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Abstract: In this research, the effect of the interelectrode distance (d) in the electrocoagulation (EC)
reactor was studied. The experiments were carried out with varying d in values of 3, 5, and 9 mm
during the treatment of water contaminated with fluoride (F−). The response variables analyzed
were the treatment time necessary to reduce the residual concentration of F− to 1.5 mg L−1, the
number of aluminum hydroxides formed, the potential drop in the reactor terminals, and the electric
power consumption of the reactor. The software FLUENT version 6.3 was employed to simulate the
liquid velocity profiles achieved in the reactor chamber. The results obtained show that the liquid
velocity increases in the interelectrode spaces to 0.48, 0.65, and 0.86 m s−1 for interelectrode distances
of 9, 5, and 3 mm, respectively, which favors not only the formation of flocs but also the elimination
of fluoride. With a shorter interelectrode distance, the EC reactor not only consumes less electrical
energy but also fewer electrodes, and the dispersion of generated flocs in the reactor chamber is major,
which is more important than the quantity of flocs generated in it.

Keywords: electrocoagulation; interelectrode distance; liquid velocity profiles; defluoridation

1. Introduction

Electrocoagulation (EC) is a technique that has been successfully used to treat wastew-
ater [1–8], groundwater [9–15], and drinking water [16,17]. The technique uses a reactor
fed with electric current to produce hydroxides in situ (generally of iron or aluminum) by
the anodic oxidation of these metals in an aqueous medium [18]. The species formed in
the reactor adsorb the contaminants found in the water and are removed by techniques
such as sedimentation and filtration [18,19]. Disadvantages noted for EC reactor operation
are the consumption of electrodes [19,20] and electrical energy [19–21]. The distance be-
tween electrodes is the parameter with the greatest influence on energy consumption [22].
Therefore, this study aims to determine the effect of different distances between electrodes:
the treatment time required to reduce the residual concentration of F− to 1.5 mg L−1 (the
maximum level allowed by the World Health Organization in water intended for human
consumption) [23], the energy and electrode consumption during the treatment time, and
the liquid velocities profiles developed in the EC reactor.

2. Reactions in the Water Defluoridation Process

In the EC process, water defluorination is carried out by the following reactions [2,14,16]:
On the anode:

Al→ Al3+ + 3e− (1)

On the cathode:
3H2O + 3e− → 1.5H2(g) + 3OH− (2)
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Aluminum ions react with the hydroxyl ions produced at the cathode to form alu-
minum hydroxide according to the following reaction [14,16]:

Al3+ + 3OH− → Al(OH)3(s) (3)

The aluminum hydroxides produced are colloidal solids that remove the F− and
precipitate during the process. The reaction that describes the mechanism of F− removal
by flocs Al (OH)3 is an ion exchange reaction [14,16]:

3Al(OH)3 (s) + xF− → 3Al(OH)3−xFx (s) + xOH− (4)

3. Aluminum Hydroxides Generated (w)

The quantity of the aluminum hydroxides generated depends directly on the con-
sumption of the electrodes, which are formed from the dissolution of the electrodes, as
shown in reactions (1)–(3). The following equation is used to calculate the consumption of
electrodes (w) in each water treatment process [1,24]:

w =
ItM
nF

(5)

where (I) is the applied current, (t) is the treatment time, (n) is the number of electrons
transferred, (F) is the Faraday constant, and (M) is the atomic mass of aluminum. According
to this expression, the consumption of the electrodes is directly proportional to the treatment
time and the supplied electric current.

4. Potential Drop on the Terminals (U)

The potential drop on the terminals, or the voltage drop across the reactor, is calculated
using the following formula, disregarding the resistivity of the electrodes [24]:

U = EA + ηA − EC + ηC + d·i·ρ (6)

where (U) is the voltage at the reactor terminals. This is equivalent to the sum of the
individual potential differences involved in the process, as well as the ohmic drop of
the aqueous medium (d·i·ρ), where (d) is the interelectrode distance, (ρ) the electrolyte
resistivity and (i) is the current density, (ηA) and (ηC) are the overpotentials of anode and
cathode, and (EA) and (EC) the thermodynamic potentials. However, this value can be
obtained experimentally by measuring the voltage at the terminal electrodes of the reactor.

5. Electric Power Consumption I

The electrical energy consumed during the EC process is obtained from the potential
drop in the reactor (U), the applied current (I), and the treatment time (t), as indicated in
the following equation [24]:

E = I U t (7)

6. Materials and Methods

The fluoride (F−) water was prepared from a stock solution of sodium fluoride (NaF)
and deionized water with 2.0 mM NaCl to simulate natural water with ionic strength. The
pH value (7.0) was measured with a Hach pH meter.

The F− initial concentration (CF0 = 5 mg L−1) and the samples obtained during the
experimentation were measured using the potentiometric technique, using Orion 9609 ion
selective electrodes. To avoid the interference of other ions during the analysis of fluoride,
a TISAB II ionic strength-adjusting solution was used.

Three batch reactors with a volume of 1 L were used for the experiments, and electrode
racks with vertically oriented rectangular aluminum plates with distances between them of
9, 5, and 3 mm were used. The electrode’s dimensions were 10 × 14 × 0.635 cm in height,
width, and thickness, respectively, and connected in bipolar mode.
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The current density was fixed at 3.0 mAcm−2, employing a variable current source of
0–5 A.

To generate the liquid movement, porous membrane diffusers located at the base of
the reactor insufflated bubbles of approximately 2 mm in diameter at a velocity of 0.3 m s−1

by a flow air pump (Azoo 9500) of 4.0 L min−1 discharge. The distribution of air bubbles
was uniform throughout the reactor chamber, as can be seen in Figure 1.
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Figure 1. Distribution of air bubbles throughout the reactor chamber.

The precipitates obtained in the removal of F− by the EC process were separated from
the treated water by cellulose filter paper with a pore size of 2.5 µm, subsequently dried
for 2 h at 100 ◦C in a Furnace Thermolyne 1500 muffle, and were weighed using an Ohaus
electronic analytical balance.

7. Results and Discussion

Figure 2 shows the effect of the interelectrode distance on the treatment time necessary
to achieve CF = 1.5 mg L−1.
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As shown in Figure 2, the treatment time is precisely adjusted to the ratio y = 0.5x + 0.5.
The shortest treatment time was that corresponding to d = 3, followed by d = 5 and finally
d = 9, with 2, 3, and 5 min, respectively. This is because reactions (3) and (4) are faster,
due to the liquid velocity increases, and greater mass transfer (MT) is achieved in the
reactor chamber. Therefore, it can be established that, with a smaller d, it will have a shorter
treatment time necessary for the formation of aluminum hydroxides, which adsorb the F−

present in the water (according to reactions (3) and (4)). On the other hand, during the
experiments with the shorter d values, not only the turbulence in the interelectrode spaces
but also in the reactor chamber was greater, producing the dispersion of the Al(OH3) flocs
in the reactor chamber and favoring the kinetics of these reactions.

Figure 3 shows the amount of aluminum hydroxides formed (w), obtained at the time
of the treatment required to achieve a concentration of 1.5 mg L−1 of F− in the treated
water as a function of the interelectrode distance d.
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treat F− contaminated water.

As shown in Figure 3, the increase in formed aluminum hydroxides is almost linear
with d. The interelectrode distance with the lowest amount of aluminum hydroxides
formed was that corresponding to d = 3 mm, followed by d = 5 mm and finally d = 9 mm,
with 18.5, 28, and 46 g m−3, respectively. This is because reactions (1) and (2) are carried out
instantaneously; however, the reactions (3) and (4) take more time due to their dependence
on the MT. Due to the above, the influence of contaminant adsorption depends strongly
on the dispersion of the flocs generated in the reactor in comparison to the amount of
them. Therefore, the dispersion of Al(OH3) flocs generated in the reactor chamber is more
important than the amount generated in the chamber.

Figure 4 shows the effect of the interelectrode distance on the potential drop at the
terminal electrodes at the time of treatment in which an F− = 1.5 mg L−1 concentration
was achieved.
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Figure 4 shows the following: the voltage drop in the reactor increases approximately
linearly with the increase in the electrode distance. This tendency can be explained in
terms of Equation (6) presented above, which indicates that U depends directly on the
interelectrode distance.

Figure 5 shows the effect of the interelectrode distance in the energy electric power
consumption (E) required to achieve an F− concentration of 1.5 mg L−1 in the treated water.
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In Figure 5, the increase in the electricity consumption is not only directly propor-
tional to the interelectrode distance but also to the treatment time, which is consistent with
Equations (6) and (7) previously presented. It is also observed that this increase is approx-
imately linear. It should be noted that this energy consumption involves that consumed
by the reactor and by the air pump used to produce the movement of the liquid (3 watts
per hour).
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8. Simulation of the Developed Velocity Profiles

To visualize and numerically determine the velocity profiles achieved by the liquid
inside the EC reactor at different interelectrode distances, the software FLUENT version 6.3
was employed. The software supports the numerical simulations by the Reynolds Stress
Equation model (RSM), analyzing the flow and trajectory of the liquid. The simulation
validates the water’s velocity profiles inside of the electrocoagulation reactor for different
interelectrode distances, considering a steady state. The input parameters were water
velocity, density, and viscosity; walls and electrodes were considered as solid materials.

Figure 6 shows the simulation results of the axial velocity profiles developed by the
water inside the reaction chamber when the interelectrode distances are: (a) 3 mm, (b) 5 mm,
and (c) 9 mm.
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As can be seen in Figure 6a–c, in which the white rectangles simulate the electrodes
and the colors, the liquid motion. The initial and final velocity of the liquid moving through
the reactor chamber is 0.3 ms−1, the liquid velocity at the inferior and superior base of the
electrodes is 0 ms−1, and the velocity component of the liquid is faster in the interelectrode
spaces. The initial velocity increases within the interelectrode spaces to approximately 0.48,
0.65, and 0.95 ms−1 for interelectrode distances of 9, 5, and 3 mm, respectively. Therefore,
it can be established that the movement of the species participating in the EC process
(reaction (1)–(4)) is faster when d decreases, due to the velocity component of the liquid
through the reactor chamber directly influencing the mass transfer of the process. These
results show that the interelectrode distance has great importance not only in the formation
velocity of flocs (AlOH3) but also in the fluoride removal by them.

Figure 7 shows the maximum liquid velocity (Vmax) reached within the individual
cells as a function of the interelectrode distance value.



Sustainability 2022, 14, 12096 7 of 8Sustainability 2022, 14, x FOR PEER REVIEW 8 of 9 
 

 
Figure 7. Maximum liquid velocity (Vmax) reached within the individual cells as a function of the 
value of the interelectrode distance. 

Figure 7 shows the following, Vmax decreases as the value of d increases, from 0.86 
m s−1 for d = 3 mm, to 0.48 m s−1 for d = 9 mm, which directly influences the mass transfer 
of the reactor, which represents the movement of the species participating in the EC pro-
cess (reactions (1)–(4)). It is also observed that the values of Vmax are adjusted precisely 
to a logarithmic line (R2 = 0.9898) with the relation, Vmax = −0.344ln(x) + 1.2266. 

9. Conclusions 
The liquid velocity in the reaction chamber increases as the interelectrode distance 

decreases, achieving a greater mass transfer in the EC reactor. The interelectrode distance 
has great importance not only in the formation velocity of flocs (AlOH3) but also in the 
fluoride removal by them. With shorter interelectrode distance, the EC reactor not only 
consumes less electrical energy but also fewer electrodes, and the dispersion of generated 
flocs in the reactor chamber is major. The dispersion of generated flocs Al(OH3) in the 
reactor chamber is more important than the amount of flocs generated. 

Author Contributions: Conceptualization, J.F.M.-V., J.G.-C. and N.A.R.-R.; Data curation, J.F.M.-V. 
and O.G.-C.; Formal analysis, J.F.M.-V., J.S.G.-V. and O.G.-C.; Funding acquisition, C.R.M.-V.; In-
vestigation, F.C.-R. and C.R.M.-V.; Methodology, J.S.G.-V., N.A.R.-R. and O.G.-C.; Resources, 
J.C.O.-C. and F.C.-R.; Supervision, J.C.O.-C., F.C.-R. and J.G.-C.; Validation, J.C.O.-C., J.G.-C. and 
C.R.M.-V.; Visualization, J.C.O.-C. and N.A.R.-R.; Writing—original draft, J.F.M.-V. and C.R.M.-V.; 
Writing—review & editing, J.S.G.-V. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: The data and methods used in the research are presented in sufficient 
detail in the document for other researchers to replicate the work. 

Acknowlegments: The authors gratefully acknowledge the financial support of PRODEP and 
CONACYT Mexico. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 7. Maximum liquid velocity (Vmax) reached within the individual cells as a function of the
value of the interelectrode distance.

Figure 7 shows the following, Vmax decreases as the value of d increases, from
0.86 m s−1 for d = 3 mm, to 0.48 m s−1 for d = 9 mm, which directly influences the mass
transfer of the reactor, which represents the movement of the species participating in the
EC process (reactions (1)–(4)). It is also observed that the values of Vmax are adjusted
precisely to a logarithmic line (R2 = 0.9898) with the relation, Vmax = −0.344ln(x) + 1.2266.

9. Conclusions

The liquid velocity in the reaction chamber increases as the interelectrode distance
decreases, achieving a greater mass transfer in the EC reactor. The interelectrode distance
has great importance not only in the formation velocity of flocs (AlOH3) but also in the
fluoride removal by them. With shorter interelectrode distance, the EC reactor not only
consumes less electrical energy but also fewer electrodes, and the dispersion of generated
flocs in the reactor chamber is major. The dispersion of generated flocs Al(OH3) in the
reactor chamber is more important than the amount of flocs generated.
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