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Abstract: Pipelines that cross complex geological terrains are inevitably threatened by natural haz-
ards, among which landslide attracts extensive attention when pipelines cross mountainous areas.
The landslides are typically associated with ground movements that would induce additional stress
on the pipeline. Such stress state of pipelines under landslide interference seriously damage structural
integrity of the pipeline. Up to the date, limited research has been done on the combined landslide
hazard and pipeline stress state analysis. In this paper, a multi-parameter integrated monitoring
system was developed for the pipeline stress-strain state and landslide deformation monitoring. Also,
data-driven models for the pipeline additional stress prediction was established. The developed
predictive models include individual and ensemble-based machine learning approaches. The imple-
mentation procedure of the predictive models integrates the field data measured by the monitoring
system, with k-fold cross validation used for the generalization performance evaluation. The ob-
tained results indicate that the XGBoost model has the highest performance in the prediction of the
additional stress. Besides, the significance of the input variables is determined through sensitivity
analyses by using feature importance criteria. Thus, the integrated monitoring system together with
the XGBoost prediction method is beneficial to modeling the additional stress in oil and gas pipelines,
which will further contribute to pipeline geohazards monitoring management.

Keywords: oil and gas pipeline; landside monitoring; data-driven; pipeline additional stress;
XGBoost

1. Introduction

The pipeline is an important means for oil and gas transportation. The safe operation
of the pipeline is threatened by various factors including corrosion, third-party damage,
natural disaster, etc. For pipelines in areas with complex geological conditions such as
mountainous regions, landslides have always been considered a dominant challenge for
continuous pipeline service [1–3] . In this respect, landslides always impose additional
stress on the pipeline, which may further lead to local deformation and displacement [4,5].
Once the additional stress generated exceeds the material strength or there are defects
such as cracks and metal loss in the deformation area, it will seriously damage structural
integrity of the pipeline [6], resulting in catastrophic accidents such as rupture and leakage.
For example, in 2008–2009, two consecutive pipeline landslide accidents appeared in
Zhejiang, China [7]. The earlier one was dealt with in time, whereas the latter one caused
an explosion. On 5 March 2019, a pipeline rupture and subsequent explosion occurred in
Alborz in Iran, leading to the suspension of gas supply to more than 12,000 customers [8].
With the random characteristic of natural disasters, it is difficult to predict and analyze their
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impact on pipelines. An accurate monitoring method is of great significance for protective
measures to be taken at an early stage [9]. Therefore, it is fundamental to develop advanced
methods for pipeline state monitoring under complicated geological circumstances.

It is known from the field that changed position of the pipeline under landslides
imposes additional stresses on the pipeline, which put the pipeline in an unstable stress
state [10,11]. To assess the resulting additional stress, the stress-strain monitoring for the
pipelines across complex geological terrains is employed as an effective way for pipe con-
dition monitoring. The widely used stress monitoring methods are categorized as long
distance-based and point-based measurement. For long-distance real-time pipeline moni-
toring, distributed optical fiber sensors installed parallel to the pipe body are commonly
utilized, which combines data acquisition capability including strss-strain behavior of
soil, temperature, and vibration measurement [12,13]. It should be noted that this technol-
ogy suffers equipment stability problems over the course of a long lifespan. In addition,
point-based measurement adopts strain gauge sensors to stick around the pipe wall for
strain monitoring, and the additional stress was calculated based on the measured strain
value [14]. It directly reflects the pipeline behavior when compared with long-distance
pipeline monitoring. However, the accuracy of the strain measurement sensor is sus-
ceptible to the disturbance of the external environment, resulting in the introduction of
unreliable data.

Pipeline strain and stress are typically regarded as indicators that reflect the impact
of landsliding on the pipeline [15], but an individual strain monitoring system cannot
clearly explain the pipeline and its surrounding environmental conditions simultaneously.
To improve the reliability of stress evaluation, landslide-related monitoring is complemen-
tary to comprehensive pipeline stress analysis. The landslide-induced failure of oil and
gas pipelines is a complex process involving many parameters. Separately from strain
monitoring, surface deformation monitoring and geohazard inducing monitoring are con-
sidered for landslide management [16,17]. For example, disaster reduction stick equipment
has been designed to simultaneously monitor the landslide on precipitation, soil water
content, pore water pressure, slope displacement, and slope inclination [18]. In most
application cases, the monitoring of pipeline landslides is limited to the monitoring of
the landslide hazard without the involvement of pipe interaction. There is still a lack of
research on the stress state of pipelines under landslide interference. As a result, the rela-
tionship between landslide deformation data and pipeline safety conditions has not been
effectively established.

Although pipeline landslide research in terms of soil-pipe interaction analysis [19],
landslide behavior [20], and pipeline failure probability prediction [21] have been widely
investigated. There are still some research gaps in this field. On the one hand, limited
research has been done on the combined landslide hazard and pipeline stress state analysis.
On the other hand, the interference of invalid measurement data of pipeline stress-strain
monitoring has not been fully considered. To fill this gap, this paper focuses on establish-
ing the quantitative relationship between landslide movement and pipeline mechanical
state based on multi-parameter monitoring data. Advanced data-driven technologies are
adopted for the prediction of additional stress. With joint monitoring tools and predictive
models, effective prevention measures can be taken to reduce the probability of pipeline
failure caused by landslides, which further mitigates the hazard of landslides posed on
the pipeline. It should be noted that the model is applicable to slope soil layers, that is,
slope sediment or residual soil or sedimentary soil. The contributions of this paper can be
concluded as:

1. A multi-parameter integrated monitoring system was developed to monitor the
pipeline and landslide conditions in a complex geologic environment.

2. The data-driven based predictive model was proposed for additional stress evaluation
under landslide movement.

3. Field sites were selected for demonstration of the geohazard monitoring system,
and the additional stress model was verified based on the on-site data.
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The rest of this paper is arranged as follows: Section 2 presents the pipeline geohazards
monitoring implementation process; Section 3 describes the proposed methodology for
accurate prediction of the additional stress. Section 4 performs a case study to illustrate
the feasibility and effectiveness of the methodology. Section 5 presents the conclusions of
this paper.

2. Pipeline Geohazards Monitoring Implementation
2.1. Selection of Monitoring Sites

In mountainous regions, it is impossible to avoid every potential landslide crossing.
Pipelines passing through potentially active landslides may be subjected to forces such as
traction, compression, and shear [22]. Due to the instability of the disaster-causing body,
the stress concentration of the pipeline and the deformation of the pipe body lead to the
occurrence of pipeline geological disasters. When the strain of the pipe body exceeds the
allowable range, the pipe will bend and deform or even fail. The stability and deformation
of landslides are affected by internal factors (soil composition, slope structure, geological
structure, etc.) and external factors (water factors, weathering, earthquakes, human activi-
ties, etc.). Internal factors determine the scale and form of landslide deformation and failure,
and external factors promote the occurrence and development of landslide deformation.

The landsliding process is a very complex process in which multiple factors are
involved. For the pipeline landslide program, in addition to considering the scale of the
landslide, it is also necessary to consider the impact of the landslide body on the pipeline
structure. The evolution process of the pipeline landslide geological disaster was shown in
Figure 1. The pipeline traversing landslide terrain is the initial inducement. In the early
stage of landslide deformation, a certain part of the landslide body is deformed because
the shear stress is greater than the shear strength, resulting in small creeping. During this
period, the deformation rate of the landslide is characterized by low speed and stability,
and the pipeline is slightly deformed. After that, with the gradual rupture of the slip
surface, penetrated cracks begin to appear on the slope surface. With the increase of cracks,
the slope body is in an unstable state, and the deformation of the pipeline increases. Finally,
the slope sliding occurs and causes the failure of the pipeline.

Landslide initial inducement

• Potentially unstable slope

Pipeline initial inducement

• Pipeline traverse landslide 

terrain

Slope Creep

• The shear stress is greater than 

the shear strength, and the slope 

is cracked but not penetrated

Pipe loading

• Longitudinal strain occurs with 

the increase of the pipeline 

load, but the strain does not 

exceed the allowable range

Slope instability

• Crack penetration, slope 

deformation, reaching the 

critical point of instability

Pipe deformation

• Stress concentration, the strain 

rapidly approaches or exceeds 

the allowable range, and the 

pipe body is bent or deformed

Pipe failure

• The stress or strain exceeds 

the allowable range and the 

tube body fails

Landslide evolution

Pipeline evolution

Slope sliding

• Slope sliding, ground 

movement

Stress generation

 

Stress accumulation Stress within the allowable range Stress exceeds the allowable range
Pipeline landslide 

hazards

Figure 1. Schematic diagram of the evolution of pipeline geological hazards.

Mitigation measures are usually implemented to eliminate or reduce the severity
of landslide effects on the pipeline. It is economically feasible to install modern sensors
in specific locations susceptible to ground movement. Pipeline monitoring points and
landslide monitoring points are two important components of the integrated system.
For the pipeline monitoring site, the selected monitoring points should reflect the force
law of the critical pipeline segment, and the load distribution of the pipeline should also
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be considered. For the landslide deformation monitoring site, the monitoring data should
comprehensively reflect the development of the landslide and its impact on the pipeline.

Some preliminary analysis is required for the selection of monitoring points before
sensor installation. The steps are as follows. Firstly, the geohazard-sensitive areas of the
pipeline are determined according to the engineering geological disaster report, geological
survey report, and other relevant assessment documents. During this procedure, neces-
sary investigations of slope maps, structural geology, morphology, surface mechanisms,
and environmental conditions help to explain the mechanisms of landslide deformation
and failure in specific situations. Secondly, site investigations in the selected geohazard-
sensitive area will be conducted. The experts are also invited to further verify the key
areas for controlling slope stability, and analyze the feasibility of equipment installation.
Then, finite element simulations of the pipeline are carried out to determine the stress
concentration point of the pipeline, and it was selected as the pipeline monitoring point.

2.2. Selection of Monitoring Elements

Generally, the content of pipeline landslide monitoring includes pipeline monitoring
and landslide deformation monitoring. The monitoring of pipeline stress and strain can
directly reflect the pipeline condition subject to geological hazards. In landslide monitoring,
the monitoring contents are different with various requirements, among which surface
displacement monitoring and inner displacement monitoring are the most important ob-
jects. For the inducing factors of geological disasters, the monitoring elements mainly
include meteorological conditions such as rainfall, snowmelt, temperature, and evapo-
ration, as well as hydrological conditions such as surface water, river, ditch water level,
pore water pressure, soil moisture content, and groundwater level [23]. In this paper,
parameters including pipeline additional stress, landslide surface displacement, landslide
inner displacement, anti-sliding pile inclination, landslide traction stress and compressive
stress, and soil pressure are selected as the monitoring indicators to form a joint monitoring
system for pipeline landslide events.

2.2.1. Pipeline Monitoring

Additional stress. For landslides that have undergone large deformation, the pipelines
laid in the slope body have been subjected to additional stress [24]. The strain gauge sensor
attached to the surface of the pipeline is used to determine the additional stress for pipeline
safety state evaluation. The strain gauges can easily capture the response of the pipeline to
ground movement. This type of sensor uses elastic sensitive elements to measure the strain
generated by the deformation of the object under force, and converts the external stress
on the pipeline into the change of strength circuit. Therefore, by calculating the change of
the current or voltage in the circuit, the external stress of the pipeline can be determined.
Pipeline stress and strain monitoring are the core technologies of pipeline integrity man-
agement. It can intuitively and quantitatively obtain the real-time stress and strain data of
the pipe body under buried working conditions and issue deformation warnings in time.
Compared with land displacement monitoring, it reflects pipe deformation quickly and
accurately. In order to obtain the accurate axial strain of the pipeline, at least 3 strain gauges
should be arranged in each pipeline section.

2.2.2. Landslide Deformation Monitoring

Surface land displacement. The sliding of the soil mass on the surface of the landslide
will have a direct impact on the pipelines buried in it. As the pipelines are mostly buried
in trenches, floods and debris flows can easily wash away the upper soil of the pipelines,
resulting in exposed pipelines. Moreover, soil accumulated around the pipelines will
lead to excessive external stress, resulting in pipeline bending with serious consequences.
Therefore, it is necessary to monitor the surface displacement to prevent the damage
caused by excessive displacement. The occurrence of a landslide may result in differential
movement of the soil in all three directions. The z-axis is perpendicular to the ground,
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and the x-axis and y-axis are in the ground plane. To grasp the dynamic changes of each
part of the landslide surface, it is necessary to monitor its displacement.

Inner land displacement. Deep soil displacement induced by landslides results in
different stresses and deformation rates at different land depths. Accordingly, the force on
the pipeline will also change as the buried depth increases. Inner land displacement leads
to unequal stress on the pipeline, which leads to buckling and bending of the pipeline.

Anti-slide pile inclination. Pipelines crossing the mountainous area are prone to be
affected by excessive stress concentration, and the establishment of anti-sliding piles in
the landslide area is a commonly used prevention and control method. Anti-slide piles
are piles that penetrate the landslide body to offset the sliding force and buffer the stress
brought by the landslide, mainly used for landslide treatment in shallow and medium-thick
layers. The inclination of the anti-slide pile can approximately reflect the degree of landslide
hazard and is one of the main external monitoring factors.

Landslide stress. The soil movement caused by the landslide will impose external
loads on the pipeline. Anti-slide piles have been widely used in landslide control. It is
a kind of geotechnical mitigation alternative to reduce the severity of the landslide by
reducing the driving force of the slide and providing additional resistance to the ground
movement. The monitoring sensors are installed on anti-slide piles to reflect the external
load distribution of the landslide.

Soil pressure. Soil pressure refers to the force of the surrounding soil acting on the
pipeline. The soil pressure above the pipe increases as the stiffness of the fill increases,
which will inevitably lead to the expansion of the pipeline defects. In most cases, the soil
pressure will cause the pipeline to be unevenly stressed, which is prone to causing the
pipeline to be damaged. By fixing the pressure fiber grating sensor on the pipeline, the soil
pressure can be monitored.

2.3. The Implementation of Monitoring System

The monitoring system was installed at the selected monitoring sites, which consists of
the field monitoring part and the data acquisition part. The on-site monitoring section con-
sists of various monitoring instruments installed on the landslide and the pipe body, while
the data acquisition section is able to automatically collect monitoring data and transmits it
to the user terminal in real-time to reflect the pipeline and surrounding condition. In detail,
the arrangement of the sensors with different functions is shown in Figure 2. Additional
stress is measured by sensor 2, which is located in a different direction on pipelines. Soil
pressure information can be obtained from sensor 3. Landslide traction and compressive
stress, anti-slide pile inclination along with inner land displacement can be obtained from
sensor 4, while land surface displacement is collected from sensor 5.

1

1: Pipeline

2: Strain gauge sensor

3: Pressure Fiber Bragg Grating Sensor

4: Anti-sliding piles with inclinometers    

and rebar gauges

5: Land surface displacement sensor  

6: Sliding surface

2
2

2
3

4

4

5

5

5

6

Figure 2. Schematic of the landslide monitoring system.
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3. Proposed Methodology
3.1. The Framework of Proposed Method

The pipeline landslide hazard is a very complex process in which multiple factors
are involved. It is difficult to determine the additional stress by traditional methods when
landslide movement factors need to be considered. In recent years, it is known that data-
driven models are usually combined with machine learning techniques to explore the
relationship and patterns from a data perspective [25]. The machine learning approaches
are capable of solving nonlinear regression problems with high performance. In this regard,
the commonly used machine learning methods are adopted in this paper to tackle the
relationship between additional stress and landslide movement parameters, which further
realize the additional stress prediction. As pipeline additional stress is an important factor
in failure analysis, the proposed predictive model could be used as an alternative source
of additional stress indicator in cases of failures of strain monitoring sensors. Figure 3
presents the flowchart of the proposed approach for pipe additional stress prediction. Data
preprocessing, model training, and performance evaluation comprises the main steps.
Symbol definitions in Figure 3 can be found in Table 1.

Data collection

Data matching

Step 1: Data preprocessing 

Step 2: Model training 

(b) Modeling 

Step 3: Performance evaluation 

(a) Data sources

• Strain gauge sensor

• Pressure fiber bragg grating 

sensor

• Inclinometers and rebar gauges

• Land surface displacement 

sensor

(b) Data representation

Correlation analysis

Feature selection

• DIX

• DSX 

• DSY

• DSZ

(a) Model inputs(c) Model output

• Additional 

stress

RMSE MAE Feature importanceR2

• SVR

• RF

• Adaboost

• GBRT

• XGBoost

• I

• P

• ST

• SC

Figure 3. Flowchart of the proposed approach.
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Table 1. Statistical description of the monitoring database.

Monitoring Type Variables Symbol Xmin Xmax Xmean Xstd

Landslide monitoring

Inner x-axis displacement, mm DIX 0 7 2.31 1.8
Inner y-axis displacement, mm DIY 0 8 3.66 2.17
Surface x-axis displacement, mm DSX 0.05 0.25 0.16 0.03
Surface y-axis displacement, mm DSY 0 0.25 0.16 0.03
Surface z-axis displacement, mm DSZ −0.08 −0.03 −0.04 0.01
Anti-slide pile inclination, ° I 0 1.2 0.41 0.21
Soil pressure, kPa P 100 150 135.05 16.34
Traction stress, kN ST 60 80 72.25 4.03
Compressive stress, kN SC 50 70 61.92 3.52

Pipeline monitoring Pipe additional stress, MPa S 4 7 5.98 0.28

3.2. Data Preprocessing

In the data preprocessing processes, all the monitored elements are involved in the
dataset for the additional stress prediction. Different types of monitored data are measured
by multi-sensors, and data matching needs to be done to align them with the same time
series. Then, a correlation analysis between every two features needs to be calculated to
remove any redundant features with repeated information. The correlation coefficient (CC)
ranging from −1 to 1 is calculated to check a linear correlation between two variables.
The absolute value of CC represents the strength of the correlation between the two fea-
tures. Generally, due to redundant features having no contribution to a predictive model,
the features that have a strong positive correlation need to be removed. The standardization
also needs to be done to eliminate the difference between the different dimensions.

3.3. Model Training

The processed data then can be used for the training model. The additional stress is
used as the model output, whereas other features such as inner displacement and surface
displacement are fed as model inputs. In this paper, individual and ensemble-based
machine learning approaches are developed for the predictive model.

3.3.1. Support Vector Regression

Inspired by the Support vector machine (SVM), Support vector regression (SVR) was
proposed to solve nonlinear regression estimation problems by including the new loss
function [26]. The goal of the method is to find the optimized hyperplane for regression,
which is defined as Equation (1).

f (x) =< w, x > +b (1)

where w is the regression coefficient vector, and b is the bias. As the ε-insensitive loss
function was introduced into the SVR model, where ε is a precision parameter that presents
the radius of the internal tube region, the loss of the predicted sample in the ε-insensitive
zone is zero [27]. Therefore, the estimation of w and b was based on the optimization
problem in Equation (2), which is subject to the constraints in Equations (3)–(5).

min
1
2
||w||2 + C∑n

i=1|ξ
∗
i + ξi| (2)

s.t. f (xi )− yi ≤ ε + ξi (3)

s.t.yi − f (xi ) ≤ ε + ξ∗i (4)

s.t.ε ≥ 0, ξ∗i ≥ 0, ξi ≥ 0 (5)
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where C is the constant coefficient, ξ∗i and ξi are the distance between the sample data and
the decision boundary. With the involvement of Lagrange multiplier and kernel function K,
Equation (1) can be expressed as Equation (6):

f (x) =
n

∑
i=1

(α∗i − α)K
(
xi, x′i

)
+ b (6)

where α∗i and αi are Lagrange multiplier. For the pipeline additional stress prediction, it
can be regarded as a multi-regression analysis problem, of which the objective function is
the minimization of MAE shown in Equation (7)

MAE =
1
N

N

∑
i=1
| f (xi)− yi| (7)

where N is the number of data.

3.3.2. Random Forest

Random forest (RF) is a representative bagging ensemble learning (EI) algorithm,
of which the base estimators are decision trees [28]. The bagging method relies on the
average principle to decide the ensembled results for the regression task; it is expected that
the accuracy of the random forest increase with higher individual decision tree accuracy.
Since the base estimator will randomly select features for branching, each base estimator
is independent of the other. In addition, the bootstrap technique is employed for data
sampling in the training process to construct different datasets. The randomness of data
selection and feature selection enables the random forests robust to noise [29].

3.3.3. Adaptive Boosting

Adaptive boosting (AdaBoost) is a representative boosting ensemble learning algo-
rithm, which adaptively influences the subsequent modeling process according to the
results of the previous weak evaluators [30]. For boosting technology, the output H(x)
integrates multiple weak learning models following Equation (8) .

H(x) = ∑T
t=1φt ft(xi) (8)

where T is the total number of weak estimator, φt is the weight of t-th weak estimator,
ft(xi) is the result of xi on the t-th weak estimator. AdaBoost adopts different sample
weights according to the predicted sample results [31]. The weight of the sample with
larger prediction error will increase, and the weight of the sample with smaller prediction
error will decrease. Each iteration aims to minimize the total training error.

3.3.4. Gradient Boosting Regression Tree

Gradient boosting regression tree (GBRT) is also a sequential EL-model using boosting
strategy [32]. Compared with AdaBoost, GBRT utilizes the negative gradient of the loss
function as an approximation of the residual in the boosted tree algorithm to build a
subsequent weak evaluator. The prediction steps based on GBRT are as follows [33]:

1. Weak learner initialization

f0(x) = argmin
N

∑
i=1

L(yi, c) (9)

In Equation (9), N is the number of samples, c is the constant value with the smallest
loss function; yi is the actual target value.

2. Iteratively build M boosted trees
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The negative gradient for samples i = 1, 2, . . . N is expressed as Equation (10).

rim =

[
∂L(yi, f (xi))

∂ f (xi)

]
f (x)= fm−1(x)

(10)

rim is the residual, (xi, rim) are used as the training data of the next tree, the cor-
responding node area of the newly established regression tree is Rjm, j = 1, 2, . . . J.
The expression of a new learner can be obtained as Equation (11).

fm(x) = fm−1(x) +
J

∑
j=1

rjm I(x ∈ Rjm) (11)

rjm = argmin ∑
x∈Rjm

L(yi, fm−1(xi) + c) (12)

rjm is the minimum value of the loss function for the m-th tree at the j-th iteration,
which is shown in Equation (12). I(x ∈ Rjm) is the characteristic function, c is the
constant value with the smallest loss function.

3. Final output
The predictive results are based on the ensemble predictions of the weak learner
models as Equation (13).

f (x) = fM(x) = f0(x) +
M

∑
m=1

J

∑
j=1

rjm I(x ∈ Rjm) (13)

where M is the maximum number of iterations.

3.3.5. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is optimized on the basis of the GBRT algorithm,
both the training speed and model accuracy are improved [34]. An objective function was
designed as Equation (14) for model optimization.

Obj =
n

∑
i=1

L(yi, ŷi) +
K

∑
k=1

Ω f (k) (14)

where Obj represents the objective function, which consists of the loss function and reg-
ularization term. Loss function ∑n

i=1 L(yi, ŷi) was designed to evaluate the loss between
predicted and true values, whereas the regularization term ∑K

k=1 Ω f (k) was used to control
the model complexity and avoid overfitting. Due to the advantages of parallel computing
and allowing row and column sampling, XGBoost has attracted a lot of attention because
of its high efficiency.

3.4. Performance Evaluation

The obtained results from the implementation of the regression models will be evalu-
ated to determine the best performing model among the five approaches aforementioned.
The whole dataset was split for model training (80% of data) and testing (20% of data).
However, the division of the training set and the testing set will interfere with the model
results. In this regard, the k-fold cross-validation is used to observe the generalization
performance of the model. In this process, the data is divided into n subsets, one of which
is used sequentially as the test set and the other n − 1 folds as the training set, in which
k = 5 is taken. Finally, the accuracy of the model is evaluated by considering the mean of n
cross-validation results. Several performance metrics including Root Mean Square Error
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(RMSE) in Equation (15), Mean Absolute Error (MAE) in Equation (16), and coefficient of
determination R2 in Equation (17) are computed for model performance evaluation.

RMSE =

√
∑m

i=1 (yi − ŷi)
2

m
(15)

MAE =
∑m

i=1|yi − ŷi|
m

(16)

R2 = 1− ∑m
i=1 (yi − ŷi)

2

∑m
i=1 (yi − ȳi)

2 (17)

where m is the total number of test sample, yi is the true value, ŷi is the prediction value, ȳi
is the mean value

4. Case Study
4.1. Monitoring Sites Description

Pipeline segments crossing the mountain areas in southwest China were illustrated
in the case study. The pipe material is X52 and the pipe diameter is 323.9 mm, with wall
thickness of 8.7 mm and designed pressure of 10 MPa. In-line inspections were conducted
in 2008, 2014, and 2018, respectively to acquire the integrity condition of the pipeline. In ad-
dition, the geohazard investigation along the pipeline has been completed. According to
the above information, four potential landslide disaster sites were chosen for the implemen-
tation of the multi-parameter integrated monitoring system. The detailed description of the
four monitoring sites is as follows. (1) The first monitoring site is located on the left bank of
the river, in the middle and upper part of the area. The landslide elevation ranges from
2170 m to 2263 m, and the height difference is about 93 m. (2) In 2014, the landslide where
the second monitoring site is located showed obvious signs of deformation, threatening
the safety of the pipeline. Subsequently, the pipeline owner took timely control measures
for the landslide by setting up the anti-slide piles. However, there are cracks in the lower
part of the landslide with the rainfall in recent years. (3) The slope section where the third
monitoring site is located is about 420 m long, with a height difference of about 290 m and a
slope gradient of 45–50°. (4) The landslide zone where the fourth monitoring site is located
is 280 m long, with a width of which is 320 m and a thickness is 15 m, which is an area with
frequent natural disasters such as debris flow.

The integrated monitoring system described in Section 2 was implemented in selected
monitoring sites. For the monitoring of surface displacement, the monitoring points are
arranged in the sliding-sensitive area of the slope. Benefiting from the Global Satellite Navi-
gation and Positioning System, the horizontal and vertical displacements of the monitoring
points are automatically measured. In detail, the original observation data is automati-
cally calculated and processed by professional deformation monitoring software, and the
real-time millimeter-level coordinate value of the monitoring point is obtained. For the
monitoring of inner displacement, anti-sliding piles with inclinometers and rebar gauges
are arranged in the areas where the inner landslide soil shows a likely deformation trend.
The inclinometer is used to collect the inner displacement and the inclination, whereas the
rebar gauges are utilized for traction and compressive stress measurement. The pressure
fiber bragg grating sensor is installed on the pipeline through the bracket for the mea-
surement of soil pressure. In addition, the pipeline stress-strain monitoring is realized
by attaching strain gauges at the stress concentration points indicated by the simulation
analysis. In this paper, a total of 400 sets of data all come from these on-site sensors. Table 1
shows the statistical characteristics of the monitoring variables.

The correlation matrix between features is shown in Figure 4. Since a redundant
feature provides no contribution but long training time to a predictive model, the Anti-slide
pile inclination factor, which has a strong positive correlation (CC = 1) with the Inner y-axis
displacement, needs to be removed.
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Figure 4. Correlation matrix of every two attributes.

4.2. Comparative Analysis

In the model training process, SVR, along with the other four ensemble-based methods
(RF, AdaBoost, GBRT, XGBoost) are validated with the field monitoring data, the results
with three performance metrics were presented in Table 2. The results are calculated using
the test dataset (20% of the whole sample set). Remarkably, all the proposed ensemble
models produced satisfactory predictions, showing that XGBoost had the best performance,
with RMSE of 0.0154, MAE of 0.0118, and the highest R2 of 0.9893. The predicted results of
the RF model were not as accurate as the outputs from other ensemble models, with RMSE
of 0.0288 and MAE of 0.0193. In addition, AdaBoost and GBRT models obtained comparable
performance, whereas GBRT shows slightly better results in RMSE and R2 metrics. On the
contrary, the individual model SVR obtain unacceptable prediction results.

Table 2. Performance comparison of five regression models.

Model Type Data-Driven Models RMSE MAE R2

Individual SVR 0.0910 0.0666 0.6233

Ensemble

RF 0.0288 0.0193 0.9623
AdaBoost 0.0217 0.0119 0.9758
GBRT 0.0198 0.0147 0.9821
XGBoost 0.0154 0.0118 0.9893

The additional stress prediction details for each model is visualized in Figures 5–9.
The abscissa of the scatter plot represents the actual monitored value and the ordinate
represents the model predicted value. To quantify the fitted relationship between the
measured and predicted value, a linear fit is shown in each figure. The most perfect fit
is that the measured value is equal to the predicted value, expressed as y = x. That is,
the closer the black dots to line y = x, the better the prediction effect. It can be seen from
Figure 5a that the results from SVR are quite different from the true data. Figure 6a shows
the ensembled model outperforms the individual model, but the RF model for additional
stress prediction is not accurate enough. From Figures 7a and 8a, satisfied prediction data
are obtained, and most of the data are close to the monitored value. As shown in Figure 9a,
XGBoost performs the best agreement between the predicted results and the measured data,
with a linear fit equation of y = 0.991x + 0.055. The standard deviation of the predicted
points is 0.142.
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As the black dots in the scatter plots combined the true value and predicted value, each
test sample and its corresponding predicted data are also compared. Figure 5b presents
the predicted additional stress of the SVR model differs a lot from the true value, showing
that the prediction accuracy is low. As observed in Figures 6b, 7b and 8b, the prediction
accuracy of the ensembled model is improved. Although there is a noticeable error between
the actual and predicted results at some testing sample points. Regarding the best results,
Figure 9b shows that almost all the prediction values of additional stress are closer to the
actual value.
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Figure 5. Predicted results of SVR. (a) Scatter plots of the predicted versus measured data. (b) Com-
parison of predicted and measured data.
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Figure 6. Predicted results of RF. (a) Scatter plots of the predicted versus measured data. (b) Compar-
ison of predicted and measured data.
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Figure 7. Predicted results of AdaBoost. (a) Scatter plots of the predicted versus measured data.
(b) Comparison of predicted and measured data.
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Figure 8. Predicted results of GBRT. (a) Scatter plots of the predicted versus measured data. (b) Com-
parison of predicted and measured data.
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Figure 9. Predicted results of XGBoost. (a) Scatter plots of the predicted versus measured data.
(b) Comparison of predicted and measured data.

4.3. Sensitivity Analysis

In the prediction models, the relationship between the input variables and the target
output has been quantified. To illustrate the importance of the landslide features on the
additional stress determination, the importance analysis is conducted for the explanation.
The influence of each characteristic on the final predicted additional stress was calculated
based on the XGBoost model due to its high performance.

The results were ranked in Table 3. The greater the influence on the model prediction,
the more significant the feature is. According to the obtained results, compressive stress is
listed as the most important feature with feature importance of 0.5070, followed by traction
stress with 0.2406. The surface y-axis displacement and soil pressure are the third and fourth
most important features, with relative relevance of 0.0910 and 0.0844, respectively. The top
four parameters account for more than 90% importance of all of the input variables. It can
be seen that the surface z-axis displacement showed 0.045 importance. Moreover, little
difference in importance can be found in the inclination and surface x-axis displacement,
weighted for 0.0162 and 0.0119, while the inner x-axis displacement indicated the lowest
importance. It can be seen from the feature importance of the RF model that the top three
factors are the same with XGBoost. Although the importance values vary, rankings other
than the inclination factor remain constant for both models.

According to the obtained importance results, the stress plays a more significant role
than the displacement, whereas the landslide surface displacement matters a lot more
than the inner displacement. The results indicated that the pipe behavior was affected
by soil-pipe interaction, and ground movements are consistent with the findings in [35].
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Mitigation alternatives can be determined according to the importance of different external
influencing factors. However, as the results of machine learning models are closely related
to the training data [36], the obtained results are subject to change if a larger database that
includes more information and data variability is used since the current database is limited.

Table 3. Feature importance analysis.

Rank
(XGBoost)

Monitoring Parameter
Feature Importance

(XGBoost)
Rank
(RF)

Monitoring Parameter
Feature Importance

(RF)

1 Compressive stress 0.5070 1 Compressive stress 0.4109
2 Traction stress 0.2406 2 Traction stress 0.3867
3 Surface y-axis displacement 0.0910 3 Surface y-axis displacement 0.1361
4 Soil pressure 0.0844 4 Inclination 0.0266
5 Surface z-axis displacement 0.0450 5 Soil pressure 0.0249
6 Inclination 0.0162 6 Surface z-axis displacement 0.0081
7 Surface x-axis displacement 0.0119 7 Surface x-axis displacement 0.0055
8 Inner x-axis displacement 0.0039 8 Inner x-axis displacement 0.0010

5. Conclusions

For the safe service of oil and gas pipelines that cross mountainous areas subject to
landslide geohazard, a multi-parameter integrated monitoring system was developed.
The joint monitoring for pipeline landslide hazards not only obtains the stress state infor-
mation of the pipeline, but also the landslide displacement information. To tackle with the
interference of invalid measurement data for pipeline stress-strain monitoring, advanced
data-driven technologies including SVR, RF, AdaBoost, GBRT, and XGBoost are employed
for the prediction of additional stress. Based on the field monitoring data, the relation
between landslide movement and pipeline additional stress has been reasonably quantified.
From this work, some conclusions are obtained:

• The results indicate that the XGBoost model has the highest performance in the
prediction of the additional stress, with RMSE of 0.0154 MPa, MAE of 0.0118 MPa,
and R2 value of 0.9893.

• The top five factors contributing to the additional stress for the applied dataset are
landslide compressive stress, landslide traction stress, landslide surface y-axis dis-
placement, soil pressure, and landslide surface x-axis displacement.

For further development, the accuracy of the additional stress prediction from the
landslide monitoring system can be improved with more monitoring data collected. Overall,
the developed technique has allowed the implementation of preventive geotechnical works
before a geohazard develops dramatically. In this sense, the model can be seen as a valuable
tool that complements existing methodologies and can provide useful information to
support the decision-making process.
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