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Abstract: A large amount of traffic crash investigations have shown that rear-end collisions are
the main type collisions on the freeway. The purpose of this study is to investigate the rear-end
collision risk on the freeway. Firstly, a new framework was proposed to develop the rear-end collision
probability (RCP) model between two vehicles based on Generalized Pareto Distribution (GPD).
Secondly, the freeway rear-end collision risk (F-RCR) was defined as the sum of the rear-end collision
probability of each vehicle and divided into three levels which was high, median, and low rear-end
collision risk. Then, different machine learning algorithms were used to model F-RCR under the
condition of an unbalanced dataset. The result of the RCP model showed continuous change and can
identify the dangerous condition quickly compared to the traditional models even when the speed of
the leading vehicle is faster than the following vehicle. When the vehicle distribution was unbalanced
on road and the speed difference between adjacent lanes and the traffic volume was large, F-RCR
will increase. Multi-Layer Perceptron (MLP) was found to be more suitable for modeling F-RCR.
The framework provided in this research was transferrable and can be used in the freeway proactive
traffic safety management system.

Keywords: rear-end collision probability (RCP); freeway rear-end collision risk (F-RCR); Generalized
Pareto Distribution (GPD) model; machine learning; unbalanced dataset

1. Introduction
1.1. Background

Rear-end crashes account for a considerable portion of total crashes. According to the
data reported, rear-end collisions account for 30–40% of all crashes, making them the most
frequent type of traffic crashes on the freeway [1,2]. Rear-end crash risk has been modelled
and calibrated from various sources of data. Crash data can reveal the frequency and
severity of crashes. However, there are certain drawbacks to using crash data in freeway
safety evaluations. It will take years to obtain enough crash data. The crash data do not
include the events with high collision risk which did not lead to a crash [3]. Furthermore,
the crash data record was mostly about the time, location, casualty, and so on, and the
driving details before the crash were missing.

In contrast, surrogate safety indicator, which is highly related with crash occurrence,
is becoming more and more popular in recent years and can be collected in a short time [4].
Modeling rear-end collisions using surrogate indicator rather than crash data has received
increased attention [5]. Different from the crash-based studies, surrogate safety measures
can also detect the risky condition before a real crash. It was estimated based on the
vehicle’s speed, acceleration, and the spacing between following and leading vehicle.

1.2. Research Gap

Although a lot of research about the surrogate indicator and rear-end collision risk has
been performed in the traffic safety evaluation, there were still some limitations in common,
which could influence the model performance for the practical use.
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For the existing surrogate indicators, the deceleration of the leading vehicle was se-
lected as the maximum deceleration the road surface can provide to calculate the probability
of the rear-end collision, which was inconsistent with the actual situation [6]. The braking
deceleration occurred randomly, and the probability of applying maximum deceleration
was very low.

Compared to the normal traffic flow, traffic crashes were in the minority. The majority
of the traffic flow was safe, which resulted in an unbalanced data set. The unbalanced
classification posed a challenge for the machine learning algorithms. The machine learning
assumed that there was an equal number of examples for each class [7], which may result
in poor predictive performance, specifically for the minority class. As a consequence, it
might lead to coarse conclusions and cannot be used in practical projects.

1.3. Objectives

In order to fulfill the research gap, we first developed the rear-end collision probability
(RCP) model based on the distribution of the deceleration. The sum of the collision
probability of rear-end is defined as the freeway rear-end collision risk (F-RCR) to indicate
the rear-end collision risk of the road. The F-RCR was divided into three classes, which
were the high, median, and low rear-end collision probability. The high F-RCR indicates
high rear-end collision risk on the freeway. Then, different machine learning algorithms
were used to model the F-RCR under the condition of an unbalance dataset. The research
framework is shown in Figure 1.
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The following parts of the paper were divided into six sections. Firstly, previous
studies related to surrogate indicators and traffic flow risk were discussed. Section 3
provides a brief description of the data preparation, followed by a description of the
methodologies. Section 5 presents the modeling result and discussion. Section 6 is the
conclusion of the work. Finally, the limitation and future work were also discussed.

2. Literature Review
2.1. Surrogate Indicator

The surrogate indicators can be divided into four categories, which are time, distance,
deceleration, and others [6]. Time to collision (TTC) is widely used for safety analysis,
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and it is the representative of time indicators. TTC defined as the time that remains until
a collision between two vehicles will occur if the driving direction and speed difference
are maintained. The lower the TTC is, the higher the probability of a collision will be [6].
Based on extensions of the TTC, two new safety indicators, Exposed Time to Collision
(TET) and Time Integrated TTC (TIT), were developed, which can take the full course of
vehicles over space and time into account [8]. Modified time-to-collision (MTTC) was used
to estimate the conflict, and the results showed that estimated conflicts by the MTTC exhibit
significant temporal and spatial correlation with real crashes [9]. The estimated daytime
conflicts were dependent on the traffic volume, and it is not sufficient for night traffic due
to the limitations of MTTC to account for specific parameters such as driver distraction,
drowsiness, and visibility influencing the nighttime crashes [10]. Time to collision with
disturbance (TTCD) was proposed for risk identification. TTCD can capture rear-end
conflict risks in various car following scenarios, even when the leading vehicle had a higher
speed. Risk rate identified by TTCD can achieve a higher Pearson’s correlation coefficient
with rear-end crash rate than other traditional surrogate safety measures [11].

Potential index for collision with urgent deceleration (PICUD) was the representative
of distance indicators. It is defined as the distance between the leading and following
vehicles when the leading vehicle rapidly decelerated and the following vehicle started to
decelerate with a reaction delay time and stopped with urgent deceleration [12]. A negative
PICUD value implied that a crash will be occurred.

Deceleration Rate to Avoid Crash (DRAC) considered the role of speed difference and
decelerations in crash occurrence. It reflected the following vehicle deceleration required to
come to a timely stop or attain a matching lead vehicle speed and hence avoid a rear-end
crash [13]. Crash potential index (CPI) was developed in terms of the probability that a
given vehicle DRAC exceeded its maximum available deceleration rate (MADR) or braking
capability [14]. It was found that the CPI was generally higher for the following heavy
vehicle than the following car due to heavy vehicle’s lower braking capability. CPI was also
validated using the simulated traffic data which replicated the observed traffic conditions a
few minutes before the crash time upstream and downstream of the crash locations [3].

Aggregated Crash Index (ACI) was proposed to measure the crash risk. This indicator
reflected the accommodability of freeway traffic state to a traffic disturbance. The ACI
can evaluate more car-following scenarios than the other surrogates. With a hypothetical
disturbance, the proposed ACI performed well in predicting crash frequencies [15].

2.2. Traffic Flow Risk

The development of methods for real-time traffic flow risk prediction as a function of
current or recent traffic condition is popular in recent years. Different traffic states were
associated with various collision types and injury severities [16,17]. Synchronized flow
and wide moving jam were found to be the most dangerous phases. High density and
low speed were associated with high crash risk [18]. Volume, average speed, congestion
index, and coefficient of variation of speed were also the main variables that affect the risk
of traffic crashes [19].

Rear-end collision risk was mainly used to reflect the safety state between the following
and leading vehicle. When the risk was high, it was more likely to cause a rear-end collision.
Reduced visibility had significant impact on the rear-end collision risk, and it was varied
by the different vehicle types and lanes. The proportion of rear-end collision risk increased
from 28.29% to 61.91% when the fog became dense [20]. Rear-end collision risk was lower
for heavy vehicles than cars in the crash case due to their shorter reaction time and lower
speed when spacing is shorter. However, Meng et al. [21] found that trucks have a much
higher probability of being involved in a rear-end crash than a car at the work zone. For the
rear-end collision situation, as situational urgency increased, drivers released the accelerator
and braked to maximum more quickly [22].

Rear-end collision risk was the typical unbalanced data. Only a few cases were high
rear-end collision risk, most of the time was in low-risk state. Unbalanced data processing
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has always been one of the most important topics in machine learning. Under-sampling
and over-sampling were commonly used to balance the data [7]. The synthetic minority
over-sampling technique (SMOTE) was also used to adjust the imbalanced dataset of crash
and non-crash data [19]. Under-sampled method was used to train the eXtreme Gradient
Boosting model to predict real-time conflict risk [23].

In recent days, new technologies are developing rapidly [24,25]. Machine learning was
widely used in recent years in traffic risk detection. Stochastic Gradient Boosting (SGB),
Multiple Additive Regression Trees (MARTs), and TreeNet were used to analyze crashes
on the mountainous freeway. The overall model identified about 89% of crash cases in the
validation dataset with only 6.5% false positive [26]. Through the literature review, it was
found that Support Vector Machine, Decision Tree, and Random Forest achieved the best
performance in most of the studies presented [24].

3. Data Collection and Accuracy
3.1. Data Collection

The data are crucial to the success of this study. Millimeter wave radar and video
fusion equipment (MVF) is a kind of non-intrusive detection system equipment which
was more and more popular in the newly constructed freeways. Millimeter wave radar is
mainly used for data acquisition, and video is utilized for supplemental verification. To
collect the trajectories of each vehicle, three MVFs with a height of 10 m and an average
interval of 300 m were put on a roadside light pole (See Figure 2).
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Figure 2. Data collection on the experiment road. (a) Experiment road. (b) Millimeter wave radar
and video.

A single MVF can track up to 256 vehicles at the same time, with a data acquisition
every 80 milliseconds. Without the obstruction, the maximum effective tracking distance
is 600 m. Small cars, on the other hand, have a weak detection effect at the far end. Only
data within 300 m of a single MVF was statistically analyzed. The following data was
gathered: time, vehicle ID, coordinates, vehicle type, speed, and lane number. See Table 1
for data examples.

Table 1. Data style collected by the millimeter wave radar and video.

Time Vehicle ID Speed (km/h) Acceleration (m/s2) Horizontal
Coordinates (m)

Longitudinal
Coordinates (m) Lane No. Vehicle Type

00:00:04.714 7161 112.51 −0.5 −3.26 509.09 1 car
00:00:04.714 7158 78.30 −0.1 25.13 757.06 3 Truck
00:00:04.714 7159 73.79 −0.1 13.80 635.40 3 Truck
00:00:04.714 7160 82.82 −0.1 1.74 515.21 2 car
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The length of the experiment road was about 1 km, with 3 lanes and 1 emergency lane.
The lane width was 3.75 m, while the emergency lane was 2.5 m wide. The lane number
was set as lane 1, lane 2, and lane 3 from left to right along the vehicle’s driving direction.
Lanes 1 and 2 were primarily for passenger cars, whereas lane 3 was primarily used by
heavy trucks. The speed limits on this road were 100–120 km/h in lane 1, 80–100 km/h in
lane 2, and 60–100 km/h in lane 3, respectively. An aerial view of the road was shown in
Figure 2a. The daily traffic volume was about 35,000–40,000 vehicles, with passenger cars
accounting for 95% of the total. The data was collected for one month from 7:00 to 20:00
during the daytime.

It should be noted that in this research we focused on the normal traffic state, and the
congestion was not considered. Causes of rear-end crashes during the day and night were
different [27]. Therefore, the night was not taken into account in this study.

3.2. Data Accuracy

The accuracy of radar data was evaluated using Beidou satellite data. The differential
positioning base station was used to improve the positioning accuracy of the Beidou
satellite, which made the positioning accuracy within ±10 cm and the speed accuracy
within ± 0.1 m/s. Figure 3a shows the speed comparison between Beidou and radar. The
accuracy of vehicle speed collected by radar is 99.1%.
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Figure 3b demonstrates the comparison of car following distance between Beidou and
radar in an experiment. The accuracy of car following distance can be as high as 92.1%.
The error was mainly due to the uncertainty of the reflection point of millimeter wave on
the vehicle.

4. Methodology
4.1. Modeling Vehicle Rear-End Collision Probability (RCP)
4.1.1. Vehicle Collision Analysis

Rear-end collisions are the most common type of traffic crashes on the freeway. There-
fore, this study focused on the rear-end collision on the freeway. There are three different
scenarios to discuss. The driving state is shown in Figure 4.
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Case one, the following vehicle collided with the leading vehicle during the reaction
time (t ≤ ∆t), that is,

Vn·t ≥ ∆S + Sn+1 (1)

an+1 ≥ 2(∆S + Vn+1t−Vn·t)/t2 (2)

where Vn is the speed of following vehicle n and t is the time from the beginning of
deceleration of the leading vehicle to collision. ∆t is the reaction time. Vn+1 is the speed
of the leading vehicle n + 1; an is the deceleration of the following vehicle n. an+1 is the
deceleration of the leading vehicle n + 1. ∆S is the following distance between the following
of the vehicle and the leading vehicle when leading vehicle braked; Sn+1 is the distance
traveled by the leading vehicle from the start of braking to the collision.

When the deceleration of the leading vehicle satisfies Equation (2), the following
vehicle will collide with the leading vehicle within the reaction time. In an emergency,
the driver released the accelerator faster and applied the emergency brake. The driver’s
reaction time can be as fast as 1.2 s [28].

Case two, after the reaction time, the following vehicle started to brake, the leading
vehicle was still moving. The following vehicle collided with the leading vehicle.

Vn·∆t + Sn ≥ ∆S + Sn+1 (3)

an+1 ≥ 2[∆S + Vn+1t−Vnt + 0.5an(t− ∆t)2]/t2 (4)

Sn is the distance traveled by the following vehicle after the reaction time when it
collided with the leading vehicle.

When the deceleration of the leading vehicle meets Equation (4), a rear-end collision
will occur. According to the previous study, the free lane changing duration on the freeway
took about 6.09 s [29]. So, t was selected between 1.2 s and 6.0 s in case two. an is the
maximum deceleration provided by the road. The maximum braking deceleration was
different under different weather conditions. Generally, an was usually selected as 0.6 g [6].

Case three, the leading vehicle stopped, and the following vehicle collided with the
leading vehicle, that is t = Vn+1/an+1.

Vn·∆t + Vn(t− ∆t)− 0.5an(t− ∆t)2 ≥ ∆S + Vn+1
2/(2an+1) (5)

an+1 ≥ Vn+1
2/2[Vnt− 0.5an(t− ∆t)2 − ∆S] (6)

Considering the three different scenarios above, the minimum deceleration of the
leading vehicle was shown in Equation (7).

an+1 =


2(∆S + Vn+1t−Vnt)/t2, 0 < t ≤ 1.2s

2
[
∆S + Vn+1t−Vnt + 0.5an(t− ∆t)2

]
/t2, 1.2s < t ≤ 6s

V2
n+1/2

[
Vn∆t− 0.5an(t− ∆t)2 − ∆S

]
, t > 6s

(7)

amin,n+1 is the minimum deceleration an+1 getting from Equation (7). When the
deceleration of a leading vehicle was greater than or equal to amin,n+1, a rear-end collision
would happen.

The probability of deceleration of the leading vehicle greater than or equal to amin,n+1
was the probability of a collision. That is:

P = f (a ≥ amin,n+1) = 1− f (a < amin,n+1) (8)

4.1.2. Generalized Pareto Distribution Model

Extreme-value theory is a popular approach for modeling extreme values, by extracting
observations that exceed a certain threshold. The distribution can be approximated by a
Generalized Pareto Distribution (GPD) model [30,31]. In a range of industries, including
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insurance, flood, finance, energy, rainfall, and other natural phenomena, GPD was often
utilized to model observations that exceeded a specific threshold. The distribution function
of x over a threshold was defined in Equation (9).

G(x; µ, δ, ξ) =

1−
(

1 + ξ
x−µ

σ

)− 1
ξ , ξ 6= 0

1− exp
(
− x−µ

σ

)
, ξ = 0

(9)

ξ is the shape parameter, σ is the scale parameter and µ is the threshold parameter.
The GPD was often used to model the tails of another distribution. In this research, the
GPD model was adopted to model distribution of deceleration.

The probability weighted moment (PWM) method, method of least squares (MLS),
maximum likelihood estimation (MLE) are commonly used to estimate the GPD parame-
ters [32]. Kolmogorov-Smirnov (K-S) was used to test goodness of fit.

The threshold of GPD is important to the distribution. Mean Residual Life Plot and
Hill-Assumption-Based Methods are used to estimate the threshold [33].

In this study, the rear-end collision scenarios were divided into three cases and GPD
was used to model the tail of the deceleration distribution to calculate the RCP. The calcula-
tion process of RCP is as follows.

Step 1: Calculate the minimum deceleration required of the leading vehicle when the
following vehicle collided with the leading vehicle.

Step 2: To obtain the distribution of vehicle deceleration on this road.
Step 3: To calculate the probability of the minimum deceleration. When the decelera-

tion of a leading vehicle was greater than or equal to minimum deceleration, a rear-end
collision would happen.

The framework of RCP model is shown in Figure 5.
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4.2. Modeling Freeway Rear-End Collision Risk (F-RCR)
4.2.1. Classification of F-RCR Based on Fuzzy C-Means (FCM)

The sum of each vehicle’s rear-end collision probability is defined as the freeway
rear-end collision risk (F-RCR) every 100 m in five minutes. That is to say, F-RCR represents
the total value of the rear-end collision probability of all the vehicles on the road within a
time range. The higher the F-RCR, the higher the rear-end risk. The lower the F-RCR, the
lower rear-end risk. Converting the crash risk probability to the crash risk level can directly
judge the status of a crash risk under the current traffic flow condition [34]. A reasonable
F-RCR threshold was critical for the classification of high rear-end collision risk.

In most cases, the samples in the data set cannot be divided into clearly separated
clusters. Compared with K-Means clustering, FCM provides more flexible clustering results.
FCM was originally proposed by Bezdek [35] based on fuzzy factors. Fuzzy C-means (FCM)
is a data clustering technique in which a data set is grouped into N clusters with every
data point in the dataset belonging to every cluster to a certain degree. For example, a
data point that lies close to the center of a cluster will have a high degree of membership
in that cluster. FCM was used to classify the traffic safety status, for example, the driving
risk statuses was grouped into four different levels using FCM which were safe, low-risk,
median-risk and high-risk [36].

4.2.2. Machine Learning Model

In the fields of artificial intelligence and pattern recognition, machine learning is a
major research area. In recent years, the use of machine learning techniques in traffic safety
has been increasing (refer to [24] for details). The F-RCR was modeled in this work using
various machine learning models that took into account the influence of unbalanced data.

The SVM model is a kernel-based classifier and a non-parametric method for solving
classification problems based on statistical learning theory. In multidimensional space, an
SVM model is essentially a representation of distinct classes in a hyperplane. SVM divides
datasets into classes in order to identify the maximum marginal hyperplane. Since the SVM
model has been introduced in many previous research, the details were not repeated in this
paper [37,38].

The Artificial Neural Network is based on brain and nervous system research and aims
to model the behavior of biological systems made up of neurons [24]. Two popular ANNs
were compared, which were Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF)
networks. The MLP can be trained by a back propagation algorithm [36]. The universal
approximation and quicker learning speed of RBF networks set them apart from other
neural networks (refer to [24] for details).

Random forest (RF) is a machine learning technique that is used to solve regression
and classification problems. RF is a combination of tree predictors such that each tree
depends on the values of a random vector sampled independently and with the same
distribution for all trees in the forest [39]. Increasing the number of trees increases the
precision of the outcome. It solves the issue of overfitting in decision trees. RF has been
widely used in the traffic safety research [40] and has been introduced in many previous
research, thus the details were not repeated in this paper.

4.2.3. Macroscopic Traffic Flow Variables

Considering the practicability of the model in the future, 10 different macroscopic
traffic flow variables were selected to model the F-RCR. Speed, volume, vehicle distribution,
and vehicle type were mainly considered. Coefficient of variation of vehicle distribution
(CVVD) showed the vehicle distribution characteristics on the freeway. It was a new
variable which was not considered in the previous studies. The greater the CVVD, the more
uneven the vehicle distribution. Vehicles moving in groups resulted in a greater CVVD.
Every 5 min, macroscopic variables were calculated. Macroscopic traffic flow variables are
shown in Table 2.
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Table 2. Macroscopic traffic flow variables.

No. Variable Type Variable Note

1

Speed

Average speed of all vehicle v5min = 1
n

n
∑

i=1
Vi

2 Average speed of small cars vcar =
1
n

n
∑
i

Vcar

3 Coefficient of variation of speed cvspeed = σspeed/µspeed
4 Speed difference of lane 1 and lane 2 ∆v12 = vlane1 − vlane2
5 Speed difference of lane 2 and lane 3 ∆v23 = vlane2 − vlane3

6
Volume

Volume in 5 min Q5min
7 Volume difference of lane 1 and lane 2 ∆Q12 = Q1 −Q2
8 Volume difference of lane 2 and lane 3 ∆Q23 = Q2 −Q3

9 Vehicle distribution Coefficient of variation of vehicle
distribution (CVVD)

cvq = σvolume/µvolume The number of
arriving vehicles was counted every

minute. Coefficients of variation within
5 min were calculated to reflect vehicle

distribution characteristics.

10 Vehicle Type Proportion of large trucks Ptruck

5. Results and Discussion
5.1. RCP Model
5.1.1. Distribution of Deceleration and Model Results

The vehicle deceleration distribution curve is shown in Figure 6. The maximum
braking deceleration was 5.6 m/s2.
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Figure 6. Vehicle deceleration distribution.

As can be seen from Figure 6, the distribution of deceleration was very concentrated.
About 30.16% of the deceleration was between [−0.1, 0.0] m/s2, and about 95.10% of the
acceleration was between [−1, 0] m/s2. The vehicle was moving at a constant speed with a
small volatility. Only in rare cases does the driver make a significant deceleration.

Based on the distribution of vehicle deceleration, the RCP model was developed using
GPD. The model result was compared to TTC for verification. From Figure 7, it can be seen
that TTC fluctuated violently when the speed of the leading and following vehicle was
close, which cannot truly reflect the dangerous driving state. The RCP model proposed in
this study, on the other hand, had continuous results and can reflect the collision probability
of vehicles in any car following scenario, even when the leading vehicle’s speed was equal
or greater than that of the following vehicle. In consequence, the result of RCP model was
more accurate. Furthermore, in contrast to traditional indications, the rear-end collision
probability predicted in this paper grew rapidly in the unsafe state, enabling for real-time
monitoring of dangerous traffic situations. This demonstrated that the RCP model can be
used to capture rear-end collision risk on freeways.
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Figure 7. Model result comparison between collision probability and TTC for the same car following
scenario.

5.1.2. Model Calibration and Validation

The small car on this road accounted for more than 95% and this study mainly focused
on the collision probability of small cars. For the GPD model, the braking deceleration
threshold of passenger car was 1.0 m/s2, the shape parameters and scale parameters of the
passenger car were 0.0145 and 0.429, respectively. It passed the K-S test.

Naturalistic driving data was used to validate the model. This data was collected for
53 s. The vehicles were small cars. The driving speed was 80–100 km/h, the minimum car
following distance was 16 m, and the maximum speed difference was 15.44 km/h. The
RCP model proposed in this study was compared with TTC in Figure 7.

Only TTC within the range of −20~30 s was shown in Figure 7. As can be seen from
Figure 7, the effects of TTC differed substantially. This was due to the fact that relative
speed had a significant impact on TTC, especially when the two vehicles’ speeds were close.
However, the calculation results of RCP model proposed in this paper varied continuously.
The collision probability decreased gradually in 0–15 s and approached zero in about
15–30 s. Then it increased rapidly between 30 and 38 s during which the speed of the
following vehicle was higher than that of the leading vehicle, and the car following distance
gradually decreased. The collision probability peaked at 37.8 s, after which the following
vehicle continued to slow down and the likelihood of a collision reduced steadily. TTC was
at its lowest (TTC = 7.32 s) when the collision probability was at its highest at 37.8 s. The
results calculated by the two different methods were consistent at this time point.

5.2. F-RCR Model
5.2.1. Distribution of F-RCR and Classification

The F-RCR distribution is shown in the Figure 8. A total of 1857 groups of data were
obtained, with a total length of 1857 × 5 min = 9285 min.
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As can be seen from Figure 8, the F-RCR showed a long-tail distribution. The majority
of the traffic flow was safe (low rear-end collision risk), with only a few exceptions (high
rear-end collision risk). The number of warning times that traffic managers can accept
is directly proportional to the magnitude of the F-RCR threshold. The smaller F-RCR
threshold was, the more times of warning there were. It was not beneficial to traffic
management if the number of warnings increased. The higher the threshold, the fewer
the warnings, and the real dangerous situation may be overlooked. As a result, finding an
appropriate F-RCR threshold required striking a balance between the two.

FCM was used to classify the F-RCR into three groups [35], which were low-risk,
median-risk and high-risk. A data point that lies close to the center of a cluster will have
a high degree of membership in that cluster. FCM was used to classify the traffic safety
status [36]. The low-risk state was the safe state and the high-risk state was the risky state
which was related with the rear end crashes. The low-risk, median-risk, and high-risk
accounted for 52.72%, 36.70%, and 10.58%, respectively. The low-risk and median-risk
ranged from 0 to 1.17 and 1.17 to 2.88. On the other hand, the high-risk was above 2.88.

5.2.2. Variable Importance

The importance of macroscopic traffic flow parameters for the F-RCR was calculated
using the SVM model, and the results were shown in Figure 9. The results showed that the
traffic volume had the greatest influence on the F-RCR. The greater the volume, the smaller
the car following distance, the more prone to rear-end collisions, resulting in a rise of the
F-RCR. It was consistent with the previous studies, in which was found that the AADT
indicator played a critical role for the rear-end collision [41].
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The second influencing factor was the speed difference between adjacent lanes, which
mainly included the speed difference between lane 2 and lane 3, as well as the speed
difference between lane 1 and lane 2. When the speed gap between adjacent lanes is large,
drivers will change lanes to obtain a better driving environment. During the process of lane
changing, there was always a large speed difference [29], which increased the likelihood of
a collision. Shangguan [36] also found that speed difference was an important factor for
the driving risk status which was consistent with the result of this research.

The third influencing factor was the coefficient of variation of vehicle distribution
(CVVD). The CVVD reflected the fluctuation of vehicle distribution, that was, the uneven
distribution of vehicles on the freeway. Especially when vehicles were moving forward in
the form of vehicle groups, resulting in an increase in CVVD. When the vehicle moving in
the form of vehicle groups, the car following distance was short and the rear-end collision
risk was increased.

Finally, it can be concluded that when the vehicle distribution was uneven, the speed
difference between adjacent lanes was large, and the traffic volume was large, the F-RCR
will increase.
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5.2.3. Machine Learning Model

The data was split into two groups: the training data set (60%) and test data set (40%).
Based on the mixed sampling, which is the combination of the oversampling and under-
sampling method, the calculation results of the test data of different models are shown in
Table 3.

Table 3. Confusion matrix of rear-end collision risk.

Machine Learning Predicted Value True Value Low-Risk Median-Risk High-Risk

MLP
Low-risk 97.7% 2.3% 0.0%

Median-risk 14.4% 84.9% 0.7%
High-risk 0.0% 13.6% 86.4%

RBF
Low-risk 95.9% 4.1% 0.0%

Median-risk 14.2% 85.8% 0.0%
High-risk 0.0% 16.7% 83.3%

RF
Low-risk 91.3% 8.8% 0.0%

Median-risk 7.0% 84.2% 8.8%
High-risk 0.0% 15.6% 84.4%

It can be seen from Table 3, the low-risk had the highest accuracy. The results of the
low-risk of the three models were all above 90%. The accuracy of the median-risk and
high-risk were all over 80% indicating that the model performed well in general.

High-risk was the minority data which accounted for less than 10% of all the data.
The accuracy of the minority data set was of great interest. The cost of misjudgment of
high-risk (minority class, high rear-end collision risk) was substantially higher than that of
low-risk (majority class, low rear-end collision risk). It was desirable to give high prediction
accuracy over the high-risk (minority class), although adequate accuracy for the safe state
was also desired (majority class). The high-risk result of the MLP, RBF, and RF was 86.4%,
83.3%, and 84.4%, respectively. MLP was shown to be more appropriate for modeling the
rear-end collision risk on the freeway, which was consistent with previous studies [42].
However, some other studies showed that RF obtained the best performance [24,43], which
is mainly because the research topic was different. The previous studies modelled the crash
injury severity which was different from the rear-end crash risk in this paper.

5.3. Case Study

The data from 7:00 a.m. to 8:00 p.m. was collected in one day and the weather
condition was good. The freeway was located outskirts of the city. The length of the
experiment road was 500 m. The F-RCR was calculated in five minutes every 100 m. The
F-RCR was classified into 3 levels based on the FCM. The result of the F-RCR was showed
in Figure 10.
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Figure 10 shows that it was low-risk status at most of the time. There has been a
high-risk in section A and B, which time was from 7:00–9:00 a.m. and 15:00–19:00 p.m.
In the morning peak hours, the traffic volume increased and the morning commute was
very concentrated. It became low risk immediately after 9 a.m. for the working time
was 9 o’clock. The section B can be regarded as evening peak hours and traffic volume
increased. Compared with section A, the high-risk distribution in section B was more
discrete. Larger volume variation between lanes will increase crash occurrence likelihood.
This was consistent with previous studies that the crash rate would be increased when the
volume increased [44] and larger volume variation between lanes [45].

High-risk was surrounded by median-risk which showed that the result was reason-
able for the changing of the F-RCR was continuous. The F-RCR cannot change immediately
from low-risk to high-risk without median-risk.

6. Conclusions

Rear-end crash is the most common crash type on the freeway. This paper provides an
alternative framework for assessing the rear-end collision risk on the freeway. It showed
the potential to be used in the active traffic management system, especially for the proactive
safety solutions.

Firstly, the rear-end collision probability (RCP) model for the two vehicles was devel-
oped based on the GPD model. Secondly, the sum of all the vehicle rear-end probability on
the freeway was defined as the freeway rear-end collision risk (F-RCR). Then, the F-RCR
was divided into three classes which were high, median, and low rear-end collision risk.
Different machine learning algorithms were used to model the F-RCR, especially the high
rear-end collision risk.

For the RCP model, the distribution of vehicle deceleration was considered, which
corresponded with the actual situation. The result of RCP model was more accurate, and
it can quickly detect the dangerous scenarios. The RCP model, unlike the traditional
surrogate indicators, can be used in a variety of car-following scenarios even when the
speed of the leading vehicle is faster than the following vehicle. Furthermore, after the
model parameters have been calibrated, RCP model can be used on different sections of
roads, for example, the freeway interchange.

For the F-RCR, it was modelled by different machine learning algorithms and the
impact of unbalanced data on the model was considered. For the machine learning model
evaluation, the prediction accuracy of the high rear-end collision risk was the first consider-
ation, followed by the overall accuracy. It was concluded that MLP has the best prediction
result. When the vehicle distribution was uneven, the speed difference between adjacent
lanes was large, and the traffic volume was large, the F-RCR will increase.

The macroscopic variables of the machine learning model were easy to get. The model
provided in this study is transferrable after parameter calibration. Therefore, it can be
applied to real-world traffic management and can also be used as part of any traffic safety
evaluation that compared before and after traffic measures. For example, the benefits of
ATM operations or any other ITS implementations.

7. Limitations and Future Work

This research collected data at the freeway straight section for one month to model the
F-RCR. The road section contains three general traffic lanes in one direction. However, in
some developed areas, more and more freeways with four traffic lanes or even five lanes
in one direction were constructed, which would lead to more complex traffic behavior. To
improve model performance, additional data should be collected on various road types as
well as in various weather conditions. The RCP model was compared using the traditional
surrogate indicator TTC. A large-scale validation study should be carried out based on the
crash data to validate and improve the model prediction result.

Since the percentage of small cars in the study site was greater than 95 percent, only
the rear-end collision probability of small cars was investigated. The deceleration behavior
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of heavy trucks were quite different from the small cars [3]. Heavy trucks should also be
emphasized in the further research.

The high F-RCR accounted for about 10% of the data set which was typical unbalance
data set. Most machine learning classification algorithms were sensitive to unbalance
data. To improve the predicted accuracy of machine learning model under the condition of
unbalanced data was also the future research direction.
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