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Abstract: Tire–pavement interaction noise (TPIN) accounts mainly for traffic noise, a sensitive
parameter affecting the eco-based maintenance decision outcome. Consistent methods or metrics for
lab and field pavement texture evaluation are lacking. TPIN prediction based on pavement structural
and material characteristics is not yet available. This paper used 3D point cloud data scanned from
specimens and road pavement to conduct correlation and clustering analysis based on representative
3D texture metrics. We conducted an influence analysis to exclude macroscope pavement detection
metrics and macro deformation metrics’ effects (international roughness index, IRI, and mean profile
depth, MPD). The cluster analysis results verified the feasibility of texture metrics for evaluating lab
and field pavement wear, differentiating the wear states. TPIN prediction accuracy based on texture
indicators was high (R2 = 0.9958), implying that it is feasible to predict the TPIN level using 3D texture
metrics. The effects of pavement texture changes on TPIN can be simulated by laboratory wear.

Keywords: traffic noise; tire–pavement interaction noise (TPIN); texture metrics; clustering;
machine-learning-based prediction

1. Introduction

Traffic noise accounts for about 70% of the total environmental noise, and road noise
accounts for about 80% of the traffic noise [1]. The noise level was found to be the most
sensitive parameter affecting the road management decision outcome, compared to other
metrics, through sensitivity analysis [2]. The traffic noise pollution is more severe during
the off-peak hours than the rush hours, resulting from the increase in speed and traffic
volume of the traffic flow [3]. We should be more concerned about the relative high-speed
free-flow situation. The pavement condition index has a negative impact on noise for all
types of intersections, and the effect of pavement surface conditions is noticeable once
the traffic speed is high [4]. Cao et al. (2020) used a sustainable multiobjective decision
support system to maintain the low-noise functionality of porous pavement networks and
found that the largest average noise reduction was always accompanied by the highest
costs and GHG emissions from the intervention [5]. The measured noise spectra had
a similar distribution, and both spectra indicated a significant reduction of noise with
microsurfacing application [6]. To better plan road maintenance based on ecological costs,
we must find a simple method suitable for laboratory studies and field noise prediction.
For properly maintained automobiles and trucks, the tire–pavement intersection noise
(TPIN) is the dominant sub-resource of highway traffic noise at speeds above 50 km/h and
slightly higher for trucks [7]. When pavement wavelength spectra are transformed into
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the frequency domain considering vehicle speed and hearing sensitivity, the contribution
of texture to noise becomes apparent. However, data to define quantitative functional
relationships are not currently available [8]. The first components of the cepstrum in the
frequency band of 3 to 5 kHz have a high correlation with macrotexture, but only a narrow
range can be monitored via TPIN sensors [9,10]. Macrotexture profiling has been correlated
highly with the acoustic properties of asphalt pavements [11].

For the lab test of TPIN, the tire roll-off (TR) method was developed to quantify the
TPIN pressure spectrum at low speeds [12]. However, low speed limits TR’s use conditions.
A circular specimen holder track facility (called HTP2) was developed to measure TPIN
at higher speeds (70 km/h, eventually 100 km/h), and the feasibility of this method was
verified based on eight different pavement surface types [13]. The lab types of equipment
are expensive, and the equipment’s quality may change the tire’s vibration characteristics.
For the field test, the advantage of the tire/vehicle exterior noise measurements using
onboard techniques is that the noise components other than tire noise are basically excluded
or can be ignored [14].

A model for predicting TPIN of porous asphalt mixes based on macroscopic texture
index was proposed, and the model’s validity was verified using TR tests [15]. According
to the grey relational analysis, air void content is the most crucial factor affecting the noise
reduction performance of asphalt pavements, followed by surface texture [16]. Normal
maximum aggregate size, Bailey metrics control texture, and volumetrics can help designers
choose the suitable gradation to accomplish the noise target [17]. PPM was found to have
greater acoustic absorption capacity than OGFC, especially for tire vibration noise, as
measured by BPN and noise meter [18]. A higher air void content and larger nominal
aggregate size lead to better sound absorption [19]. However, acoustic absorption cannot
be considered a TPIN reduction mechanism in certain types of pavements [20]. Higher
pavement texture levels could enhance skid resistance and reduce noise simultaneously at
different frequency bands [21]. The simulation results of traffic noise in the laboratory show
that A-weighted 1/3 octave OASPL of the intermediate-frequency band (200–1600 Hz) is
the highest, while the low-frequency band (20–160 Hz) is the lowest [22]. Above all, most
studies on the relationship between texture features and noise are based on lab simulations.
However, the texture features of specimens differ significantly from those of the actual
pavements [23], limiting the application of the research findings.

TPIN is not just related to macrotexture amplitude (MPD); other pavement charac-
teristics are involved in its generation, and sections with higher MPD values are not the
noisiest sections [24]. Loopway CPX-based experiments found that the noise level increases
with increasing macrotexture depth and decreases with decreasing porosity of the surface
mixture, but both are velocity-dependent [25]. TPIN dominates for passenger vehicles
above 40 km/h, and 70 km/h for trucks [26]. The trend of TPIN control might not only
focus on reducing the noise level and tuning the spectral shape [27]. The overpressure
reached during the contact increases with the volume variation of the cavity and the rolling
speed [28]. The FEM-BEM method for predicting sound pressure was satisfactory in demon-
strating TPIN trends for different pavement surface characteristics, and the texture level
is positively related to TPIN [29]. Based on 64 test sections with 18 mix volume design
parameters without texture metrics, the highest R-squared for CPX80 (TPIN detected by
CPX at 80 km/h) prediction was only 0.59 [30]. Vehicle type and driving speed are im-
portant factors affecting the vehicle noise spectrum [31]. Cao et al. (2020) built ANN and
SVM models for CPX noise prediction based on collected data (surface thickness, binder
content, maximum aggregate size, air void content, pavement age, and vehicle speed) from
270 asphalt pavement sections in Hong Kong, and it was found that the rate of acoustic
change varied over a range rather than remaining a constant value, depending on the pave-
ment age and vehicle speed level [32]. The two-dimensional (fractal) method is most useful
in distinguishing freshly laid pavements, but the sensitivity is reduced in moderate-wear
classes [33]. There is a lack of consistent methods or metrics that can be used for lab and
field pavement texture evaluation or TPIN prediction.
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Three-dimensional pavement texture metrics have higher correlation coefficients with
TPIN than 2D metrics [21]. A commercial 3D laser scanner can accurately reflect the 3D
features of pavement macrotexture by comparing four pavement surfaces of different
gradations [34]. The RMSR and the MTD obtained by the close-range photogrammetry
system can generally achieve the same accuracy level as the laser measurement method [35].
The results of ITAM correlate well with those of SLP [36], SPM, and HFT [37]. The pro-
cessed point cloud data could precisely characterize the actual pavement macrotexture [38].
Weng et al. (2022) applied image-based multiscale features for texture depth estimation,
and the random forest model yielded the best results (cross-fold validation R2 = 0.8192) [39].
A 3D model generated by close-range photogrammetry was compared to the model devel-
oped by a laser scanner, and the average error was found to be 4.2% [40]. The advantage of
the tire/vehicle exterior noise measurements using onboard techniques is that the noise
components other than tire noise are excluded or can be ignored [26]. Based on the analysis
of the physical mechanisms, it was found that the dominant direction of TPIN is the rear
side of the tire (the opposite direction of travel) [14]. Therefore, we chose a microphone
sensing device mounted in the opposite direction for TPIN measurement and a close-range
3D camera to collect texture data. Lab and field pavement texture data and typical TPIN on
site were obtained to find a feasible method for the TPIN lab and field integration study.

2. Methodology
2.1. The Framework of This Study

Figure 1 shows the framework of our study. Firstly, the point cloud data of pavement
texture and mixture specimens were obtained using a close-range 3D camera; secondly, we
collected TPIN data on general wear and worn roads at car-free campuses. For subsequent
studies, representative 3D texture metrics were selected based on Spearman correlation
analysis. Mix specimens of different types and abrasion levels were mixed with the
measured pavement texture data to conduct a clustering analysis to confirm the lab and
field versatility of indicators. TPIN prediction models based on the texture metrics selected
were established to verify the feasibility of the estimation method.
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Figure 1. The framework of our study.

2.2. Data Acquisition and Processing
2.2.1. Texture Data Collection

To collect texture data, we used the Gocator high-speed 3D laser contour sensor with
a maximum field of view (FOV) of 365 mm and 1280 laser line contour points. For the
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field test, the resolution in the x-direction was 0.171 mm, the resolution in the y-direction
was 0.116 mm, the resolution in the z-direction was 0.013 mm, and the set motion speed
in the y-direction was 50 mm/s. For the lab test, the resolution of laboratory specimens
was 0.150–0.181 mm in the x-direction, 0.116–0.188 mm in the y-direction, and 0.0034 mm
in the z-direction. The same size of 689 rows and 129 columns were used to calculate the
texture metrics.

2.2.2. Texture Data Preprocess Method

After scanning, texture data were preprocessed by data standardization to remove the
data with large amounts of missing values at the edges and form a uniform size sample.
The effect of road slope on the data was modified by the least squares method according to
ISO Standard No. 13473-4 [41]. For missing internal values, the linear interpolation method
was used to fill these. The data preprocess method was proven suitable for field [22] and
lab [20] data.

The data before and after preprocessing are shown in Figures 2 and 3.
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2.2.3. Texture Metrics Calculation

The texture data were calculated based on texture separation. Fourteen metrics were
chosen, including power spectral density function integration of microtexture (WT), power
spectral density function integration of macrotexture (HT), energy (ENE), contrast (CON),
entropy (ENT), ENE of macrotexture (HENE), CON of macrotexture (HCON), ENT of
macrotexture (HENT), ENE of microtexture (WENE), CON of microtexture (WCON), ENT of
microtexture (WENT), fractal dimension (D), D of macrotexture (HD), and D of microtexture
(WD). The calculation methods were according to our previous study [22].

2.2.4. TPIN Data Collection and Data Representation Analysis

The data collected were the microphone signal voltage values, and the sound pressure
was converted to 50 mv/Pa according to the microphone’s sensitivity. The noise data of
each texture data collection location were calculated by Equation (1):

Ni =
v

0.02
× i (1)

where Ni is the noise corresponding to the texture data at point i, V is the vehicle speed,
0.02 is the noise acquisition period, and i is the texture position of the i-th point.

Limited by the distance of the tested section, the acceleration, and the deceleration
behaviors during the test, we selected data that were less affected by accelerating and
had a more significant gain according to the data characteristics to carry out the TPIN
study. The relationship between the instantaneous vehicle speed and TPIN data at the
corresponding location was analyzed by box plot. The influences of factors other than
texture were determined by relation analysis of IRI, macroscopic profile depth (MPD), and
TPIN values.

2.3. Texture Metrics Selection
2.3.1. Texture Metrics Selection by Correlation Analysis

To further reduce the data of texture feature indicators and remove redundant indi-
cators, the correlation analysis of all texture indicators was performed by the Spearman
correlation coefficients that applied to data not strictly conforming to the normal distri-
bution. Metrics of additional specimens before and after abrasion of fine-grained asphalt
mixes with the same maximum nominal particle size as the field pavements were included.

The Spearman coefficient is a nonparametric measure of the dependence of two
variables, which can be calculated by Equation (2):

rs = 1− 6 ∑ di
2

n(n2 − 1)
, (2)

where n denotes the number of data, and di denotes the difference between the two metrics.

2.3.2. Application Validation of Texture Metrics Based on Clustering

The K-means algorithm [42] calculated the distance between sample points and the
cluster center of mass. The sample points close to the cluster center of mass are classified
into the same class of clusters. The more distant the two samples are, the less similar they
are. Euclidean distance was used in this study, and its calculation formula is as follows (3):

ρ =

√√√√ 6

∑
i=1

(xi − xi0)
2 (3)

where xi is the i-th metric’s value, and xi0 is the i-th metric’s cluster center value.
The internal metrics, including (CH), Davies–Bouldin index (DBI), and silhouette

coefficient (SC), were used to carry out the basic unsupervised clustering effect evaluation.
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The external metrics, including purity, Rand index (RI), and mutual information entropy
(MI), were used to evaluate the classification effect.

Calinski–Harabasz (CH) is obtained from the ratio of separation to tightness. Thereby,
a larger CH represents a tighter class and a more dispersed class. The calculation method is
shown in (4):

CH = trBktr(Wk)m− kk− 1CH =
tr(Bk)

tr(Wk)

m− k
k− 1

(4)

where tr is the trace of the matrix, Bk is the covariance matrix between categories, Wk is the
covariance matrix of the data within categories, m is the number of samples in the training
set, and k is the number of categories.

DBI measures the ratio of the intracluster distance to the intercluster distance after any
two clusters [43]. The smaller the index, the smaller the intracluster distance and the higher
the intracluster similarity. The larger the intercluster distance, the lower the intercluster
similarity. Its calculation formula is (5).

DBI =
1
n

n

∑
i=1

max(i 6=j)

(
Si + Sj

Mij

)
(5)

where n is the clustering number, Si is the distance between data in class i and cluster
centroid, Sj is the distance between data in class j and cluster centroid, and Mij is the
distance between the cluster centres of class i and j.

SC is the average of all the sample silhouette coefficients [44]. The range of SC is
[−1, 1], and the more similar the distance between samples of the same category and the
more distant the distance between samples of different categories, the higher the score. Its
calculation formula is (6):

SC =
1
n ∑n

i=1

Si − Sj

maxMij
(6)

RI takes values in the range of [0, 1], and a larger value means that the clustering
results match the actual situation, which is calculated by Equation (7) [45].

RI =
a + b

C2
n

(7)

where a is the right logarithms of real labels and clustering results of homogeneous elements,
b is the logarithms of real labels and clustering results of homogeneous elements, and n is
the total number of instances.

MI measures the average uncertainty of information, nonnegativity. The range of MI is
[0, 1] and a larger value means that the clustering results match the actual situation, which
is calculated by Equation (8) [46].

MI(U, V) =
R

∑
i=1

C

∑
j=1

Pi,j log

(
Pi,j

Pi × Pj

)
(8)

where R is the number of categories of the prediction tag U, C is the category number of
the real label V, Pi is the proportion of the number of i-th type data to the total data, and Pj
is the proportion of the number of j-th type data to the number of total data.

2.4. Prediction Methods of TPIN

According to the verification of the feather selection method for machine-learning-
based prediction [47], the mean decrease impurity (MDI) [48] was used to reduce the
number of indicators used for prediction. Random forest (RF), gradient-boosted decision
tree (GBDT), and SVM (poly) models were used for this study. Coefficient of determination
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(R2), mean square error (MSE), and mean absolute percentage error (MAPE) were used to
evaluate the prediction effects. The calculation methods are shown in Equations (9)–(11).

R2 = 1− ∑n
i=1
(
Yi − Ŷi

)2

∑n
i=1
(
Yi −Yi

)2 (9)

RMSE =

√
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (10)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (11)

where Yi is the actual value of TPIN, n is the sample size of Yi, Ŷi is the prediction value of
TPIN, and Yi is the mean of the actual TPIN values.

3. Results and Discussion
3.1. Section Selection Based on TPIN and Pavement Performance Detection Data

The box pattern based on the speed interval is drawn to analyze the influence of
the instantaneous speed on TPIN (2393 samples), as shown in Figure 4, the points of
the triangle represent abnormal deviations based on the statistical characteristics of the
pavement texture conforming to a normal distribution.
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As can be seen from Figure 4, when the speed reaches 65 km/h or above, the TPIN
test results are relatively stable, and the higher the speed, the stronger the differentiation.
Pavement Sections 1–3 with enough data were chosen for further study, and TPIN data at
speeds of 75~80 km/h were selected as the prediction goals.

The correlations of IRI, MPD, and TPIN data are shown in Figure 5.
Figure 5 shows that IRI has almost no effect when the speed reaches about 80 km/h,

and MPD has a certain influence. For the test results at the speed of 70 km/h, the influence
of IRI increases slightly, but the influences of both MPD and IRI are weak. The statistically
insignificant impact of IRI has also been proved by a multilevel Bayesian analysis of full-
scale track testing data [25]. The results show that the influence of macroscopic indicators
on TPIN can be ignored for the selected wear sections, and the analysis can be concentrated
on texture metrics.
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3.2. Spearman Correlation Analysis Results of Texture Metrics

The Spearman correlation coefficient results are shown in Figure 6.
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It can be seen from Figure 6 that the correlation between the PSD indicators of macro-
texture and microtexture is high (0.84). Since the PSD calculation requires selecting the
frequency domain range, both HD and WD are retained for subsequent studies. Under the
grey level co-occurrence matrix (GLCM) index system, the correlation between ENT and
HENT reaches 0.99, the correlation between ENE and ENT reaches 0.96, the correlation
between HENE and HCON reaches −0.98, the correlation between CON and ENE reaches
−0.91, and the correlation between HCON and HENE reaches −0.98. Under the fractal
dimension index system, the correlation between the total fractal dimension and the fractal
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dimension that distinguishes macrotexture and microtexture is very high, so only the fractal
dimension (D) was chosen to represent this index system among these three.

Above all, there are a large number of redundant metrics. According to the correlation
magnitude between the metrics and the actual physical meaning of these metrics, HT, WT,
CON, HENT, WENT, and D were selected for the follow-up study.

3.3. Clustering Results
3.3.1. The Internal Clustering Evaluation Results

The internal evaluation results of clustering are shown in Table 1.

Table 1. Flustering model evaluation based on the internal metrics.

Data K CH DBI SC

Field and Lab
2 363.3304 0.4447 0.82252
3 372.1617 0.5443 0.6967
4 483.8602 0.4473 0.7765

Field
2 350.8164 0.3385 0.8969
3 335.7978 0.4866 0.8220
4 476.5886 0.5122 0.8076

Lab

2 68.6601 0.5620 0.6977
3 184.5086 0.3553 0.8225
4 196.5702 0.5417 0.7037
5 300.9437 0.4385 0.7904

As seen in Table 1, the SC clustering scores were high overall, and the CH index
showed that the clustering results of field data were generally better than those of lab
tests. This is due to the relatively high variability of the data from the smaller amount
of specimens.

For field data, classification into two categories shows the best results, but the actual
class number is three. This may be due to the discontinuity of the data, two types of
pavement textures closer to each other, and another type more different from them. For
laboratory data, classification into three categories is the best. The CH values for the labora-
tory data are positively correlated with the number of categories and are not informative.
In the case of mixed field and lab test data, classification into four categories performs best,
implying that the field and laboratory categories are well matched.

3.3.2. The External Clustering Evaluation Results

Based on the TPIN levels of the road, the pavements were divided into three categories,
and the specimens were divided into four categories based on the specimen type and
load conditions.

The classification and clustering results are shown in Appendix A (Tables A1–A3).
The external evaluation results of clustering are shown in Table 2.

Table 2. External evaluation results of clustering analysis.

Data K RI MI Purity

Field and Lab
2 0.6125 0.4870 0.4059
3 0.6715 0.4788 0.3762
4 0.7366 0.6250 0.4653

Field
2 0.7332 0.4712 0.6507
3 0.7639 0.5324 0.7460
4 0.7363 0.5534 0.7460

Lab

2 0.5348 0.2802 0.4474
3 0.6984 0.5520 0.5263
4 0.7311 0.6209 0.5526
5 0.7340 0.7492 0.5789
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As can be seen in Table 2, the overall external evaluation results are generally consistent
with the internal evaluation indicators. The classification effect of the laboratory data is
worse compared to field data, partly because the sample of laboratory data is small and
partly because the classification of laboratory data based on loading conditions has certain
shortcomings. The field data still showed the best results for the three classes, consistent
with the internal evaluation results. SVM classification of six uniformly nonporous asphalt
pavements with different macrotextures using TPIN data demonstrates the method’s
feasibility from another perspective [10]. For K = 4, the laboratory data could match the
actual pavement data best.

3.3.3. The Clustering Results Analysis

The clustering results and the metrics involved for field and lab data are shown in
Figures 7–9. The Arabic data in the legend correspond to the K values of clustering, and
the hollow symbols correspond to the artificially specified objective classification.
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As seen in Figure 7, the attempt to distinguish between the two types of divisions does
not work well. There is a mixed grouping of lab and field test results. This is mainly due to
the effect produced by abrasion, making the specimens similar to the actual pavement.

Figure 8 shows that the actual pavements match well with the clustering results.
However, the texture metrics of the roads are not continuous; Sections 1 and 2 are similar,
and Section 3 is more differentiated from Sections 1 and 2. The lab classification of three
categories is better than the two categories. This may be due to the inability of the two
classification categories to match the specimen’s interval of texture characteristics.

Figure 9 shows that the clustering based on the four categories has an additional
category of data with a low match to the actual road, representing a situation where the
actual test road failed to match certain laboratory test specimens.
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Comparing the metrics used (Figures 7–9), we find that the clustering results are
almost chaotic regarding the distribution of HT values; D and WT perform better. Effective
complementarity can be achieved among GLCM metrics.
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3.4. TPIN Prediction Results

The MDIs are sorted and shown in Figure 10.
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Figure 10. The MDIs of the six indicators.

As seen in Figure 10, the top three indicators are D, WT, and WENT, which are consis-
tent with the numerical concentration of indicators for the same road sections, implying that
these metrics are statistically representative. The three metrics (D, WT, and WENT) were
selected for subsequent prediction. Machine learning models, including RF, GBDT, and
SVM methods, were used to predict TPIN at 80 km/h (training: test = 6:4). The prediction
evaluation and the previous research results for comparison are also summarized and
shown in Table 3.

Table 3. Accuracy evaluation of prediction models.

The Prediction Model MAPE MSE R2 Data Description

RF 0.0471 0.0009 0.9797
Field test data of sound pressureGBDT 0.0376 0.0002 0.9958

SVM 0.0824 0.0072 0.8688
F-test results of linear

model [13] / / 0.94 Lab test, low speed (23.9 km/h)

Bayesian multilevel
model [24] / / 0.968 Field test data of sound pressure

As seen in Table 3, the accuracies of GBDT and RF models are acceptable, and GBDT
performs best. The prediction and error plots of GBDT and RF models are shown in
Figures 11 and 12.

As can be seen from Figures 11 and 12, the TPIN prediction accuracies are high, and
the errors are relatively low, which meets the requirements of the TPIN level assessment.
In terms of noise distribution, the higher the TPIN value, the higher the error.
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4. Conclusions

This study used a close-range 3D camera to obtain the point cloud data. The represen-
tative 3D texture metrics were selected based on Spearman correlation analysis. Texture
data from lab and field were mixed to conduct a clustering analysis to determine the
feasibility of using a combination of texture metrics for TPIN level classification. Finally,
TPIN prediction models based on texture metrics selected were established and evaluated.

The contributions of this paper are as follows:

1. A method including preprocessing of 3D cloud data, pavement texture clustering,
and TPIN prediction based on machine learning is proposed to predict TPIN.

2. Macro- and microtexture statistics metrics are feasible for wear lab and field universal
study, and the metrics combined can be used to sort different wear and TPIN levels.

3. The GBDT prediction model with D, WT, and WENT reaches a high accuracy (R2 = 0.9958,
MSE = 0.0002).

As the number of data is small and the types of mixtures are limited, different mixes or
pavement types should be further investigated based on more data. In addition, different
road conditions may have different requirements for data processing, such as interference
with data from larger deformations.
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Appendix A

Table A1. Field texture, TPIN data, and clustering results.

Section Class HT WT CON HENT WENT D K = 2 K = 3 K = 4 N80

1 1 140.2518 9737.459 2,190,876 6.365243 5.948285 2.606582 2 3 1 0.6617
1 1 140.5601 9769.212 2,170,543 6.16111 5.935611 2.59399 2 1 2 0.6625
1 1 157.0259 9914.391 2,227,109 6.670939 5.864591 2.61801 1 2 3 0.6712
1 1 130.5765 9755.94 2,140,465 5.688288 5.747524 2.592336 2 1 4 0.6646
1 1 154.7143 9895.534 2,228,456 6.62285 5.983071 2.615811 1 2 3 0.6735
1 1 170.6463 9997.196 2,215,659 6.59751 5.930476 2.630418 1 3 1 0.6767
1 1 160.6162 9928.916 2,225,385 6.678157 5.926658 2.613039 1 2 3 0.6786
1 1 164.9753 9929.28 2,228,794 6.709074 5.944194 2.626497 1 2 3 0.6834
1 1 162.6561 9961.723 2,236,390 6.809056 5.723936 2.629737 1 2 3 0.6882
1 1 157.0566 9882.437 2,227,350 6.778483 5.965392 2.626263 1 2 3 0.6889
1 1 164.066 9922.555 2,240,394 6.815592 5.940327 2.618399 1 2 3 0.6982
1 1 154.3935 9856.267 2,237,931 6.745962 5.964423 2.605496 1 2 3 0.6994
1 1 164.066 9922.555 2,240,394 6.815592 5.940327 2.618399 1 2 3 0.6916
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Table A1. Cont.

Section Class HT WT CON HENT WENT D K = 2 K = 3 K = 4 N80

1 1 156.2884 9897.427 2,227,388 6.637929 5.971619 2.628652 1 2 3 0.7065
1 1 144.0166 9809.265 2,227,559 6.706778 5.95351 2.610949 1 2 3 0.7031
1 1 149.3278 9803.716 2,226,865 6.648029 5.974447 2.611791 1 2 3 0.7108
1 1 144.1535 9764.203 2,215,347 6.537224 5.960762 2.612284 1 3 1 0.7148
1 1 153.7648 9821.965 2,227,550 6.704577 5.952067 2.623179 1 2 3 0.7229
1 1 147.1195 9787.418 2,202,573 6.502314 5.959001 2.622824 1 3 1 0.7258
1 1 151.1389 9825.045 2,215,502 6.580022 5.957422 2.618354 1 3 1 0.7194
1 1 142.8201 9738.662 2,237,826 6.803949 5.951798 2.633391 1 2 3 0.7263
2 2 120.306 9496.202 2,141,056 5.652265 5.836816 2.629105 2 1 4 0.4795
2 2 123.4363 9423.833 2,225,290 6.705251 5.909514 2.66954 1 2 3 0.479
2 2 116.6561 9383.842 2,213,950 6.529906 5.855884 2.656537 1 3 1 0.4733
2 2 125.6373 9429.803 2,227,682 6.631201 5.915074 2.659555 1 2 3 0.4711
2 2 124.2467 9436.715 2,239,266 6.823183 5.940351 2.678627 1 2 3 0.4634
2 2 124.8888 9484.089 2,239,803 6.802336 5.938466 2.664685 1 2 3 0.4757
2 2 114.8213 9401.472 2,202,477 6.388935 5.893785 2.650193 1 3 1 0.4724
2 2 120.5244 9417.797 2,238,557 6.680337 5.941778 2.66832 1 2 3 0.4596
2 2 126.7114 9549.294 2,225,932 6.650289 5.929108 2.657626 1 2 3 0.4744
2 2 126.2311 9498.468 2,215,604 6.571671 5.899318 2.650512 1 3 1 0.4797
2 2 136.9934 9592.793 2,202,028 6.499463 5.952634 2.631535 1 3 1 0.4914
2 2 130.6252 9542.905 2,225,081 6.694389 5.927791 2.649595 1 2 3 0.4874
2 2 131.6491 9576.468 2,226,275 6.685228 5.944888 2.645004 1 2 3 0.4835
2 2 128.2213 9510.897 2,215,332 6.586884 5.930047 2.652833 1 3 1 0.495
2 2 120.996 9395.484 2,213,502 6.621387 5.916992 2.655977 1 3 1 0.4944
2 2 118.0208 9374.048 2,215,721 6.576274 5.885727 2.660711 1 3 1 0.4963
2 2 116.7086 9373.504 2,202,736 6.46337 5.916607 2.656968 1 3 1 0.4943
2 2 118.1459 9336.264 2,213,803 6.566077 5.890992 2.667591 1 3 1 0.5006
2 2 121.5127 9397.591 2,203,390 6.499117 5.904437 2.663514 1 3 1 0.505
2 2 111.4096 9294.882 2,215,074 6.571895 5.920085 2.669541 1 3 1 0.5053
2 2 133.3873 9535.165 2,213,571 6.673446 5.870046 2.675986 1 3 1 0.5055
3 3 118.8022 8190.827 2,170,419 5.838518 5.118374 2.459816 2 1 2 0.1363
3 3 138.5395 8193.125 2,181,998 5.958741 5.42493 2.47402 2 1 2 0.1408
3 3 126.7313 8230.696 2,162,734 5.890374 5.301612 2.471123 2 1 2 0.1409
3 3 103.3065 7897.602 2,162,401 5.715989 5.316755 2.453879 2 1 2 0.1373
3 3 110.7464 8109.603 2,145,140 5.700261 5.280097 2.444492 2 1 4 0.1407
3 3 109.8774 7937.153 2,153,412 5.622871 5.326607 2.449603 2 1 4 0.1367
3 3 124.7071 8001.231 2,170,730 5.863384 5.426774 2.463782 2 1 2 0.1294
3 3 120.4148 7935.903 2,162,511 5.773219 5.429787 2.46034 2 1 2 0.1353
3 3 93.96805 7802.107 2,180,690 5.824387 5.265382 2.463394 2 1 2 0.127
3 3 94.80948 7806.527 2,166,863 5.658132 5.314213 2.459358 2 1 2 0.129
3 3 99.93752 7732.5 2,171,267 5.716613 5.328969 2.463718 2 1 2 0.1253
3 3 102.6348 7834.169 2,138,417 5.480241 5.259559 2.456323 2 1 4 0.1234
3 3 99.65145 7693.064 2,161,535 5.742149 5.268382 2.477157 2 1 2 0.1238
3 3 114.0515 8022.764 2,162,486 5.759748 5.337354 2.451916 2 1 2 0.1269
3 3 133.6847 8192.826 2,153,492 5.814196 5.43795 2.460119 2 1 4 0.126
3 3 99.31789 7972.859 2,153,083 5.743936 5.239729 2.442288 2 1 4 0.1213
3 3 96.88123 7957.785 2,144,846 5.490411 5.253704 2.458167 2 1 4 0.1179
3 3 123.9664 8130.17 2,170,655 5.874836 5.267573 2.472092 2 1 2 0.1181
3 3 127.7747 8133.874 2,162,651 5.777118 5.365302 2.450702 2 1 2 0.1147
3 3 118.9286 7976.812 2,171,025 5.689691 5.532551 2.457837 2 1 2 0.1163
3 3 109.5175 7934.195 2,172,858 5.78724 5.521902 2.467659 2 1 2 0.1127
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Table A2. Clustering results for lab data.

Temperature
(°C)

Load
(kg)

Grid Time
(h)

Mix
Type Class HT WT CON HENT WENT D K = 2 K = 3 K = 4 K = 5

25 100 1 EA10 4 200.1252 9474.22 2,142,466 5.398496 5.661241 2.733111 2 2 3 2
25 100 2 EA10 4 197.8918 9478.957 2,143,549 5.387827 5.710816 2.718602 2 2 3 2
25 100 3 EA10 4 202.5992 9550.427 2,137,786 5.453854 5.628504 2.713419 2 2 3 2
25 100 4 EA10 4 200.4735 9532.335 2,143,087 5.312544 5.547858 2.702988 2 2 3 2
25 100 1 EA10 4 203.5031 9428.059 2,134,256 5.277661 5.598742 2.694699 2 2 3 2
25 100 3 AC10 5 134.4078 8160.089 2,171,093 6.211048 6.047009 2.785007 2 1 4 1
25 100 1 AC10 5 117.052 7656.542 2,186,354 6.126969 6.135854 2.806571 1 1 2 1
25 100 1 AC10 5 125.8476 7895.707 2,190,935 6.371675 6.162665 2.798043 1 1 2 1
25 100 2 AC10 5 139.006 8244.898 2,192,201 6.276161 6.023843 2.775359 1 1 2 1
25 100 4 AC10 5 137.244 8165.502 2,191,308 6.277131 6.015132 2.784678 1 1 2 1
25 50 1 SMA10 6 61.96747 7761.138 2,183,390 5.259744 5.576053 2.748872 1 1 2 1
25 75 1 SMA10 6 80.415 8002.265 2,165,689 5.873896 5.68852 2.756023 2 2 4 1
25 50 2 SMA10 6 65.62519 7783.155 2,186,631 5.268074 5.795175 2.758699 1 1 2 1
25 50 3 SMA10 6 66.72891 7817.642 2,188,823 5.698766 5.696648 2.772231 1 1 2 1
25 75 2 SMA10 6 89.77065 8134.768 2,188,164 5.731191 5.666633 2.742637 1 1 2 1
25 100 1 SMA10 7 68.5346 3916.921 2,226,383 5.874341 5.615758 2.758084 1 3 1 5
25 150 1 SMA10 7 99.11652 8313.325 2,238,468 6.441615 5.832935 2.743714 1 3 1 5
25 50 4 SMA10 7 64.39665 7883.11 2,205,752 5.53187 5.723417 2.746018 1 1 2 4
25 100 2 SMA10 7 73.08235 5278.396 2,231,365 5.970311 5.596111 2.75817 1 3 1 5
25 75 3 SMA10 7 90.20172 8237.601 2,215,546 6.220091 5.689277 2.752201 1 3 1 4
25 75 4 SMA10 7 90.27892 8238.604 2,230,901 6.258402 5.585971 2.734297 1 3 1 5
25 100 3 SMA10 7 74.12594 6561.373 2,229,072 6.0399 5.699512 2.757991 1 3 1 5
25 150 2 SMA10 7 92.34798 8239.015 2,248,238 6.473895 5.791404 2.748601 1 3 1 3
25 100 4 SMA10 7 74.5372 6560.45 2,229,131 6.054549 5.602095 2.75715 1 3 1 5
10 100 1 SMA10 7 85.94515 7801.888 2,207,245 6.066941 5.84916 2.776292 1 1 2 4
40 100 1 SMA10 7 102.0044 8446.173 2,215,685 6.226914 5.630642 2.74203 1 3 1 4
40 100 2 SMA10 7 103.6456 8540.191 2,232,364 6.10359 5.619615 2.722978 1 3 1 5
25 150 3 SMA10 8 97.4696 8329.697 2,239,223 6.441555 5.839455 2.74283 1 3 1 5
25 150 4 SMA10 8 90.91534 8315.082 2,232,870 6.297493 5.864532 2.74015 1 3 1 5
10 100 2 SMA10 8 84.76578 7781.25 2,198,559 5.950772 5.850172 2.777894 1 1 2 4
60 100 1 SMA10 8 91.1343 8198.318 2,174,016 5.724007 5.598527 2.749057 2 1 4 1
10 100 3 SMA10 8 84.99197 7802.974 2,212,197 6.142412 5.848673 2.781691 1 3 1 4
40 100 3 SMA10 8 114.7557 8531.808 2,144,505 5.563857 5.749093 2.710942 2 2 3 2
10 100 4 SMA10 8 89.43663 7839.255 2,223,554 6.173675 5.741891 2.78192 1 3 1 5
40 100 4 SMA10 8 112.0517 8666.278 2,149,006 5.667467 5.753685 2.701373 2 2 3 2
60 100 2 SMA10 8 90.15488 8182.348 2,194,519 5.619295 5.679922 2.738758 1 1 2 1
60 100 3 SMA10 8 77.39062 8219.836 2,179,930 5.749463 5.691116 2.734488 2 1 4 1
60 100 4 SMA10 8 79.05924 8229.404 2,183,417 5.724156 5.529839 2.73144 1 1 2 1
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Table A3. Clustering results for lab and field data.

Sample Number Items Class K = 2 K = 3 K = 4

1 1 1 2 3 3
2 1 1 1 1 4
3 1 1 1 2 4
4 1 1 1 2 4
5 1 1 1 2 4
6 1 1 1 2 2
7 1 1 1 2 2
8 1 1 1 2 2
9 1 1 1 2 2
10 1 1 1 2 2
11 1 1 1 2 2
12 1 1 1 2 2
13 1 1 1 2 2
14 1 1 1 2 2
15 1 1 1 2 2
16 1 1 1 2 2
17 1 1 1 2 2
18 1 1 1 2 2
19 1 1 1 2 2
20 1 1 2 1 1
21 1 1 2 1 1
22 2 2 2 3 3
23 2 2 1 2 4
24 2 2 1 1 4
25 2 2 1 2 4
26 2 2 1 2 4
27 2 2 1 2 4
28 2 2 1 1 4
29 2 2 1 2 4
30 2 2 1 2 4
31 2 2 1 1 4
32 2 2 1 2 4
33 2 2 1 1 4
34 2 2 1 2 4
35 2 2 1 2 2
36 2 2 1 2 2
37 2 2 1 2 2
38 2 2 1 2 2
39 2 2 1 2 2
40 2 2 1 2 2
41 2 2 1 2 2
42 2 2 1 2 2
43 3 3 2 3 1
44 3 3 2 3 3
45 3 3 2 3 3
46 3 3 2 3 3
47 3 3 2 3 1
48 3 3 2 3 1
49 3 3 2 3 3
50 3 3 2 3 1
51 3 3 2 3 3
52 3 3 2 3 3
53 3 3 2 3 1
54 3 3 2 3 1
55 3 3 2 1 1
56 3 3 2 1 1
57 3 3 2 1 1
58 3 3 2 1 1
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Table A3. Cont.

Sample Number Items Class K = 2 K = 3 K = 4

59 3 3 2 3 1
60 3 3 2 1 1
61 3 3 2 1 1
62 3 3 2 1 1
63 3 3 2 1 1
64 EA10 4 2 3 3
65 EA10 4 2 3 3
66 EA10 4 2 3 3
67 EA10 4 2 3 3
68 EA10 4 2 3 3
69 AC10 5 2 1 1
70 AC10 5 2 1 1
71 AC10 5 2 1 1
72 AC10 5 2 1 1
73 AC10 5 2 1 1
74 SMA10 6 2 1 1
75 SMA10 6 2 3 1
76 SMA10 6 2 1 1
77 SMA10 6 2 1 1
78 SMA10 6 2 1 1
79 SMA10 7 1 2 2
80 SMA10 7 1 2 2
81 SMA10 7 1 1 4
82 SMA10 7 1 2 2
83 SMA10 7 1 2 4
84 SMA10 7 1 2 2
85 SMA10 7 1 2 2
86 SMA10 7 1 2 2
87 SMA10 7 1 2 2
88 SMA10 7 1 2 4
89 SMA10 7 1 2 4
90 SMA10 7 1 2 2
91 SMA10 8 1 2 2
92 SMA10 8 1 2 2
93 SMA10 8 1 1 4
94 SMA10 8 2 1 1
95 SMA10 8 1 2 4
96 SMA10 8 2 3 3
97 SMA10 8 1 2 2
98 SMA10 8 2 3 3
99 SMA10 8 1 1 4

100 SMA10 8 2 1 1
101 SMA10 8 2 1 1
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