
approach. Later on, in another study [32], they employed the finite element method to
analyze nanoplate vibrations. Aghababaei and Reddy [33] reformulated the third-order
shear deformation theory of Reddy using the nonlocal linear elasticity theory of Eringen
and presented analytical solutions for bending and free vibration of a simply supported
rectangular plate. Asbaghian Namin and Pilafkan [34], using the generalized differential
quadrature method (GDQ), solved the free vibration of defective graphene sheets via
nonlocal elasticity theory. Hosseini Hashemi et al. [35] investigated Mindlin rectangular
nanoplate vibrations using an exact analytical approach. However, they did not report
thickness effects on natural and bifurcation frequencies, and there is no wave analysis in
their study.

Even though there are some studies for analytical and exact solutions of the nonlo-
cal plate theory [35–38], they apply boundary conditions to the general solution of the
differential equation to obtain the natural frequencies. The wave propagation method
is an alternative approach which considers vibrations as propagating waves traveling in
a medium called waveguide. In this method, the solution is presented in matrix form
that benefits programming purposes [39,40]. A wide range of researchers employed this
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method for their analysis. However, the majority of researchers used this method as a
semi-analytical, not an exact method, or for macroscale analysis. Mace [41] studied the
free vibrations of the Euler–Bernoulli beam and the Timoshenko beam by considering the
wave propagation approach, and Tan [42] presented wave motions in an axially strained
and rotating Timoshenko shaft. Furthermore, Lee et al. [43] analyzed the non-uniform
waveguides such as non-uniform bars and non-uniform Euler–Bernoulli beams whose
properties vary rapidly but deterministically. Mei et al. [44] considered the wave method
for free and forced vibrations of axially loaded cracked Timoshenko beams. The wave
approach was applied by Lee et al. [43] to thin, uniform, and curved beams with constant
curvature to obtain the natural frequencies of curved beams. In 2010, Mei [45] presented
an exact wave-based analytical solution, which takes the coupling effect between bending
and longitudinal vibration for the natural frequencies of classical planar frame structures.
Moreover, a wave vibration approach was used by Mei [46] to study the effects of lumped
end mass on the bending vibrations of a Timoshenko beam in 2011. More recently, Mei [47]
applied the wave method to obtain the natural frequencies and mode shapes of single-story
multi-bay planar frame structures. Supplementary to these, the modified wave approach
was used by Bahrami et al. [48] to find the natural frequencies of non-uniform beams, using
Euler-Bernoulli beam theory. Bahrami et al. [49], in another study, developed this method
for free vibration of non-uniform rectangular membranes. Moreover, the nonlocal scale
effect on vibration, buckling, and wave reflection in beams has also been studied [50]. In
addition, the free vibration, wave power transmission, and reflection in multi-cracked
nanobeams [51] and nanorods [52] were studied by Bahrami. Analysis of nanoplates using
a wave propagation approach was investigated by Bahrami and Teimourian [53], and they
studied the small-scale effect on vibration and wave power reflection in circular annular
thin graphene sheets. Recently, Mousavi Janbeh Sarayi et al. [54,55] presented an exact
analytical solution for the vibration of macroscale Mindlin plates using the exact analytical
wave method. They employed the wave method to provide benchmark results for natural
frequencies of thick plates and analyze the power reflection at boundaries. They found
that there are three cut-off frequencies, which are essential in analyzing power reflection at
boundaries, for a thick plate.

The graphene sensor usually Is printed directly on the sample and on a PET (polyethene
terephthalate) transfer film on the sample. This is due to the fact that sometimes the ma-
terial is conductive, and the signal would be affected by attaching the graphene sensor
directly to the surface of the sample. Graphene-based sensors evaluate the strain generated
within a material. The graphene sensor proved to be able to evaluate strain at various levels
providing a gauge factor higher than commercially available strain gauges. Akram Zitoun
et al. [56] present a strain sensing system based on graphene. The graphene is selected as
the sensing material to investigate the capability of printing custom- designed sensors to
monitor composite materials instead of the use of commercially available strain gauges.

According to the present literature review, there are a few papers based on the wave
propagation method for vibration and wave analysis of graphene sheets.

It is also worth mentioning that some research uses nanoplates as a sensing element
in sensors [9–11] which have a greater thickness. Since nonlocal theory considers the
microscopic effect in any nanostructure, whether it is a graphene sheet or thick nanoplate,
we tried to consider the effect of thickness regardless of the nature of our nanostructure.

In this regard, thin plate theory cannot accurately predict the actual behavior of such
nanostructures. In addition, macroscale analysis lacks the consideration of the small-scale
effects that are essential for energy analysis in nanomaterials. Therefore, the wave analysis
of macro and thin plate theories cannot be applied to a thick graphene sheet, and there is
only one literature about energy transmission and wave analysis in thick nanostructures,
namely, for Timoshenko nanobeams [57]. A simple exact analytical solution using the
wave propagation approach in thick nanoplates seems essential due to the practical usage
of these structures in structural health monitoring. This approach provides the chance
of finding analytical cut-offs and escape frequencies in a graphene sheet. In this study,
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an exact analytical solution is presented to analyze the wave motion and free vibration
in thick rectangular graphene sheets using the wave approach. The natural frequencies
obtained with this approach are compared with the results in other literature. Benchmark
results are presented with any combination of boundary conditions for Levy-type plates,
and the effect of nonlocal parameter, thickness ratio of the graphene sheet, plate’s aspect
ratio, and number of half waves on natural frequencies are investigated. It is shown that
these analytical results provide important information about wave propagation and energy
analysis in the medium. For example, there are four cut-off and three escape frequencies,
whose existence and order of appearance depend on nonlocal parameter and thickness
ratio of the plate. It is shown that thickness ratio of the graphene sheet and nonlocal
parameter significantly affect the combination of ongoing waves in the graphene sheet and
its natural frequencies. The results and methods of this study can be applied to future work
associated with graphene sheet wave analysis. Moreover, understanding how changes to
physical parameters affect wave propagation through graphene materials is essential to
understanding the complete behavior of sensors with the implemented graphene material.
Possible sources of uncertainty and error could occur by a lack of understanding of the
complete graphene behavior, and thus the utilization of our current study can be of interest
to many of these researchers.

2. Materials and Methods
2.1. Governing Equations

Consider a thick graphene sheet of length a, width b, and uniform thickness h, oriented
so that its undeformed middle surface contains the x1 and x2 axis of a Cartesian coordinate
system (x1, x2, x3), as shown in Figure 1. Displacements along the x1 and x2 axes are
denoted by U1 and U2, respectively, while displacement in the perpendicular direction
to the x1-x2 plane is denoted by U3. In the Mindlin plate theory [58], the displacement
components are given as:

U1(x1, x2, x3, t) = u1(x1, x2) + x3φ1(x1, x2, t) (1a)

U2(x1, x2, x3, t) = u2(x1, x2) + x3φ2(x1, x2, t) (1b)

U3(x1, x2, x3, t) = u3(x1, x2, t) (1c)

where t is time, U1 and U2 are inplane displacement on the mid plane (i.e., x3 = 0), U3 is
the transverse displacement, and φi (i = 1, 2) are the slopes due to bending alone on the
respective planes.
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The equations of motion of Mindlin plate theory in nonlocal continuum model for in-
plane and out-of-plate displacements are uncoupled [35], so we consider only equations of
motion for flexural vibration for simplicity and, for generalizing results, in nondimensional
form as follows:[

12kν1 − τ2β2δ2
]
∇̃2ũ3 + βδ2ũ3 + 12kν1

(
φ̃1,1 + φ̃2,2

)
= 0 (2a)[

ν1 −
τ2β2δ2

12

]
∇̃2φ̃1 +

[
β2δ2

12
− 12kν1

δ2

]
φ̃1 + (1− ν1)

(
φ̃1,11 + φ̃2,21

)
− 12kν1

δ2 ũ3,1 = 0, (2b)[
ν1 −

τ2β2δ2

12

]
∇̃2φ̃2 +

[
β2δ2

12
− 12kν1

δ2

]
φ̃2 + (1− ν1)

(
φ̃1,12 + φ̃2,22

)
− 12kν1

δ2 ũ3,2 = 0, (2c)

where the nondimensional Laplacian operator is defined as ∇̃2 = ∂2

∂X2
1
+ ∂2

∂X2
2

and nondi-

mensional terms are considered as below:

X1 = x1
a , X2 = x2

a , δ = h
a , η = b

a , φ̃i = φi (i = 1, 2)

ũ3 = u3
a , τ = µ

a , ∇̃2 = a2∇2, β = ωa2
√

ρh
D

(3)

In these equations, τ and β are nondimensional nonlocal and frequency parame-
ters, respectively, δ is the thickness ratio, η is the aspect ratio, µ is the nonlocal param-
eter, ν is the Poisson’s ratio, and ν1 = (1− ν)/2; the shear correction factor k is intro-
duced to consider that the transverse shear strains depend on the thickness coordinate x3;
D = Eh3/12

(
1− ν2) is the flexural rigidity, and the inertia term Ik is defined as:

Il =
∫ + h

2

− h
2

ρxl
3dx3 l = 0, 2 (4)

where ρ is the mass density per unit volume. Dimensionless nonlocal forces and moment
resultants can be obtained in terms of dimensionless local ones as [59]:[

1− τ2∇̃2
]

Q̃ij = Q̃L
ij,
[
1− τ2∇̃2

]
M̃ij = M̃L

ij, (5)

where Q̃ij and M̃ij are nonlocal force and moment resultants and Q̃L
ij and M̃L

ij are local force
and moment resultant. Local force and moment resultants are:

M̃L
11 = −

(
φ̃1,1 + νφ̃2,2

)
eiωt, (6a)

M̃L
22 = −

(
φ̃2,2 + νφ̃1,1

)
eiwt, (6b)

M̃L
12 = M̃21 = −ν1

(
φ̃2,2 + φ̃1,1

)
eiwt, (6c)

ÑL
13 = −

(
φ̃1 − ũ3,1

)
eiωt, (6d)

ÑL
23 = −

(
φ̃2 − ũ3,2

)
eiωt, (6e)

Three types of nondimensional, nonlocal boundary conditions along x2 axes (i.e.,
X2 = 0 or X2 = η) are as follows:

M̃22 = 0, φ̃1 = 0, ũ3 = 0, Simplysupportededge (S), (7a)

φ̃1 = 0, φ̃2 = 0, ũ3 = 0, Clampededge (C), (7b)

M̃22 = 0, M̃21 = 0, Ñ23 = 0, Freeedge (F). (7c)

Considering Equations (5) and (7), it can be found that the local boundary conditions
and nonlocal ones can be used interchangeably for the present boundary conditions.
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2.2. Exact Wave Solution Procedure

Assume harmonic motion with respect to time as

φ̃i(X1, X2, t) = φ̃i(X1, X2)eiωt (i = 1, 2), ũ3(X1, X2, t) = ũ3(X1, X2)eiωt, (8)

and potential functions, W1, W2, and W3, for representing equations of motion’s variables
as [35]:

φ̃1 = C1W1,1 + C2W2,1 + W3,2 (9a)

φ̃2 = C1W1,2 + C2W2,2 −W3,1 (9b)

ũ3 = W1 + W2 (9c)

By substituting these equations into Equation (2), the uncoupled equations of motion
are derived as:

∇̃2Wr + αrWr = 0, r = 1, 2, 3 (10)

where in Equations (9) and (10)

Ci =
di

α2
i

(
τ2β2δ2

12 −ν1

)
+

β2δ2
12 −

12ksν1
δ2

, (i = 1, 2)

di =
12ksν1

δ2 − (1− ν1)bi, bi =
α2

i (12k2
s ν1−τ2β2δ2)−β2δ2

12k2
s ν1

, (i = 1, 2)
(11)

and

α2
1 =

a2−
√
(a2

2−4a1a3)
2a1

, α2
2 =

a2 +
√
(a2

2−4a1a3)
2a1

, α2
3 =

β2δ2
12 −

12k2
s ν1

δ2

ν1−
τ2β2δ2

12

,

a1 =
(
−1 + τ2β2δ2

12

)
+

(
1− τ2β2δ2

12

)
τ2β2δ2

12k2
s ν1

,

a2 =
(−6 + τ2β2δ2)β2δ4−6k2

s(12τ2β2δ2 + β2δ4)ν1

72k2
s δ2ν1

,

a3 =
β2δ2

(
12k2

s ν1
δ2 − β2δ2

12

)
12k2

s ν1

(12)

Considering simply supported edges at X1 = 0 and X1 = 1 and Equations (9) and
(10), the Levy type solution of Equation (2) is found as:

φ̃1 = [A1C1mπeiλ1X2 + A2C1mπe−iλ1X2 + A3C2mπeλ2X2 + A4C2mπe−λ2X2

+ A5λ3ηeλ3X2 + A6λ3ηe−λ3X2 ] cos(mπX1)
(13a)

φ̃2 = [A1iC1λ1ηeiλ1X2 − A2iC1λ1ηe−iλ1X2 + A3C2λ2ηeλ2X2 − A4C2λ2ηe−λ2X2 + A5mπeλ3X2

−A6mπe−λ3X2 ] sin (mπX1)
(13b)

ũ3 =
[
A1eiλ1X2 + A2e−iλ1X2 + A3eλ2X2 + A4e−λ2X2

]
sin(mπX1) (13c)

where λi (i = 1, 2, 3) are wavenumbers. A transformation from the physical domain into
the wave domain can be made (as explained in detail in the next section) and the dispersion
relation for each wave component is obtained as follows:

λ2
1 = α2

1 − (mπ)2, λ2
2 = α2

2 + (mπ)2, λ2
3 = α2

3 + (mπ)2 (14)

Based on these equations, the type of waves in the graphene sheets is defined. There
are mainly three types of oscillating waves in a medium: propagating, evanescent, and de-
caying waves. Qualitative behavior of wavenumbers, meaning that whether a wavenumber
is a real, imaginary, or complex number, defines the type of wave.

2.3. Wave Analysis

From a wave motion standpoint, vibrations propagate in any object and reflect at
boundaries. We describe them in matrix form, the so-called propagation and reflection
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matrices. The positive- and negative-going wave solutions of Equation (13) can be defined
as:

a+ =


A2e−iλ1X2

A4e−λ2X2

A6e−λ3X2

, a− =


A1eiλ1X2

A3eλ2X2

A5eλ3X2

. (15)

Consider two points on a flexural vibrating plate along the X2-direction at a distance
b/a apart. The positive- and negative-going wave vectors at these points are denoted as
a+, a−, b+, and b− respectively as shown in Figure 1. These wave vectors are related
together by the following relation written in wave format:

b+ = f+(b)a+

a− = f−(b)b−,
(16)

where f+(x) is known as the propagation matrix in the positive direction (+X2), and f−(x)
is known as the propagation matrix in the negative direction (−X2). From Equation (15),
waves at X2 = 0 and X2 = η are obtained as:

a+ =


A2e−iλ10

A4e−λ20

A6e−λ30

, a− =


A1eiλ10

A3eλ20

A5eλ30

, b+ =


A2e−iλ1b/a

A4e−λ2b/a

A6e−λ3b/a

, b− =


A1eiλ1b/a

A3eλ2b/a

A5eλ3b/a

. (17)

Considering expressions (16) and (17), the following propagation matrix for a graphene
sheet is found as:

f+(b) = f−(b) =

e−iλ1b/a 0 0
0 e−λ2b/a 0
0 0 e−λ3b/a

 (18)

The reflection matrices depend on the type of boundary conditions. Thus, the reflection
matrices should be calculated separately for each boundary condition. Generally, each
wave as a+ gives rise to a reflected wave as a−, which are related by a matrix as r, just like
below:

a+ = ra− (19)

Three types of boundary conditions are considered here: simply supported, clamped,
and free boundary conditions. However, based on the fact that local boundary conditions
can be employed in place of nonlocal ones, as shown in Section 2 of the present study, using
waves of Equation (15) and boundary conditions of Equation (7), the reflection matrices for
a Mindlin nanosheet are found as below:

Simply supported boundary at X2 = 0, η:

rs = rL
s = −I3×3 (20)

Clamped boundary at X2 = 0, η:

rC = rL
c = −

 C1mπ C2mπ ηλ3
−iC1λ1η −C2λ2η −mπ

1 1 0

−1 C1mπ C2mπ ηλ3
iC1λ1η C2λ2η mπ

1 1 0

 (21)

Free boundary at X2 = 0, η:
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rF = rL
F = −

 −C1λ2
1η2 − C1(mπ)2ν C2λ2

2η2 − C2(mπ)2ν mπηλ3 − λ3ηmπν

−2iC1λ1ηmπ −2C2λ2ηmπ −λ2
3η2 − (mπ)2

−iC1λ1η + iλ1η −C2λ2η + λ2η −mπ


−1

×

 −C1λ2
1η2 − C1(mπ)2ν C2λ2

2η2 − C2(mπ)2ν mπηλ3 − ηλ3mπν

2iC1λ!ηmπ 2C2λ2ηmπ λ2
3η2 + (mπ)2

iC1λ1η − iλ1η C2λ2η − λ2η mπ

.

(22)

2.4. Vibration Analysis via Wave Method

The derived propagation and reflection matrices are combined to provide a concise
and systematic method for vibration analysis of the plates. The incident and reflected waves
are shown in Figure 1, schematically. The incident and reflected waves at boundaries A and
B are denoted by a∓, b∓, respectively. The relationship between these wave vectors may
be described by the derived propagation and reflection matrices in the previous section as:

b+ = f+(b)a+

a− = f−(b)b−

b− = rBb+

a+ = rAa−
(23)

To find the natural frequencies of a Mindlin rectangular nanosheet, the relations of
Equation (23) between two opposite sides can be written in the matrix form as:

−I3×3 rA 0 0
f+ 0 −I3×3 0
0 −I3×3 0 f−

0 0 rB −I3×3




a+

a−

b+

b−

 = 0 (24)

For a non-trivial solution, it follows that

F(β) =

∣∣∣∣∣∣∣∣
−I3×3 rA 0 0

f+ 0 −I3×3 0
0 −I3×3 0 f−

0 0 rB −I3×3

∣∣∣∣∣∣∣∣ = 0 (25)

which represents the characteristic equation of motion of thick rectangular graphene sheets.
By knowing the type of boundary conditions of the structure and substituting the appropri-
ate propagation and reflection matrices, Equation (18) and Equations (20)–(22), and setting
the real and imaginary parts of Equation (25) to zero, one can obtain the natural frequencies.
This whole process is performed for as many different cases in the next section.

3. Results and Discussion

For brevity, a thick graphene sheet is described by symbolism defining the boundary
conditions at their edges; for example, SCSF indicates that the edges X1 = 0, X2 = 0, X1 =
1, and X2 = η boundary conditions are simply-supported, clamped, simply-supported
and free on the respective edge, respectively. The following material parameters of a
graphene are used: shear correction factor k = 0.86667, Young’s modulus E = 1 TPa, shear
modulus G = E/ [2(1 + v)], and Poisson’s ratio v = 0.3. The size of the graphene sheets
changes from 5 nm to 20 nm in each side and thickness changes from 0.4 to 4; however,
it is worth mentioning that the aspect ratio η and thickness ratio δ affect the result since
we use nondimensional parameters. In addition, when calculating the bifurcation and
natural frequency, regardless of the size of the thickness, if the thickness to length ratio
is greater than one tenth it should be categorized as thick. In the tables, the values of n
and m illustrate that the vibrating mode has n half waves in the X1 and m half waves in
the X2 direction. In the wave propagation approach to find the natural frequencies, the
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real and imaginary part of the characteristic equation (Equation (25)) should meet zero
simultaneously (Figure 2). In this figure, the first point where this happens is the bifurcation
frequency (cut-off frequency in this case) where type of the wave changes (this will be
investigated in the next sections, and the two other points shown in Figure 2 are the first
and second fundamental natural frequencies, respectively (n = 1 and n = 2). The natural
frequency is expressed in terms of Frequency Ratio (FR), which is the ratio of nonlocal
frequency to local frequency:

FR =
β

βL (26)

where β and βL stand for nonlocal and local frequency, respectively.
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3.1. Comparison Study

To verify and show the accuracy of the present method, we compare our results with
other literature [31,35,37] based on if the study investigates the related boundary condition
(Table 1).

For the comparison study, rectangular graphene sheets with different aspect ratios
are considered (η = 1, 5/3, 0.5, 1.25). The thickness ratio of all the plates, δ, are 0.1,
nonlocal parameters vary as τ=0, 0.2, 0.4, and 0.6 (where τ=0 corresponds to classical plate
theory (CLPT)) and the number of half waves in x1 and x2 directions are considered for
two scenarios ((n, m) = (1, 1), (2, 2)). Boundary conditions are different in terms of free,
simply, and clamped classical boundary conditions and their combination as: SSSS, SCSC,
SFSF, SCSS, SFSS, and SCSF. It is observed that CLPT results (τ=0) for SSSS, SCSC, and
SCSS have good convergence compared to the CLPT results of Pradhan S.C. and Phadikar
J.K. [31]. The results of the SSSS case are compared with the Navier’s solution of a plate
formulated in nonlocal first order shear deformation theory (FSDT) [31]. For the SSSS and
SCSC cases, the results of the present method are compared with the results of higher order
shear deformation theory (HSDT) [37]. In addition, all the results are compared with the
exact solution of Levy-type boundary conditions [35] for all cases i.e., SCSC, SCSS, SCSF,
SSSF, SFSF, and SSSS. It can be concluded that the results of the present method are in
excellent agreement with other literatures.
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Table 1. Comparison study of the results of the present method and literature.

η References

(m = 1, n = 1) (m = 2, n = 2)
τ τ

0 (βL) 0.2 0.4 0.6 0 (βL) 0.2 0.4 0.6
Exact sol. [35] 19.0840 0.7475 0.4904 0.3512 79.0219 0.4904 0.2708 0.1843

HSDT [37] 19.0839 0.7477 0.4904 0.3512 79.0219 0.4906 0.2708 0.1844
FSDT [31] 19.0840 0.7475 0.4904 0.3512 79.0219 0.4904 0.2708 0.1844
CLPT [31] 19.0840 0.7475 0.4904 0.3512 79.0219 0.4905 0.2707 0.1843

1

Present 19.0840 0.7475 0.4904 0.3512 79.0219 0.4904 0.2708 0.1844

0.5

Exact sol. 12.0752 0.8183 0.5799 0.4287 45.5845 0.5799 0.3353 0.2309
HSDT 12.0752 0.8183 0.5799 0.4287 45.5845 0.5799 0.3353 0.2309
CLPT 12.0752 0.8183 0.5799 0.4287 45.5845 0.5799 0.3353 0.2308

SS
SS

Present 12.0752 0.8183 0.5799 0.4287 45.5845 0.5799 0.3353 0.2308

SC
SC

1

Exact sol. 26.7369 0.7319 0.4721 0.3359 79.1951 0.4770 0.2617 0.1778
HSDT [35] 26.7369 0.7213 0.4695 0.3312 79.1953 0.4561 0.2365 0.1569

CLPT 26.7369 0.7322 0.4703 0.3334 79.1951 0.4596 0.2459 0.1614
Present 26.7369 0.7319 0.4721 0.3359 79.1951 0.4816 0.2646 0.1799

5/3
Exact sol. 56.8967 0.6080 0.3560 0.2458 143.6230 0.3600 0.1893 0.1274
Present 56.8967 0.6080 0.3560 0.2458 143.6230 0.3693 0.1946 0.1311

0.5
Exact sol. 13.2843 0.8140 0.5735 0.4228 47.2245 0.5723 0.3324 0.2262

CLPT 13.2843 0.8032 0.5689 0.4124 46.6541 0.5681 0.3311 0.2136
present 13.2843 0.8140 0.5735 0.4228 47.2245 0.5769 0.3329 0.2291

Exact sol. 9.4458 0.8683 0.6578 0.5019 42.8870 0.6305 0.3745 0.2596
1 Present 9.4458 0.8683 0.6578 0.5019 42.8870 0.6324 0.3758 0.2605

SF
SF

5/3
Exact sol. 9.3561 0.8759 0.6712 0.5166 51.6274 0.6290 0.3731 0.2586
Present 9.3561 0.8756 0.6712 0.5166 51.6274 0.6283 0.3725 0.2580

SC
SS

Exact sol. 22.4260 0.7374 0.4785 0.3412 74.4019 0.4833 0.2660 0.1809
CLPT 22.4260 0.7364 0.4795 0.3411 74.4019 0.4813 0.2675 0.17951

Present 22.4260 0.7374 0.4785 0.3412 74.4019 0.4856 0.2675 0.1820

1.25
Exact sol. 29.8086 0.6914 0.4308 0.3030 94.0851 0.4364 0.2357 0.1596
present 83.7200 0.6914 0.4308 0.3030 94.0851 0.4398 0.2377 0.1610

Exact sol. 11.3810 0.8548 0.6331 0.4772 53.3852 0.5688 0.3264 0.2243
1 Present 11.3810 0.8548 0.6331 0.4772 53.3852 0.5693 0.3268 0.2246

1.25
Exact sol. 12.2549 0.8548 0.6330 0.4771 61.6058 0.5454 0.3093 0.2117SF

SS

Present 12.2549 0.8548 0.6330 0.4771 61.6058 0.5450 0.3091 0.2119

SC
SF

Exact sol. 12.2606 0.8616 0.6458 0.4904 55.9736 0.5666 0.3248 0.2231
1 Present 12.2606 0.8616 0.6458 0.4904 55.9735 0.5677 0.3255 0.2236

1.25
Exact sol. 13.8996 0.8667 0.6559 0.5014 65.9053 0.5415 0.3062 0.2096
Present 13.8996 0.8667 0.6559 0.5015 65.9053 0.5416 0.3063 0.2097

3.2. Frequency Analysis and Benchmark Results

Benchmark results for the variation of the fundamental frequency parameter of a
square (η = 1) thick nanosheet for six different boundary conditions are presented in
Table 2 for different vibrating modes ((n, m) = (1, 1), (2, 1), (1, 2), (2, 2)), thickness ratios
of the graphene sheet (δ = 0.01, 0.1, 0.2), and nonlocal parameters (τ = 0, 0.1, 0.3, 0.5).
Moreover, the benchmark results for rectangular plates with η = 0.5 (Table 3) and η = 2
(Table 4) and the same other variables of Table 2 are presented.

The benchmark results show that the lower frequency parameters correspond to
the graphene sheets with less edge restraint, where the SFSF case has the lowest natural
frequencies for all cases (Tables 2–4) and SCSC has the highest natural frequencies (Table 3).
As the number of supported edges increases, the frequency parameters also increase.
This implies that higher constraints at the edges increase the flexural rigidity of the plate,
resulting in a higher frequency response. Moreover, it is observed that the frequency
ratios and natural frequencies of thick graphene sheets decrease by increasing the nonlocal
parameter, τ, in all the cases (Tables 2–4). This, on the other hand, shows that the nonlocal
effects soften graphene sheets and make them more flexible. This variation in the natural
frequencies becomes more noticeable when there are more constraints on the edges. For
example, the variation in the natural frequencies based on the nonlocal parameter for
the SCSC boundary condition is greater than that for the SFSF boundary condition. In
addition, when the number of half waves increases, this variation in natural frequencies
becomes more noticeable. The thickness ratio of the graphene affects this variation in a way
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that by increasing the thickness ratio, the effect of the nonlocal parameter on the natural
frequencies becomes more significant.

The thickness ratio of the graphene by itself has a great effect on its natural frequencies
as can be seen from the benchmark results. As the thickness ratio of the graphene increases,
the natural frequencies decrease for all cases. This implies that by increasing the thickness
ratio of graphene, it becomes more flexible. Change in frequency due to thickness ratio is
more significant when there are more constraints on the edges of the graphene. As such,
the maximum change in frequency is observed in the SCSC boundary condition and the
minimum change happens in the SFSF. Moreover, as the number of half waves increase,
the change in natural frequency increases, so for n = 2 and m = 2 cases in all boundaries,
there are more changes than other cases.

Table 2. Frequency ratio for a square plate (η = 1), different boundary conditions, thickness ratio
(δ), nonlocal parameter (τ), and wave modes.

(m = 1, n = 1) (m = 1, n = 2)
τ τ

δ 0 0.1 0.3 0.5 δ 0 0.1 0.3 0.5
0.01 9.6270 0.9611 0.7566 0.5696 0.01 16.0971 0.9559 0.7328 0.5408
0.1 9.4458 0.9615 0.7584 0.5717 0.1 16.0971 0.9570 0.7376 0.5460

SF
SF

0.2 8.9997 0.9614 0.7580 0.5713 0.2 14.1341 0.9553 0.7308 0.5385

SC
SC

0.01 28.925 0.9055 0.5787 0.3913 0.01 69.1986 0.8011 0.4060 0.2574
0.1 26.7369 0.9069 0.5815 0.3936 0.1 59.4801 0.8059 0.4110 0.2607
0.2 22.5099 0.9093 0.5871 0.3982 0.2 45.0569 0.8128 0.4196 0.2668

0.01 12.6728 0.9587 0.7458 0.5568 0.01 32.9925 0.9017 0.5676 0.3804
0.1 12.2606 0.9594 0.7487 0.5600 0.1 30.4743 0.9018 0.5680 0.3809

SC
SF

0.2 11.3931 0.9587 0.7457 0.5564 0.2 25.8975 0.8998 0.5640 0.3777

SC
SS

0.01 23.6327 0.9087 0.5864 0.3981 0.01 58.5687 0.8092 0.4173 0.2658
0.1 22.4260 0.9094 0.5881 0.3995 0.1 52.3247 0.8117 0.4198 0.2675
0.2 19.7988 0.9108 0.5914 0.4023 0.2 41.7813 0.8154 0.4244 0.2706

0.01 11.6746 0.9564 0.7352 0.5435 0.01 27.7042 0.9057 0.5814 0.3953
0.1 11.3810 0.9572 0.7381 0.5466 0.1 26.1910 0.9057 0.5816 0.3957

SF
SS

0.2 10.7218 0.9570 0.7375 0.5459 0.2 23.2429 0.9030 0.5750 0.3898

SS
SS

0.01 19.7322 0.9139 0.6001 0.4105 0.01 49.3045 0.8183 0.4287 0.2738
0.1 19.0840 0.9139 0.6001 0.4105 0.1 45.5845 0.8183 0.4287 0.2738
0.2 17.5055 0.9139 0.6001 0.4105 0.2 38.3847 0.8183 0.4287 0.2738

(m = 2, n = 1) (m = 2, n = 2)
0.01 38.9043 0.8580 0.4844 0.3148 0.01 46.6393 0.8531 0.4748 0.3072
0.1 36.4246 0.8588 0.4853 0.3154 0.1 42.8870 0.8543 0.4765 0.3083

SF
SF

0.2 31.4338 0.8574 0.4835 0.3140 0.2 36.1646 0.8495 0.4699 0.3033

SC
SC

0.01 54.6743 0.8135 0.4223 0.2691 0.01 94.3686 0.7360 0.3401 0.2120
0.1 49.2606 0.8150 0.4240 0.2703 0.1 79.1951 0.7404 0.3437 0.2144
0.2 40.1384 0.8165 0.4261 0.2718 0.2 59.1227 0.7448 0.3480 0.2172

0.01 41.6472 0.8541 0.4774 0.3093 0.01 62.8595 0.8093 0.4164 0.2648
0.1 38.7128 0.8550 0.4784 0.3099 0.1 55.9735 0.8099 0.4174 0.2655

SC
SF

0.2 33.0747 0.8530 0.4757 0.3079 0.2 45.0445 0.8068 0.4137 0.2628

SC
SS

0.01 51.6210 0.8156 0.4250 0.2711 0.01 85.9792 0.7414 0.3453 0.2155
0.1 47.2245 0.8164 0.4259 0.2718 0.1 74.4019 0.7436 0.3472 0.2168
0.2 39.2032 0.8172 0.4271 0.2726 0.2 57.3380 0.7460 0.3495 0.2183

0.01 41.1469 0.8530 0.4754 0.3077 0.01 58.9430 0.8108 0.4441 0.2848
0.1 38.3610 0.8540 0.4764 0.3084 0.1 53.3852 0.8111 0.4448 0.2853

SF
SS

0.2 32.8922 0.8524 0.4744 0.3069 0.2 43.8579 0.8075 0.4428 0.2838

SS
SS

0.01 49.3045 0.8183 0.4287 0.2738 0.01 78.8455 0.7475 0.3512 0.2196
0.1 45.5845 0.8183 0.4287 0.2738 0.1 70.0219 0.7475 0.3512 0.2196
0.2 38.3847 0.8183 0.4287 0.2738 0.2 55.5860 0.7475 0.3512 0.2196

Additionally, as the aspect ratio of the graphene increases, the local natural frequency
decreases, but it is not the same for the frequency ratio of the graphene. For example,
comparing Tables 2–4 shows that by increasing the aspect ratio of the graphene with
the SCSF boundary condition, the frequency ratio decreases. As the nonlocal parameter
increases, the rate of change in the frequency ratio increases. However, the rate of change
decreases as the aspect ratio increases. It is almost the same for SFSF and SFSS, as can
be seen from Tables 2–4, but the rate of change decreases correspondingly. From Table 1,
it is apparent that by increasing the aspect ratio of graphene with the SSSS boundary
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condition, the frequency ratio increases, either of which is in contrast with previous cases.
The situation is the same for SCSS and SCSC, as can be seen from Table 1. It is observed
that the free boundary condition has a significant effect on the relation between the aspect
ratio and the frequency of graphene.

Table 3. Frequency ratio for a rectangular plate with η = 0.5, different boundary conditions, thickness
ratio (δ), nonlocal parameter (τ), and wave modes.

(m = 1, n = 1) (m = 1, n = 2)
τ τ

δ 0 0.1 0.3 0.5 δ 0 0.1 0.3 0.5
0.01 9.5078 0.9644 0.7723 0.5892 0.01 27.3597 0.9557 0.7323 0.5401
0.1 9.3306 0.9647 0.7737 0.5908 0.1 24.9711 0.9552 0.7305 0.5382

SF
SF

0.2 8.9007 0.9642 0.7712 0.5878 0.2 21.3271 0.9489 0.7060 0.5113

SC
SC

0.01 94.9657 0.7926 0.3957 0.2500 0.01 252.3968 0.5813 0.2309 0.1409
0.1 75.1962 0.8009 0.4032 0.2549 0.1 166.7806 0.5988 0.2403 0.1467
0.2 52.1283 0.8100 0.4149 0.2631 0.2 102.7371 0.6141 0.2499 0.1529
0.01 22.7512 0.9692 0.8086 0.6758 0.01 99.3823 0.7782 0.3474 0.1914
0.1 21.1870 0.9574 0.7992 0.6753 0.1 81.0357 0.7746 0.3509 0.1928

SC
SF

0.2 18.4903 0.9592 0.7579 0.6016 0.2 57.8767 0.7771 0.3623 0.2102

SC
SS

0.01 69.1986 0.8011 0.4060 0.2573 0.01 207.3996 0.5964 0.1894 0.1478
0.1 59.4801 0.8059 0.4110 0.2607 0.1 151.1821 0.6054 0.2013 0.1507
0.2 45.0569 0.8127 0.4196 0.2668 0.2 99.7234 0.6131 0.2507 0.1536
0.01 16.0971 0.9559 0.7328 0.5408 0.01 75.0554 0.7998 0.4383 0.2642
0.1 15.4054 0.9570 0.7375 0.5459 0.1 66.3720 0.7924 0.4009 0.2567

SF
SS

0.2 14.1341 0.9552 0.7307 05385 0.2 52.8012 0.7831 0.3875 0.2459

SS
SS

0.01 49.3045 0.8183 0.4287 0.2737 0.01 167.2821 0.6111 0.4287 0.1526
0.1 45.5845 0.8183 0.4287 0.2737 0.1 134.3586 0.6111 0.4287 0.1526
0.2 38.3847 0.8183 0.4287 0.2737 0.2 95.8088 0.6111 0.4287 0.1526

(m = 2, n = 1) (m = 2, n = 2)
0.01 38.4774 0.8669 0.5003 0.3272 0.01 64.2036 0.8520 0.4729 0.3057
0.1 35.9987 0.8678 0.5014 0.3281 0.1 56.5363 0.8496 0.4694 0.3029

SF
SF

0.2 31.0963 0.8645 0.4963 0.3242 0.2 45.3418 0.8357 0.4491 0.2879

SC
SC

0.01 115.3920 0.7293 0.3339 0.2078 0.01 275.2751 0.5553 0.2167 0.1319
0.1 90.0396 0.7369 0.3400 0.2118 0.1 180.2276 0.5707 0.22.46 0.1369
0.2 62.9729 0.7432 0.3463 0.2161 0.2 112.1661 0.5815 0.2311 0.1411
0.01 50.6057 0.8599 0.4881 0.3178 0.01 131.4853 0.7207 0.3242 0.2007
0.1 45.5725 0.8595 0.4869 0.3168 0.1 103.5900 0.7167 0.3215 0.1991

SC
SF

0.2 37.5487 0.8512 0.4741 0.3069 0.2 73.0862 0.7138 0.3190 0.1976

SC
SS

0.01 94.3686 0.7360 0.3401 0.2119 0.01 233.3530 0.5672 0.2239 0.1366
0.1 79.1951 0.7404 0.3437 0.2144 0.1 167.1253 0.5753 0.2280 0.1392
0.2 59.1227 0.7447 0.3479 0.2172 0.2 109.7471 0.6298 0.2312 0.1411
0.01 46.6393 0.8530 0.4748 0.3072 0.01 110.5043 0.7309 0.4213 0.2603
0.1 42.8870 0.8543 0.4765 0.3083 0.1 92.9718 0.7248 0.3860 0.2379

SF
SS

0.2 36.1646 0.8495 0.4698 0.3033 0.2 69.9757 0.7156 0.3762 0.2294

SS
SS

0.01 78.8455 0.7475 0.3512 0.2195 0.01 196.6991 0.5799 0.2308 0.1409
0.1 70.0219 0.7475 0.3512 0.2196 0.1 153.5390 0.5799 0.2308 0.1409
0.2 55.5860 0.7475 0.3512 0.2196 0.2 106.9195 0.5799 0.2308 0.1409
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Table 4. Frequency ratio for a rectangular plate with η = 2, different boundary conditions, thickness
ratio (δ), nonlocal parameter (τ), and wave modes.

(m = 1, n = 2) (m = 1, n = 1)
τ τ

δ 0 0.1 0.3 0.5 δ 0 0.1 0.3 0.5
0.01 9.7328 0.9581 0.7432 0.5536 0.01 11.6746 0.9564 0.7352 0.5435
0.1 9.5560 0.9584 0.7443 0.5547 0.1 11.3811 0.9572 0.7381 0.5466

SF
SF

0.2 9.1061 0.9584 0.7444 0.5548 0.2 10.7218 0.9570 0.7375 0.5459

SC
SC

0.01 13.6815 0.9417 0.6819 0.4880 0.01 23.6327 0.9087 0.5864 0.3981
0.1 13.2843 0.9419 0.6825 0.4886 0.1 22.4260 0.9094 0.5881 0.3995
0.2 12.3152 0.9423 0.6838 0.4898 0.2 19.7988 0.9108 0.5914 0.4023
0.01 10.4206 0.9568 0.7372 0.5463 0.01 15.7393 0.9400 0.6757 0.4815
0.1 10.2054 0.9572 0.7387 0.5478 0.1 15.1956 0.9406 0.6777 0.4835

SC
SF

0.2 9.6782 0.9572 0.7387 0.5477 0.2 13.9934 0.9403 0.6771 0.4829

SC
SS

0.01 12.9152 0.9425 0.6847 0.4909 0.01 21.5239 0.9111 0.5929 0.4039
0.1 12.6022 0.9426 0.6850 0.4912 0.1 20.6396 0.9115 0.5937 0.4046
0.2 11.8061 0.9428 0.7053 0.4919 0.2 18.6005 0.9122 0.6231 0.4060
0.01 10.2948 0.9564 0.7355 0.5443 0.01 14.7549 0.9406 0.6778 0.4836
0.1 10.0929 0.9146 0.7369 0.5456 0.1 14.3272 0.9410 0.6794 0.4853

SF
SS

0.2 9.5902 0.9569 0.7371 0.5457 0.2 13.3463 0.9407 0.6786 0.4845

SS
SS

0.01 12.3343 0.9435 0.6884 0.4948 0.01 19.7322 0.9139 0.6001 0.4105
0.1 12.0752 0.9435 0.6884 0.4948 0.1 19.0840 0.9139 0.6001 0.4105
0.2 11.3961 0.9435 0.6884 0.4948 0.2 17.5055 0.9139 0.6001 0.4105

(m = 2, n = 1) (m = 2, n = 1)
0.01 39.1526 0.8528 0.4762 0.3086 0.01 41.1469 0.8530 0.4754 0.3077
0.1 36.6824 0.8534 0.4767 0.3089 0.1 38.3610 0.8540 0.4764 0.3084

SF
SF

0.2 31.6538 0.8528 0.4760 0.3084 0.2 32.8922 0.8524 0.4744 0.3069

SC
SC

0.01 42.5528 0.8386 0.4564 0.2941 0.01 51.6210 0.8156 0.4250 0.2711
0.1 39.6410 0.8388 0.4567 0.2943 0.1 47.2245 0.8164 0.4259 0.2718
0.2 33.8397 0.8093 0.4570 0.2946 0.2 39.2032 0.8172 0.4271 0.2726
0.01 39.7874 0.8062 0.4740 0.3069 0.01 45.0551 0.8379 0.4547 0.2926
0.1 37.2242 0.8524 0.4746 0.3072 0.1 41.7409 0.8385 0.4554 0.2931

SC
SF

0.2 32.0545 0.8517 0.4737 0.3066 0.2 35.3839 0.8375 0.4542 0.2922

SC
SS

0.01 42.2071 0.8389 0.4570 0.2946 0.01 50.3833 0.8169 0.4268 0.2724
0.1 39.3897 0.8390 0.4446 0.2947 0.1 46.3599 0.8173 0.4272 0.2727
0.2 33.7085 0.8116 0.4439 0.2948 0.2 38.7801 0.8177 0.4278 0.2732
0.01 39.7326 0.8215 0.4736 0.3065 0.01 44.4758 0.8382 0.3613 0.2267
0.1 37.1858 0.8521 0.4741 0.3069 0.1 41.3217 0.8386 0.3528 0.2208

SF
SS

0.2 32.0309 0.8516 0.4735 0.3051 0.2 35.1634 0.8376 0.3979 0.2518

SS
SS

0.01 41.9144 0.8393 0.4576 0.2951 0.01 49.3045 0.8183 0.4287 0.2738
0.1 39.1713 0.8393 0.4576 0.2853 0.1 45.5845 0.8183 0.4287 0.2738
0.2 33.5896 0.8138 0.4576 0.2946 0.2 38.3847 0.8183 0.4287 0.2738

3.3. Wave Analysis

Waves travel in both positive and negative directions in a medium, as ± signs in
Equation (15) indicate. From the dispersion relations of Equation (14), it is evident that the
phase velocity ω/λ is frequency dependent, meaning that the plate’s waves are dispersive
(they travel at different velocities at different frequencies). Also, wavenumbers (λi) can
be real, imaginary, or complex numbers in different frequency regions, which is based on
the dispersion relations of Equation (14). Consequently, there will be different types of
waves in different frequency regions such as: (i) when an exponential wave of Equation
(15) has a pure imaginary argument, there is a propagating wave in the graphene; (ii) when
an argument is a real number, the type of wave is evanescent; (iii) and finally, when an
argument is a complex number, the wave is a decaying wave. A can be seen from Figure 3
(which is a square graphene (η = 1) of thickness ratio δ = 0.3 and nonlocal parameter of
τ = 0.1), depending on frequency region all three types of waves can exist in the graphene.
In this figure, it is obvious that at some frequencies, there is a wave mode transition. These
frequency spots are called bifurcation frequencies and classified as cut-off and escape
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frequencies. Cut-off frequencies are the frequencies at which a wavenumber becomes zero,
phase velocity tends to take exceptionally large values, and a qualitative change occurs
in a wave mode. At escape frequencies, a wavenumber tends to take exceptionally large
values, the phase velocities tend to take exceedingly small values, and a transition in wave
mode occurs. These frequency spots depend on the frequency range, nonlocal parameter,
thickness ratio of graphene, correction factor, and Poisson’s ratio. For a graphene sheet
formulated with the first order shear deformation theory, four cut-off frequencies are
derived from Equation (14) as below:

βc1 =

−b +
(
b2 − 4ac

) 1
2

2a

 1
2

(27a)

βc2 =

 (mπ)2 1−ν
2 + 6k 1−ν

δ2

δ2

12 + τ2δ2 (mπ)2

12

 1
2

(27b)

βc3 =

−b−
(
b2 − 4ac

) 1
2

2a

 1
2

(27c)

βc4 =

72kν1

(
− δ4k2ν2

1
9 + 2δ4kν1

9 − δ4

9 +
8δ2k2ν2

1 τ2

3 + 8δ2kν1τ2

3 − 16k2ν2
1 τ4
) 1

2

δ4k2ν2
1 − 2δ4kν1 + δ4 − 24δ2k2ν2

1 τ2 − 24δ2kν1τ2 + 144k2ν2
1 τ4

(27d)

where
a = −(mπ)4τ4 δ4

72k(1−ν)
+ (mπ)2τ2 δ4

36k(−1+ν)
+ δ4

72k(−1+ν)
,

b =
(

1
12 + 1

6k(1−ν)

)
τ2δ2(mπ)4 +

(
− δ2

6k(−1+ν)
+ 12τ2+δ2

12

)
(mπ)2 + 1

(28)

and three escape frequencies as

βs1 =

(
6k

1− ν

τ2δ2

) 1
2

(29a)

βs2 =

(
6

1− ν

τ2δ2

) 1
2

(29b)

βs3 =

(
12

τ2δ2

) 1
2

(29c)

where the subscripts “c” and “s” stand for cut-off frequency and escape frequency, respectively.
By dividing the frequency range into frequency intervals based on these bifurcation

frequencies, different waves in a medium can be found. For the graphene of Figure 3, the
frequency region can be divided into eight regions as: 0< β < βc1, βc1 < β < βs1, βs1 <
β < βs2, βs2 < β < βc2, βc2 < β < βc3, βc3 < β < βs3, βs3 < β < βc4, and β > βc4. In
the 0 < β < βc1 frequency region, three evanescent waves exist in the medium as all
arguments of the Equation (15) are real values. In the next frequency region, βc1 < β < βs1,
the first wave, with λ1 wavenumber, has a pure imaginary argument and is a propagating
wave and the other two waves are evanescent. After βs1 and in the βs1 < β < βs2 region,
again the first wave changes to an evanescent wave. At the second escape frequency, βs2,
a qualitative change occurs in the third wave and in the βs2 < β < βc2 region, this wave
is a propagating wave and the first and second waves are evanescent waves. In the fifth
frequency region, βc2 < β < βc3, the third wave again changes into an evanescent wave. In
the sixth frequency region, βc2 < β < βs3, the second wave becomes a propagating wave
while the other two waves are evanescent. In the βs3 < β < βc4 region again, this wave
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changes into an evanescent wave and the other two waves remain evanescent. Finally,
in the high frequency range, after the last cut-off frequency, the first and second waves
have both imaginary and real parts in their arguments, complex values, so the waves are
decaying type in this region. However, this division of the frequency range and the order
of bifurcation frequencies are not unique, and they may change by changing the nonlocal
parameter and the thickness ratio of graphene as discussed in the next sections.
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3.3.1. Effect of Nonlocal Parameter on Wave Motion

To investigate the effect of nonlocal parameter on these bifurcation frequencies, they
are depicted in Figure 4 for a δ = 0.2, η = 0.6, ν = 0.3, k = 0.86667 plate, (n, m) = (1.1)
wave mode, and varying nonlocal parameter (horizontal axis). Interesting features are
captured for these important frequencies. First, it is interesting that the occurrence of βc4
depends on the value of the nonlocal parameter, meaning this cut-off frequency appears
only for some specific values (in a specific interval) of the nonlocal parameter. Lower and
upper values of this interval are derived analytically as follows:

τcr1, τcr2 =


8δ2k2ν2

1 ± 3δ2
(

256k3ν3
1

9

) 1
2
+ 8δ2kν1

96k2ν2
1


1
2

(30)

which, as can be seen, depend on thickness ratio, shear correction factor, and Poisson’s
ratio.
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Therefore, in the τcr1 < τ < τcr2 range, which we call its lower and higher values
critical nonlocal parameters, there are four cut-off frequencies and out of this range, there
are three cut-off frequencies and the fourth, βc4, does not appear; there are three escape
frequencies everywhere.

Moreover, the highest bifurcation frequency is βc4 (if it exists), and the lowest always
is βc1 for different nonlocal parameters. As mentioned in the previous section, it is evident
from Figure 3 that before the lowest cut-off frequency, all three waves are evanescent waves.
However, for the high frequency range after the highest bifurcation frequency, there are
three scenarios. The first scenario is the case that the highest bifurcation frequency is βc4.
In this case, the first and second waves of Equation (15) become decaying waves after this
cut-off frequency where there are propagating components in these two waves. Second,
two scenarios happen when the graphene’s nonlocal parameter is out of critical range and
the highest bifurcation frequency is either βc2 or βs1. As seen from Figure 4, for a specific
value of nonlocal parameter, there is an intersection between βc2 and βs1 which results in
a change in their order. This intersection is obtained analytically in the Appendix A. In
these two cases, whether the highest bifurcation frequency is βc2 or βs1, after the highest
bifurcation frequency, all waves are evanescent waves where their energy decays in the
direction of ongoing waves. There are other intersections of βc2 and βc3 with βs1, βs2, and
βs3, which are also analytically derived in Appendix A. In each of these intersections, the
order of the two intersected bifurcation frequencies changes. No intersections between cut-
off frequencies nor between escape frequencies are captured. Moreover, in two frequency
spots, βc4 becomes very close to βc2 and βs1.
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Figure 4 also shows that as the nonlocal parameter tends to zero, which on the other
hand means tending to the classical/local Mindlin plate theory, the escape frequencies tend
to very large values which are considered unreachable. Therefore, for very small values
of nonlocal parameter, there are three cut-off frequencies in the realistic frequency range,
which is in agreement with previous studies [54].
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3.3.2. Effect of Graphene’s Thickness Ratio on Wave Motion

Figure 5 shows the variation of bifurcation frequency versus thickness ratio for
graphene of τ = 0.1, η = 0.6, ν = 0.3, k = 0.86667, and m = 1. From this figure, it
also can be seen that βc4 happens only in a specific region of δ. This region’s lower and
upper frequencies are found analytically as:

δcr1, δcr2 =


3

(
8kν1ξ2 ± 3ξ2

(
256k3ν3

1
9

) 1
2
+ 8k2ν2

1 ξ2

)
2
(
k2ν2

1 − 2kν1 + 1
)



1
2

(31)

Therefore, if the thickness ratio of the graphene is in the δcr1 < δ < δcr2 range, there
will be four cut-off frequencies, and if there are three cut-offs out of this frequency range,
there will be three escape frequencies for every thickness ratio.

Moreover, regarding the highest and lowest bifurcation frequencies, it can be seen
in Figure 5 that the lowest frequency is always βc1, below which all the three ongoing
waves are evanescent. Like the nonlocal parameter effect, there are also three scenarios for
the thickness ratio effect when it comes to high frequency region. In the presence of βc4,
this cut-off frequency is the highest frequency. However, in cases where this bifurcation
does not occur in the medium, the highest frequency can be βc2 or βs1, depending on
the thickness ratio. Evident from Figure 5, there is an intersection between these two
bifurcation frequencies, which is derived analytically in Appendix B. Considering this
intersection and whether the thickness ratio is less or greater than this intersection, the
highest frequency can be defined. There are other intersections of βc2 and βc3 with βs1, βs2,
and βs3, which are also analytically derived in Appendix B. Moreover, in two frequency
spots, βc4 becomes remarkably close to βc2 and βs1. At each of these intersections, the
order of the two intersected bifurcation frequencies changes. There is not any intersection
between cut-off frequencies nor between escape frequencies. Therefore, their order will not
change by varying thickness ratio of the plate.
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4. Conclusions

This paper employs wave propagation techniques and Mindlin graphene sheet theory
to present an exact solution for the free vibration analysis of thick rectangular graphene
sheets. There are other analytical solutions in the literature, but this is the first time that the
effects of thickness ratio and nonlocal parameter have been considered. The proposed wave
propagation method showed high accuracy and reliability in both macro and nanoscales.
The exact characteristic equations are derived for six boundary condition cases having
two opposite sides simply supported. The six cases considered are namely SSSS, SCSS,
SCSC, SSSF, SFSF, and SCSF plates. The proposed method showed excellent accuracy in
comparison with literature. Frequency parameter benchmark results are presented for
different nonlocal parameters, thickness ratios, aspect ratios, and number of half waves
for each case. These frequency parameters can be deemed as a database for each of
the considered cases and used to investigate the accuracy of computational methods
for graphene sheets. Moreover, cut-off and escape frequencies are found analytically,
which offers us to investigate the bifurcation frequencies more in detail. Four cut-off
frequencies are observed, among which one of them occurs only in a specific range of
nonlocal parameter and thickness ratio of the plate, so in these ranges, there are four cut-off
and three escape frequencies and out of these ranges there are three cut-off and three escape
frequencies. Additionally, the lowest bifurcation frequency is always a cut-off frequency,
but the highest bifurcation frequency can be a cut-off or escape frequency depending on
the nonlocal parameter and thickness ratio of the graphene sheet. There are changes in the
order of escape and cut-off frequencies, which are captured and derived analytically.
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Appendix A

To find the intersections between cut-off and escape frequencies, their analytical equa-
tions from Equations (26) and (27) should be solved simultaneously for τ. Six intersections
of βc2 and βc3 with βs1, βs2, and βs3 are observed and calculated analytically.

βc2 = βs1 :

τc2s1 =
{
−[(π4δ4k2m4ν2 − 2π4δ4k2m4ν + π4δ4k2m4 + 4π4δ4km4ν

− 4π4δ4km4 + 4π4δ4m4 + 24π2δ2k2m2ν2 − 48π2δ2k2m2ν
+ 24π2δ2k2m2 − 48π2δ2km2ν + 48π2δ2km2 + 144k2ν2

− 288k2ν + 144k2 )
1
2 − 12k + 12kν + 2π2δ2m2 − π2δ2km2

+ π2δ2km2ν]/6k(ν− 1)
}1/2/2πm.

(A1)

βc2 = βs2 :

τc2s2 =
{
[12k− (π4δ4k2m4ν2 − 2π4δ4k2m4ν + π4δ4k2m4 + 4π4δ4km4ν− 4π4δ4km4

+ 4π4δ4m4 + 24π2δ2k2m2ν2 − 48π2δ2k2m2ν + 24π2δ2k2m2

− 48π2δ2km2ν + 48π2δ2km2 + 144k2ν2 − 288k2ν + 144k2 )1/2 − 12kν

+ 2π2δ2m2 − π2δ2km2 + π2δ2km2ν]/6k(ν− 1)
}1/2/2πm

(A2)

βc2 = βs3 :
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τc2s3 =
{

2
1
2 [−(12k− (π4δ4k2m4ν2 − 2π4δ4k2m4ν + π4δ4k2m4 + 4π4δ4km4ν− 4π4δ4km4

+ 4π4δ4m4 + 24π2δ2k2m2ν2 − 48π2δ2k2m2ν + 24π2δ2k2m2

− 48π2δ2km2ν + 48π2δ2km2 + 144k2ν2 − 288k2ν + 144k2)1/2 − 12kν
+ π2δ2km2 + 2π2δ2m2ν− π2δ2km2ν)/(12k− 12kν + π2δ2m2

− π2δ2km2 + π2δ2m2ν− π2δ2km2ν)]1/2
}

/2πm

(A3)

βc3 = βs1 :

τc3s1 = 2
1
2 δ
[
−1/

(
12kν− 12k + π2δ2m2 + π2δ2m2ν

) ] 1
2 (A4)

βc3 = βs1 :

τc3s2 = δ
[
k/
(

12k + π2δ2m2 − π2δ2km2
)] 1

2 (A5)

βc3 = βs1 :

τc3s3 = δ(1/3k)
1
2 /2 (A6)

where intersections are noted by subscripts. For example, τc2s1 is the nonlocal parameter at
which βc2 and βs1 intersect and their order changes.

Appendix B

As like the previous section, Equations (26) and (27) should be solved simultaneously
for δ, and intersections of βc2 and βc3 with βs1, βs2, and βs3 should be obtained analytically.

βc2 = βs1

δc2s1 = 2τ

(
3k

k− π2m2τ2 + π2km2τ2

) 1
2

(A7)

βc2 = βs2 :

δc2s2 = 2τ(3k)
1
2 (A8)

βc2 = βs3 :

δc2s3 = 2τ

(
− 3k(ν− 1)

π2m2τ2 + π2m2ντ2 + 2

) 1
2

(A9)

βc3 = βs1 :

δc3s1 = 2τ

(
3k
(
π2m2τ2 + 1

)
(ν− 1)

kν− k + 2π2m2τ2 − π2km2τ2 + π2km2ντ2

) 1
2

(A10)

βc3 = βs1 :

δc3s2 = 2τ

(
3k
(
π2m2τ2 + 1

)
(ν− 1)

(π2m2τ2 − π2km2τ2 + 1)(ν + π2m2τ2 + π2m2ντ2 − 1)

) 1
2

(A11)

βc3 = βs1 :

δc2s3 = 2τ

(
−

3k
(
π2m2τ2 + 1

)
(ν− 1)

2π2m2τ2 − π2km2τ2 + π2km2ντ2 + 2

) 1
2

(A12)
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