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Abstract: The generalized Hoek–Brown criterion (GHB) is recognized as one of the standard failure
criteria in rock engineering and its validity extends to a wide range of rock mass quality. A drawback
of this criterion is the difficulty of transforming it into an explicit form defining the Mohr failure
envelope when its strength parameter a is not equal to 0.5. The information on the functional form
of the Mohr envelope for the full range of rock mass conditions enables the implementation of
classical engineering approaches, such as the limit equilibrium method and limit analysis, in the
framework of the GHB criterion. Knowing that for a 6= 0.5 the exact closed-form representation of the
Mohr envelope is not feasible, an alternative is to express it in an approximate analytical form. The
main purpose of this study is to propose a new improved method to define an approximate Mohr
envelope of the GHB criterion that is much more accurate compared with the recently published
approximations. The idea behind the formulation is to expand the Balmer’s equation, which defines
the relationship between the normal stress and minor principal stress at failure, by invoking the
finite Taylor series centered at the known solution for a = 0.5. The formulation is then completed by
substituting this solution into another Balmer’s equation, defining the relationship between the shear
strength and the minor principal stress. The Taylor polynomial approximations of up to third degree
are considered in the formulation. The accuracy of the shear strength prediction is shown to be much
better than that of the approximate formula of Lee and Pietruszczak proposed in 2021. An illustrative
example of limit equilibrium analysis of rock slope stability, incorporating the new approximate
expression for the Mohr envelope, is provided. The analysis incorporates a modified version of the
Bishop approach, which is simpler and more rigorous than the original nonlinear expression. The
study confirms that the new approximate representation of the Mohr failure envelope can facilitate
the application of the GHB criterion to a range of practical rock engineering calculations.

Keywords: Hoek–Brown criterion; Mohr failure envelope; Balmer’s equation; limit equilibrium
analysis; modified Bishop approach

1. Introduction

The generalized Hoek–Brown (GHB) criterion [1] is a nonlinear failure condition that
is commonly used in rock engineering and can be applied to intact rock as well as jointed
rock mass. This criterion defines the major principal stress at failure for a given minor
principal stress and its strength parameters are identified using the respective empirical
formula based on the GSI value [2,3]. A weakness of this criterion is the difficulty of
transforming it to the corresponding explicit shear strength–normal stress equation, i.e., the
Mohr envelope, which is required for applications of classical rock engineering approaches,
such as the limit equilibrium method [4,5] and the upper bound limit analysis [6–10]. In the
latter methodology, the energy dissipation along the sliding surface is calculated using the
normal and shear stresses. It is noted that in cases when the strength parameter a equals
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0.5, the closed form solution for the Mohr envelope is available [11–17]. However, when
a 6= 0.5, an exact analytical expression of the Mohr envelope relating the shear strength
to the normal stress cannot be obtained, which limits the scope of the applications of the
GHB criterion.

In order to resolve the difficulty associated with the lack of a closed-form solution,
various approximate analytical expressions for the Mohr envelope have been sought. The
simplest approach is to obtain the equivalent friction angle and cohesion by approximating
the GHB criterion by a linear form in a specified range of minor principal stress [1,18–21].
However, this linear approximation has an evident shortcoming that the strength nonlinear-
ity, which is inherent in the GHB criterion, cannot be accounted for. Moreover, the accuracy
of linear approximation depends on the size of the approximation interval. In the original
approximation by Hoek et al. [1], the upper limit of minor principal stress was different
for deep tunnels and slopes. Therefore, in later works dealing with slope stability [21,22]
some empirical equations were employed for a more accurate assessment of this upper
bound. At the same time, in order to improve the efficiency of the linear approximation,
Wei et al. [23] presented a method of dividing the GHB curve into several sections and then
linearly approximating each segmented interval. The methods of approximating the GHB
envelope with a simpler form of nonlinear power function have also been attempted [24–26],
but they do not retain the original meaning of the strength parameters employed in the
GHB criterion.

Several other efforts to formulate the nonlinear Mohr envelope, while preserving
the original meaning of strength parameters of the GHB criterion, have been made (e.g.,
Kumar [27] and Yang and Yin [28,29]). However, these formulations are implicit in the
sense that the shear strength and normal stress are expressed as functions of instantaneous
friction angle. Recently, Lee and Pietruszczak [14,15] and Lee [16] have formulated an
explicit nonlinear expression approximating Mohr envelope equations by converting the
power function terms appearing in the implicit form of this envelope to quadratic and/or
cubic polynomial equations. Although the accuracy of these GHB envelopes was found to
be good overall, these kinds of approximation still have room for further improvement.

As mentioned earlier, most of the existing approaches employ approximations of the
GHB criterion in an a priori specified range of minor principal stress. This implies that in
the field conditions the shear strength prediction may not be accurate if this range is not
appropriately selected. In this study, a new approximate form of the Mohr envelope of
the GHB criterion is proposed, which is not affected by the anticipated range of values of
minor principal stress. The accuracy of the newly proposed Mohr envelopes is validated
by calculating the percentage errors in the shear strength predictions for various rock
mass conditions and the results are compared with those obtained using the approximate
formula of Lee and Pietruszczak [15]. In the latter part of this paper, an example of limit
equilibrium analysis, involving assessment of rock slope stability based on the proposed
form of the Mohr envelope, is provided. The analysis employs a modified form of the
classical Bishop approach, which is believed to be more rigorous than the original nonlinear
expression. The study also includes a scenario in which the loss of stability is triggered by
the distributed load acting on the horizontal upper surface.

2. Generalized Hoek–Brown Criterion
2.1. General form in Terms of Minor Principal Stress

In the generalized Hoek–Brown (GHB) failure condition [1], the major principal stress
(σ1) at failure is a nonlinear function of minor principal stress (σ3) defined as

σ1 = σ3 + σci

(
mb

σci
σ3

+ s
)a

, (1)

where σci denotes the uniaxial compressive strength of the intact rock, while mb, s and a are
the strength parameters of rock mass defined empirically as follows:
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mb = mi exp
(

GSI− 100
28− 14D

)
, (2)

s = exp
(

GSI− 100
9− 3D

)
, (3)

a =
1
2
+

1
6

(
e−GSI/15 − e−20/3

)
. (4)

In the equations above, GSI denotes the Geological Strength Index [2] and D is the distur-
bance factor which varies from 0 to 1 depending on the excavation damage. For undisturbed
rock mass, D = 0, while for highly disturbed rock mass (e.g., as in an open pit mine slope)
there is D = 1.

2.2. Normalized Form of the GHB Criterion

In order to facilitate the mathematical treatment of the GHB criterion, Rojat et al. [30]
introduced the following normalization rule for normal stress (σ):

N =
σ

ma/(1−a)
b σci

+
s

m1/(1−a)
b

(5)

Applying this rule to σ1 and σ3, the GHB criterion takes the simplified nondimensional
form as

N1 = N3 + Na
3 , (6)

where
N1 =

σ1

ma/(1−a)
b σci

+
s

m1/(1−a)
b

; N3 =
σ3

ma/(1−a)
b σci

+
s

m1/(1−a)
b

(7)

In the transformed space (N1 − N3 space), the normalized GHB criterion, i.e., Equation (6),
is completely defined by the strength parameter a and all the GHB curves start from the
origin as shown in Figure 1.
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2.3. Shear–Normal Stress Relation of the GHB Criterion

The shear stress (τ) acting on an incipient failure plane is a function of the normal
stress σ. In general, this function is nonlinear in σ− τ space and it is referred to as the Mohr
failure envelope. Invoking the following normalization rule for τ [14],
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T =
τ

ma/(1−a)
b σci

(8)

it can be shown that the normalized Mohr envelope of the GHB criterion is a concave
downward curve always starting from the origin of N − T space as depicted in Figure 2. φi
and ci in this figure represent the instantaneous friction angle and cohesion, respectively.
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According to Yang and Yin [28] and Lee and Pietruszczak [14], the φi − ci relationship
implied in the GHB criterion is given by

ci
σci

=
cos φi

2

[
mba(1− sin φi)

2 sin φi

]a/(1−a)
−ma/(1−a)

b

[
a(1− sin φi)

2 sin φi

]1/(1−a)(
1 +

sin φi
a

)
tan φi +

s
mb

tan φi. (9)

The formulation of the Mohr envelope can be accomplished by invoking Balmer’s
procedure [31], in which the envelope can be expressed in the form of the following implicit
parametric functions of N3:

N = N3 +
N1 − N3

dN1/dN3 + 1
, (10)

T = (N − N3)

√
dN1

dN3
(11)

Noting that, based on Equation (6), there is dN1/dN3 = 1 + aNa−1
3 , the above two paramet-

ric equations can be restated as

f (N3) + 2N3 − 2N = 0, (12)

T =
Na

3

aNa−1
3 + 2

√
aNa−1

3 + 1 (13)

where
f (N3) = (a + 1)Na

3 − aNNa−1
3 . (14)

Thus, it is evident that the establishment of an explicit analytical equation of the Mohr
envelope is equivalent to finding the root N3 of Equation (12) for a given value of N.
Substituting this root into Equation (13) defines the normalized shear strength T, which
can then be used to calculate the shear strength τ from Equation (8).

Lee and Pietruszczak [15] have derived the closed form solution of Equation (12) for
a = 0.5, which takes the form

N3 =

(
16N + 9

24

)
cos
(

θ

3
+

4π

3

)
+

32N + 9
48

, (15)
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where

θ = cos−1

[
−4096N3 + 6912N2 + 3888N + 729

(16N + 9)3

]
(16)

In general, however, for a 6= 0.5, an explicit solution is not available. To overcome this
difficulty, Lee and Pietruszczak [14,15] have used explicit analytical functions approximat-
ing the exact solution. In this paper, another approach to find an approximate solution
of Equation (12) is proposed which leads to a new approximate formulation of the Mohr
envelope which is much more accurate. The details of the formulation are described in the
following section.

3. New Approximate Formulation of the Mohr Envelope for GHB Criterion
3.1. Approximate Mohr Envelope Based on Taylor Expansion of the Balmer’s Equation

The idea of the new formulation of the Mohr envelope is to approximate the power
function terms in the first Balmer’s equation, i.e., Equation (12), with the Taylor series.
Denoting by N3∗ the exact solution of Equation (12) for a = 0.5 (cf. Equation (15)), i.e.,

N3∗ =

(
16N + 9

24

)
cos
(

θ + 4π

3

)
+

32N + 9
48

(17)

and noting that this solution may not be far from that corresponding to a 6= 0.5, the above
value of N3∗ can be selected as the expansion center for the Taylor series. In this case, the
approximation of Equation (12) can be expressed as the following polynomial equation of
degree n:

n

∑
k=0

1
k!

f (k)(N3∗)(N3 − N3∗)
k + 2N3 − 2N = 0, (18)

where f (k)(N3∗) denotes the kth derivative of the function f with respect to N3 evalu-
ated at N3∗ . In this paper, the polynomials of degree up to three are considered and the
corresponding solutions for N3 are presented below.

(i) Linear approximation (n = 1)

If n = 1, Equation (18) simplifies to a linear form, and the solution for N3 is obtained
as follows:

N3 =
2N + (a− 1)(a + 1)Na

3∗ − a(a− 2)Na−1
3∗ N

a(a + 1)Na−1
3∗ − a(a− 1)Na−2

3∗ N + 2
. (19)

(ii) Quadratic approximation (n = 2)

If n = 2, Equation (18) becomes a quadratic equation, and its solution for N3 is given by

N3 =
−K2

√
K2

2 − 4K1K3

2K1
(20)

where
κ1 = −1

2
a(a− 1)(a− 2)Na−3

3∗ N +
1
2

a(a− 1)(a + 1)Na−2
3∗ (21)

κ2 = a(a− 1)(a− 3)Na−2
3∗ N − a(a− 2)(a + 1)Na−1

3∗ + 2 (22)

κ3 = −1
2

a(a− 2)(a− 3)Na−1
3∗ N +

1
2
(a− 1)(a− 2)(a + 1)Na

3∗ − 2N. (23)

(iii) Cubic approximation (n = 3)

If n = 3, Equation (18) reduces to a cubic polynomial equation, which has the follow-
ing solution

N3 =
2
3

√
η2

1 − 3η2 cos
(

θ

3
+

4π

3

)
− 1

3
η1, (24)
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where

θ = cos−1

[
9η1η2 − 27η3 − 2η3

1

2
(
η2

1 − 3η2
)3/2

]
(25)

η1 =
−3(a− 1)(a− 3)(a + 1)N2

3∗ +
(
3a3 − 18a2 + 27a− 9

)
N3∗N

(a− 1)(a− 3)(a + 1)N3∗ + [1− a(a− 2)(a− 3)N]
(26)

η2 =
3a(a− 2)(a− 3)(a + 1)N3

3∗ + 3a
(
a3 − 7a2 + 14a− 7

)
N2

3∗N + 12N4−a
3∗

(a− 1)(a− 2)(a + 1)N3∗ + [1− a(a− 2)(a− 3)N]
(27)

η3 =
−(a− 1)(a− 2)(a− 3)(a + 1)N4

3∗ + a(a3 − 8a2 + 21a− 19)N3
3∗N − 12N4−a

3∗ N
(a− 1)(a− 2)(a + 1)N3∗ + [1− a(a− 2)(a− 3)]N

. (28)

Finally, referring to Equations (8) and (13), the equations for the Mohr envelope corre-
sponding to the above three approximate solutions for N3, i.e., Equations (19), (20) and (24),
take the following form:

τ = σcim
a/1−a
b

Na
3

aNa−1
3 + 2

√
aNa−1

3 + 1 (29)

Thus, substitution of Equations (19), (20) and (24) into Equation (29) yields three new
analytical expressions of the approximate Mohr envelope of the GHB criterion, which
are based on the linear, quadratic and cubic approximations of the Balmer’s equation,
respectively. It is important to note that N3∗ appearing in Equations (19), (20) and (24) is
different from the actual calculated value of N3. As such, unlike in the existing approximate
expressions for the Mohr envelope, there is no restriction here on the range of values of σ3.
Consequently, the predictive abilities of this representation are significantly enhanced. Due
to the nature of the Taylor approximation, it is not difficult to deduce that when the value
of GSI approaches 100, that is, when the strength parameter a approaches 0.5, the newly
proposed approximate Mohr envelopes converge to the exact solution.

3.2. Discussions on the Accuracy of New Formulations of the Mohr Envelope

In this section, the accuracy of the three new approximate Mohr envelopes adopting
Equations (19), (20) and (24), respectively, is investigated. In Figure 3, the approximate
Mohr envelopes are compared with the numerically determined ‘exact’ solutions for the
rock mass with mi = 20, D = 0.0 and five different GSI values, i.e., 20, 40, 60, 180 and 100.
In this figure, the solid lines represent the approximate envelopes, while the dashed lines
are the exact solutions. It should be noted here that the term ‘exact’ refers to the general
analytical form of the Mohr envelope constructed with a numerical solution for N3, viz.
Equation (12), which can be obtained by implementing a suitable numerical algorithm such
as the Newton–Raphson method [32]. The respective Mohr envelopes are normalized by
σci. The approximate curves shown in Figure 3a–c are the plots of the analytical form (29)
with three different approximations for N3s, i.e., Equations (19), (20) and (24), respectively.

Figure 3 clearly shows that the accuracy of the approximate envelope is excellent,
and even the envelopes corresponding to linear approximation (Figure 3a) are difficult
to distinguish from the exact envelopes. On the other hand, in Figure 4 that presents
the approximate Mohr envelopes recently proposed by Lee and Pietruszczak [15] for the
same rock mass conditions as in Figure 3, slight differences between the exact and the
approximate solutions can be seen when GSI ≥ 60.
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In order to understand how the accuracy of the newly proposed approximate Mohr
envelopes varies with the selection of the degree of the Taylor approximation, the percent-
age errors in the shear strength predictions are calculated and the results are compared
with the prediction errors from the corresponding Lee and Pietruszczak’s approximate
Mohr envelopes [15] (Figure 4) in Figure 5. Here, the percentage error is defined as

Percentageerror(%) =

∣∣∣∣τapprox − τexact

τexact

∣∣∣∣× 100 (30)
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Figure 5 clearly shows that the errors in the proposed approximations of the Mohr
envelope decrease with the increase in the normal stress σ, except for a slight increase in
the beginning. Additionally, it is evident that the percentage errors decrease significantly as
the GSI value increases. This tendency is because the greater the normal stress and the GSI
value, the smaller the curvature of the Mohr envelope. A decrease in the curvature implies
that the curve becomes more linear, so that the Taylor polynomial approximation can
produce more accurate results. Another interesting fact is that, contrary to the expectation,
the accuracy of the Mohr envelope based on the quadratic Taylor approximation is slightly
higher than that based on the cubic approximation. This may be due to the fact that the
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geometric shape of the Balmer function of the GHB criterion is more favorable for the
quadratic Taylor approximation. Overall, Figure 5 shows that the accuracy of the three new
representations of the Mohr envelope is much better than that for the Lee and Pietruszczak
envelope [15]. For example, when GSI = 80, the order of percentage error reduction
by the new approach is 7 or more compared with the case of the Lee and Pietruszczak
approach [15]. It can also be seen that the quadratic approximation is slightly better than the
cubic one, although the difference is rather subtle. Thus, among the three forms, it is evident
that the Mohr envelope based on the quadratic approximation of Balmer’s equation, i.e.,
Equation (20), is the best choice when considering both the accuracy and the computational
time, as the latter is directly related to the complexity of the formula involved.

The effect of the value of GSI on the percentage error in the shear strength prediction
by the newly formulated approximate Mohr envelopes is shown in Figure 6. Here, the
assumed rock mass conditions are the same as in Figure 3 and four normal stress intensities,
i.e., σ/σci = 0.2, 0.4, 0.6 and 0.8, are considered. Evidently, for the assumed values of
normal stress, the trends in the variation of the percentage errors with GSI are similar in all
approximate Mohr envelopes. When the value of GSI is very small, the percentage errors
increase, but after reaching the peak, the errors tend to decrease with increasing GSI. Again,
Figure 6 confirms that in the full range of GSI values the new approximate Mohr envelopes
based on the quadratic and cubic Taylor approximations of Balmer’s equation are more
accurate than that based on the linear Taylor approximation.
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4. Limit Equilibrium Analysis of a Slope in GHB Rock Mass

In order to illustrate the proposed formulation, the limit equilibrium analysis of a
rock slope is conducted by employing the contact failure criterion based on the quadratic
approximation of Balmer’s equation, i.e., Equation (29) combined with Equation (20).
It should be emphasized here that the original expression of the GHB criterion, i.e., the
σ1− σ3 relationship, is not suitable for this type of analysis as the equivalent explicit relation
between the shear and the normal stress along the failure surface is not defined. Thus, in
order to address the problem, the representation developed in the current study is required.

4.1. Geometry of Rock Slope Models

Figure 7a,b show the geometric configuration together with the assumed failure
mechanisms. The slope geometry is defined by its height H and the face angle β f . In both
models analyzed here, it is assumed that a vertical tension crack of depth z is embedded at
a distance xc from the crest and the distributed load p acts on the horizontal upper surface
of the slope. Two distinct failure modes are considered involving a planar surface with
the inclination angle βp and a circular failure surface, both passing through the toe of the
slope and the tip of the crack. Given that the coordinates of the crack tip are (x0, y0), the
minimum radius of the circular surface is

rmin =
x2

0 + y2
0

2x0
(31)

The analysis employs the method of slices. For a circular slip surface, αi represents the
inclination of the base segment of the ith slice, whereas the corresponding distance from its
mid-point to the center of rotation is xi = r sin αi.
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4.2. Modified Bishop Approach for the Assessment of Safety Factor

The analysis presented here is conducted using a modified version of Bishop’s simpli-
fied method. This approach is conceptually different from the original one (e.g., [33]). It
invokes the classical framework of limit equilibrium analysis whereby an a priori assump-
tion is made regarding the geometry of the failure surface along which the failure criterion
is satisfied, and the safety factor is assessed by considering the global conditions of equilib-
rium. This is unlike the original Bishop approach in which the assessment of global stability
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is based on the notion of a local safety factor defined to estimate the current/mobilized
shear stress. It is noted that the formulation of the simplified Bishop method, which in-
corporates a nonlinear relation for the safety factor requiring an iterative solver, raises
some concerns. First of all, the assessment of the value of mobilized shear stress based
on the failure condition that is satisfied only at the onset of failure may be questioned. In
fact, prior to failure, the shear stress cannot be perceived as a unique function of normal
stress. In addition, there is no basis for assuming that the local safety factor is constant
within the domain. Given those concerns, the modified approach proposed here is not only
computationally more efficient but also appears to be more rigorous.

For a circular failure surface (Figure 7b), the global safety factor is defined as the ratio
of the moment resisting sliding to the overturning moment, both taken about the center
of rotation. For the entire sliding wedge considered as a free body, the overturning is
triggered by the own weight and the external load p, while the resisting moment is due to
the shear stress distribution along the failure surface. Thus, summing up the contribution
from individual slices, the safety factor (FS) is defined as

FS =
∑ τi b sec αi

∑(wi + pb) sin αi
(32)

where wi is the weight of the slice and τi is the shear stress which, at the inception of the
loss of stability, satisfies the local failure condition τi = τ(σi) as defined by Equation (29).
It should be noted here that for all slices intercepting the slope there is p = 0, as the
distributed load acts only along the horizontal boundary.

The expression for the safety factor, viz. Equation (32), is now supplemented by
considering the equilibrium of an individual slice. Referring again to Figure 7, Vi and Ei are
the shear and normal forces of interaction between the slices. Neglecting now the variation
in shear forces, i.e., taking VLi = VRi as commonly assumed in the Bishop simplified
approach [25], and invoking the force equilibrium in the vertical direction, yields

Wi + pb− σi b− τib tan αi = 0 (33)

Again, since along the rapture surface the failure criterion is said to be satisfied, there is
τi = τ(σi) as stipulated in Equation (29). Thus, given Equation (33), the value of σi for each
slice can be determined, which in turn defines the individual terms in the expression for
the global safety factor (32).

It should be noted that in the original version of the simplified Bishop method, the
equilibrium statement explicitly incorporates a local safety factor, i.e.,

Wi + pb− σi b− 1
FS

τib tan αi = 0 (34)

In this case, the problem becomes nonlinear and the simultaneous Equations (32) and (34)
are solved in an iterative manner. Apparently, in case of a planar failure mode (Figure 7a),
αi in Equations (32)–(34) is replaced by a constant angle βp.

For the circular failure mode, the factor of safety varies with the assumed radius r of
the sliding block. In this case, the determination of FS represents a unimodal optimization
problem for finding the critical radius that minimizes the factor of safety within the interval
rmin ≤ r < ∞. Recall that the minimum radius (rmin) can be calculated by Equation (31).
In this paper, the minimum FS was determined by employing the golden section search
algorithm [34]. In the examples that follow, the proposed approach is named as the modified
Bishop method, while the approach incorporating Equation (34) is referred to by its original
name, i.e., the simplified Bishop method.

4.3. Comparison of Safety Factors Based on the Simplified and Modified Bishop Methods

The simulations have been carried out assuming H = 35 m and β f = 70◦, while the
strength parameters were taken as σci = 20 MPa, mi = 10, D = 0. The unit weight of
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rock was assumed as γ = 26 kPa/m. In the example given here, no distributed load was
considered, i.e., P = 0.

Figure 8 shows the variation in the safety factor as a function of GSI for the slope
models having a 5 m deep tension crack. Two different horizontal positions of the crack,
i.e., (a) xc = 5 m, (b) xc = 10 m, are considered. In the figure, the results obtained by
assuming the plane and circular failure surfaces are presented together for the purpose of
comparison. It is evident that the simplified Bishop method predicts larger FS than the
modified approach. When xc = 10 m and GSI = 40, for example, the safety factors for
circular failure surface are 1.84 with the simplified method and 1.27 with the modified
approach, while the respective factors of safety for a plane failure surface are 1.94 and 1.30.
However, as the GSI value decreases, the difference becomes smaller. This is because the
global FSs from both methods approach unity as the rock mass quality becomes poorer.
Here, it should be noted that both methodologies predict the same condition for the onset
of the loss of stability, i.e., the case when FS = 1. Another interesting feature is that, in the
case of the modified method, there is little change in the safety factor when the GSI value is
between 10 and 50. Thus, the modified method predicts a more conservative safety factor
in a wide range of rock mass quality.
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of depth 5 m located at (a) xc = 5 m and (b) xc = 10 m.

Figure 8 also reveals that the FS for the planar failure is larger than that for the circular
failure, and the difference reduces again as the GSI value decreases. This trend can be
attributed to the fact that the failure surface which yields the minimum FS becomes flatter
as the rock mass properties degrade, cf. Figure 9. However, it should be kept in mind
that these results correspond to an isotropic continuum and are different from the case of
structurally controlled planar sliding commonly occurring in many rock slopes.

Finally, Figure 10 shows the variation in safety factor with the distance (xc) defining
the crack location. The trend is different for both methodologies. It is interesting to note
that for large values of GSI, e.g., GSI = 60, the safety factor based on the simplified method
decreases quite abruptly with increasing value of xc when the crack is near the slope. The
latter is intuitively not correct as it implies that the cracks at locations closer to the crest
result in a more stable configuration. Here, the results based on the modified method
appear to be more consistent.
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4.4. Assessment of the Critical Value of Surface Load

In this section, the critical value of distributed load p, which results in the loss of
stability, was assessed for the same slope geometry as that shown in Figure 8. Since in
this case the solution requires FS = 1, both methodologies yield the same results, while the
modified Bishop method is simpler and computationally more efficient. The latter approach
was implemented here in an iterative manner by adjusting the value of p until the safety
factor became close to 1.

Figure 11 shows the predicted variation in critical load as a function of GSI for two dif-
ferent crack depths, i.e., z = 5 m and 10 m, and two crack locations, i.e., xc = 5 m and
10 m. It is seen that the critical load increases exponentially as the GSI value increases. It
is also evident that the critical load for plane failure is larger than that for circular failure,
which is consistent with the FS calculation results given in Figure 8. Another observation,
which stems from the result shown in Figure 11, is that the critical load increases with
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increasing crack depth. This may be due to the fact that, as the crack depth increases, the
average inclination of the sliding surface decreases, and consequently it becomes more
resistant to failure. To examine the effect of crack depth in more detail, the critical loads
were calculated for four different depths by assuming a circular failure mode (Figure 12).
In this case, it is apparent that the effect of crack depth is less significant when the crack is
located close to the slope, but the influence increases as the position of the vertical crack
moves further away from the slope.
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Finally, Figure 13 shows the geometry of critical failure surfaces associated with the
loss of stability for GSI = 20, 40, 60 and 90. In this case, a 10 m deep vertical crack is assumed
to be present at two locations, i.e., xc = 5 m and 10 m. The results indicate that, in this case,
the influence of GSI value on the shape of the critical surface is not very significant.
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Figure 13. The geometry of the critical circular failure surfaces for four different values of GSI, i.e., 20,
40, 60 and 80; slope model with a 10 m deep crack: (a) xc = 5 m; (b) xc = 10 m.

5. Conclusions

The GHB criterion considers the nonlinearity of the rock mass strength and is ap-
plicable to a broad spectrum of rock masses, from weak to competent ones. However, a
serious disadvantage of this criterion is that when a 6= 0.5, its shear strength–normal stress
relationship, i.e., the Mohr envelope, is not available in the form of an explicit analytical
expression. An alternative to overcome this difficulty is to define the Mohr envelope in
an approximate analytical form. In this paper, a new approximate expression of Mohr
envelope of the GHB criterion, which has much higher accuracy compared to other existing
approaches, was proposed. The idea behind this formulation is to approximate Balmer’s
equation [31], which defines the relationship between normal stress and minor principal
stress at failure, by the Taylor polynomial equations of a finite degree that can be solved
analytically in an explicit form.

At a first glance, the proposed formulation looks similar to that of Lee and Pietruszczak [15]
in that it starts from the approximation of Balmer’s parametric equation which defines the
relationship between the normal stress and the minor principal stress at failure. However,
in the approach pursued here Balmer’s equation is approximated much more accurately by
replacing the power function terms with the finite Taylor series centered at the exact root of
Balmer’s equation for a = 0.5. The accuracy of the resulting approximate Mohr envelopes,
incorporating the Taylor approximation of degree up to 3, was found to be superior to that
of the recently published approximation of Lee and Pietruszczak [15]. Among the three
cases considered, the one based on the quadratic Taylor approximation exhibited the best
accuracy. Due to the mathematical constraints embedded in the Taylor approximation, as
the GSI value approaches 100, the new three approximate Mohr envelopes come close to the
exact Mohr envelope. Moreover, it can be shown that the accuracy of the proposed approach
can be further improved if the solution is expressed in the form of a Coulomb equation
employing the tangential friction angle of the approximate Mohr envelope, although in
this case the resulting equations become algebraically more complicated. More importantly,
since the proposed formulation of the Mohr envelope does not impose any restrictions
on the range of σ3, the high accuracy of the calculated shear strength can be retained
in the whole range of normal stress. Therefore, it is expected that the newly proposed
approximate Mohr envelope can find its applications when assessing the stability in the
vicinity of a rock excavation surface where a relatively high stress gradient can occur.
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As an example of application, the limit equilibrium analysis of a rock slope was
carried out by incorporating the newly derived equation of the Mohr envelope based on
the quadratic Taylor approximation. Two different approaches were considered, viz. the
conventional simplified Bishop method and the modified Bishop method. In the proposed
modified method, the factor of safety for slope failure is calculated in a global sense
with the assumption that the current stress state satisfies the failure condition. The slope
models employed in this study considered a vertical tension crack embedded in the upper
horizontal surface, and the factors of safety have been calculated for varying crack position,
crack depth and GSI value. In addition, the critical value of distributed load causing the
loss of stability has been assessed for different cases. The results of the limit equilibrium
analysis have shown that the factor of safety for plane failure is larger than that for circular
failure. Furthermore, in a good quality rock mass the safety factor is more sensitive to the
value of GSI than in a poor quality rock. Of the two equilibrium methods, the modified
approach has resulted in a lower value of FS. However, the difference in the calculated FSs
became smaller with the decrease in the value of GSI. The analysis has also shown that the
critical magnitude of distributed load triggering the slope failure increases exponentially
with the increase in GSI. However, for a given geometry of vertical crack, the GSI value did
not significantly affect the shape of the critical circular surface. As the crack deepened, the
critical load showed the tendency to increase, and this trend was more pronounced as the
crack moved further away from the slope.

In conclusion, the illustrative examples given here demonstrated that the approximate
equation of the Mohr envelope derived in this study can be conveniently used for stability
analysis of slopes in the GHB rock mass, which is not feasible with the original form of
the GHB criterion. The limit equilibrium analysis incorporated a modified version of the
Bishop method. The latter is simpler and more rigorous than the original approach. Its
implementation is quite straightforward, as it does not involve a nonlinear expression for
the safety factor, and the estimates of stability are more conservative than those obtained
using the conventional methodology.

Finally, it needs to be emphasized that the current study of slope stability is preliminary
and serves mainly as an exploratory example. As mentioned earlier, the analysis employed
a simple failure mechanism involving a circular surface passing through the toe of the
slope and the tip of a pre-existing tension crack. Certainly, a proper verification of the
proposed modified Bishop method requires a more in-depth study incorporating other
failure mechanisms. Thus, even though the predicted basic trends are in line with an
intuitive assessment, the quantitative verification is still required. In addition, some
real case studies involving slope failures in rocks need to be examined to gain more
confidence in the proposed methodology. Such studies are planned to be carried out in
the future. In particular, the use of commercial software, such as FLAC, will be explored
for comparison purposes. In addition, an upper bound limit analysis, incorporating the
proposed approximation to the Mohr envelope, will also be pursued for a class of problems
dealing with assessment of bearing capacity.
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