
Citation: Alghamdi, M.I.

Optimization of Load Balancing and

Task Scheduling in Cloud Computing

Environments Using Artificial Neural

Networks-Based Binary Particle

Swarm Optimization (BPSO).

Sustainability 2022, 14, 11982.

https://doi.org/10.3390/

su141911982

Academic Editors: Ikram Ud Din,

Hasan Ali Khattak and

Ahmad Almogren

Received: 3 August 2022

Accepted: 9 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Optimization of Load Balancing and Task Scheduling in Cloud
Computing Environments Using Artificial Neural
Networks-Based Binary Particle Swarm Optimization (BPSO)
Mohammed I. Alghamdi

College of Computer Science and Information Technology, Department of Engineering and Computer Science,
Al-Baha University, Al-Baha City 1988, Saudi Arabia; mialmushilah@bu.edu.sa

Abstract: As more people utilize the cloud, more employment opportunities become available. With
constraints such as a limited make-span, a high utilization rate of available resources, minimal
execution costs, and a rapid turnaround time for scheduling, this becomes an NP-hard optimization
issue. The number of solutions/combinations increases exponentially with the magnitude of the
challenge, such as the number of tasks and the number of computing resources, making the task
scheduling problem NP-hard. As a result, achieving the optimum scheduling of user tasks is difficult.
An intelligent resource allocation system can significantly cut down the costs and waste of resources.
For instance, binary particle swarm optimization (BPSO) was created to combat ineffective heuristic
approaches. However, the optimal solution will not be produced if these algorithms are not paired
with additional heuristic or meta-heuristic algorithms. Due to the high temporal complexity of these
algorithms, they are less useful in real-world settings. For the NP problem, the binary variation
of PSO is presented for workload scheduling and balancing in cloud computing. Considering the
updating and optimization constraints stated in this research, our objective function determines if
heterogeneous virtual machines (VMs) Phave the most significant difference in completion time. In
conjunction with load balancing, we developed a method for updating the placements of particles.
According to the experiment results, the proposed method surpasses existing metaheuristic and
heuristic algorithms regarding work scheduling and load balancing. This level of success has been
attainable because of the application of Artificial Neural Networks (ANN). ANN has demonstrated
promising outcomes in resource distribution. ANN is more accurate and faster than multilayer
perceptron networks at predicting targets.

Keywords: bioinspired; cloud computing; load balancing; particle swarm optimization (PSO);
resource utilization; task scheduling

1. Introduction

Using techniques from parallel and distributed computing, cloud computing makes
shared computer resources accessible to clients via the Internet. The “pay-as-you-go”
business model has nearly democratized cloud computing. Cloud providers, service
providers, and end users participate in this phase of software deployment. Cloud service
providers offer their customers computational capabilities via virtual computers (VMs).
Service providers utilize these virtual machines when it comes to application-level client
services. Service providers implement task scheduling algorithms to spread client jobs
across virtual machines, reduce response times, ensure a high quality of service (QoS),
and maximize resources. Because of this, the job scheduling algorithm is a vital part of
any cloud architecture. Cloud computing needs adjustments to the several scheduling
techniques utilized in various computer environments. It is possible for a scheduling
method optimized for a cluster to perform poorly in the cloud. Before the algorithm can
deal with the structure of the cloud environment, the method’s parts need to be moved into

Sustainability 2022, 14, 11982. https://doi.org/10.3390/su141911982 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su141911982
https://doi.org/10.3390/su141911982
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-9794-554X
https://doi.org/10.3390/su141911982
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su141911982?type=check_update&version=3

Sustainability 2022, 14, 11982 2 of 20

the problem space. The greater the variety of virtual machines and size of the workloads
being managed, the greater the number of available task configurations. Finding the
shortest path across all potential permutations is one of the most challenging problems in
computer science. Even though metaheuristic algorithms have already been utilized to
assist with cloud scheduling, the authors of this work have devised a new load balancing
version of the original PSO approach for cloud scheduling. A load balancing method and a
metaheuristic algorithm can be used to make both service providers and customers happy
(in terms of resource use and user happiness, respectively) (make-span reduction).

Our Contribution

1. Improve load balancing, so requests are distributed more fairly based on the machine’s
processing capacity. Improved VM load balancing resulted in much more significant
time reductions than previous research.

2. Examine the complete vector of resources (storage, RAM, and bandwidth) rather
than just the CPU when determining whether user requests are suitable with VMs.
Consequently, our model is more suited for the cloud.

3. To meet the needs of service providers and customers, there needs to be a fitness
function that cuts down on time while using resources better.

4. Previous approaches to work schedules would be simplified if a single-goal strategy
that considered the interests of both service providers and customers was implemented.

5. As a result, the PSO and load balancing algorithms can be effectively coupled.

The task scheduling algorithms can lengthen the time needed to complete work while
simultaneously reducing the throughput of the overall cloud system. In this regard, the goal
of cloud computing is to increase overall performance and make better use of the available
computing resources in an environment that contains various types of devices. Several
different work scheduling techniques, such as the ant colony optimization algorithm (ACO),
the particle swarm optimization algorithm (PSO), and the genetic algorithm (GA), are
utilized in a cloud computing environment. In this study, to schedule the activities in a load
balanced manner, we have linked the ANN technique with the BPSO strategy to create a
hybrid method. Our solution outperforms the traditional BPSO task scheduling algorithm
by increasing resource utilization by 22% and decreasing mean time by 33%. For this
contribution, we have developed a complete literature analysis and a novel load balancing-
enabled job scheduling system, as follows: in Section 2, you will find a discussion connected
to the BPSO and ANN, in addition to specifics addressing various work scheduling methods
for cloud computing. At the end of Section 2, there is also a comparison of the different
ways to schedule tasks in the form of a table. Section 3 elaborates on the issue formulation
and the ANN-BPSO approach, starting with definitions, an explanation of the BPSO
Technique, problem definition, and a discussion of the prospered framework, which consists
of BPSO and ANN. The ANN-BPSO model, System model, Inertia weight approach, and
suggested Task scheduler are all covered in this part. The experimental setup in the cloud
computing environment for task scheduling is discussed in Section 4, along with the
results, experimental configuration setup, dataset information, findings, and discussions.
Section 5 presents the research’s recommended conclusion with the future perspective of
task scheduling and load balancing in cloud computing.

2. Literature Survey

The hybrid strategy was utilized by Ahmad M. and his co-workers [1] to balance the
load in a cloud environment with diversely accessible resources. This method, known as
hybrid GA-PSO, allocates jobs to resources in the most effective manner possible. Utilizing
genetic algorithm and particle swarm optimization, its objectives are attained. The authors
suggest that using Max is less painful and less expensive while balancing the demand on
cloud computing infrastructure.

Workflow scheduling was introduced by Nirmala SJ et al. [2] to ensure that crucial
scientific procedures on IaaS clouds are planned. Therefore, workflow scheduling systems

Sustainability 2022, 14, 11982 3 of 20

that utilize Catfish’s particle swarm optimization (PSO) are more efficient and consume
fewer resources than their competitors. When a large number of jobs are conducted
concurrently, the execution of an algorithm consumes a significant amount of resources
and takes a long time. These solutions do not account for the necessity of load balancing in
the cloud work schedule, which continues to be a widespread problem.

Mishra et al. [3] devised the LB approach by modeling its structure after the charac-
teristics of a flock of birds using the BSO-LB algorithm. Virtual machines (VMs) represent
food particles in this scenario, while jobs represent birds. The authors received the datasets
utilized for their measurements from the cloudlet-based GoCJ. The authors have drastically
reduced the reaction time, allowing for an equal division of effort. The FCFS (First Come,
First Serve), SJF (Shortest Job First), and RR (Round Robin) approaches are compared along
with the proposed technique.

Muhammad Junaid et al. [4] used a support vector machine to classify the input
request. Depending on the categorization of the assignment, it was then assigned to a
hybrid metaheuristic approach that combined Ant colony optimization with file type
formatting. According to them, the hybrid metaheuristic algorithm they developed can be
used to keep cloud systems stable. Using criteria such as service level agreement violations,
migration times, overhead times, throughput, and quality of service, they compared the
efficacy of the suggested strategy.

A mutation that aids in workload distribution. When Awad AI et al. [5] proposed PSO,
they aimed to increase load balancing and dependability while decreasing transmission
costs, execution, transmission durations, make-spans, and round-trip times. In this method,
each virtual machine will execute a proportional number of tasks to its load. If there are
multiple significant projects, it is possible that the cloud system will not be able to correctly
balance the load, causing the task to take longer than usual to complete. In addition, they
did not consider the amount of time and money clients would need to implement their
ideas. Arabnejad H et al. [6] found that although these algorithms achieve good outcomes,
their great temporal complexity makes them less suitable for real-world computers. In
their investigation, Shabnam et al. [7] utilized the bat algorithm. For load balancing and
virtual machine optimization, a hybrid strategy is required. This swarm-based approach
has been created and implemented to optimize the load on the virtual machine, ultimately
resulting in the load on the actual computer being balanced. Yousef Fahim et al. [8] propose
a metaheuristic bat technique for assigning virtual machine work.

In Kruekaew B et al. [9]’s implementation of a hybrid approach, an ABC algorithm and
a heuristic technique are merged, which can be regarded as a hybrid approach. Considering
the time required to develop and distribute the load is essential. It is possible to demonstrate
that this method is effective in either homogeneous or heterogeneous contexts. Using this
method, we could significantly minimize the number of conflicting factors previously
investigated. This algorithm may have been evaluated against a dataset from the real world
by assessing several different qualities of service criteria, such as resource consumption,
reaction time, etc.

Mala Yadav et al. [10] have developed a multi-criterion scheduling technique for
multiprocessor computer systems. This application combines quantum computing and the
gravitational search approach, both of which were inspired by nature. This study considers
both homogeneous and heterogeneous conditions to determine whether the proposed
strategy is beneficial. According to the findings, it produces better-than-anticipated results
for the various scheduling objectives, such as load balancing, resource usage, and make-
span. This method may have been enhanced in terms of consuming less energy and for
workflow applications.

Mala Yadav and colleagues [11] conceived a hybrid metaheuristic algorithm. This
system is composed of the genetic and particle swarm optimization algorithms. The
primary objective of this study is to find a solution, or at least an approximation of a
solution, to the problem of load balancing between virtual machines. The authors assert
that the findings obtained from the tests were the best that could have been obtained under

Sustainability 2022, 14, 11982 4 of 20

the conditions. Banerjee S et al. [12] designed load balancing to distribute cloudlets (tasks)
around virtual machines (VMs) based on each machine’s capability, hence decreasing
task completion time as well as the makespan of VMs and hosts in the data center. This
strategy assigns large workloads (those with a significant size) to VMs that are already
available. However, prioritizing large tasks can significantly increase the delay for many
minor actions (small jobs), resulting in a significantly longer overall completion time. The
cost of execution and resource utilization have not been recognized as indicators of the
essential quality of service by cloud providers and clients. Sequentially, many algorithms
restrict themselves to a limited set of resources and job sizes to offer an optimal result
(large and small tasks). By adopting a BPSO-based task scheduling technique, we provide
an initial population and target function more suited to the work at hand and context.
Our approach reduces the time required to finish a make-span, while enhancing resource
consumption and existing model summary outcomes, as illustrated in Table 1.

Table 1. Summary of the related work.

References Applied Method Approach Advantage Drawback

[13] The new strategy for task
allocation

Provision of load
balancing by using task

allocation strategy

• Minimizing the VM
make-span

• Reducing the time of task
completion

• Not scalable
• Significance degree of

the metrics is not used

[14] Improved weighted round
robin algorithm

Task based Load
Balancing

• Processing time
• Effective resource utilization

• Schedule nonredemptive
dependent tasks to the
VMs

• Significance degree of
the metrics is not used

[15] SPV-based PSO algorithm

Migration of tasks
requiring computing

intensity to
highperforming computer

• Minimization of processing
costs

• Minimization of transfer
time

• Feasibility in heterogeneous
systems

• Scalability is not
provided

• The metrics’ significance
level is not utilized

[16] PSO
Allocation of extra tasks

causing overload to
correspond VMs

• Minimal task execution time
• Limited task transfer time

• Mutual
independence-based
tasks execution

• Metrics’ significance
level is not utilized

[17] Genetic algorithm
Allocation of extra tasks

causing overload to
corresponding VMs

• Task transfer time
• Execution costs
• Minimum Energy

consumption usage
• Minimal length of task

sequence

• Large time spent on task
scheduling and low
speed

• Significance degree of
the metrics is not used

[18] Honeybee algorithm It models the nutrition
behaviour of honeybees

• Minimization of time spent
of VM wait time of the task

• Expanding the transfer
bandwidth

• Consideration of sequence
priority in VM task sequence

• Prolonging the response time
• Minimization of make-span

• Migration of mutually
independent tasks

• Insufficient level of
scalability

• Significance degree of
the metrics is not used

3. Proposed System

The BPSO method, which employs an approach-based binary particle swarm opti-
mization method, can be used to plan and balance a large number of heterogeneous virtual
machines rapidly and efficiently [19–29]. First, we describe a new BPSO for task scheduling

Sustainability 2022, 14, 11982 5 of 20

and load balancing in cloud computing. Finally, we illustrate and assess the algorithm’s
temporal complexity.

3.1. The Following Definitions Are Included in This Section

What is the meaning of “to start”? It is a graphic device. A tuple can be thought of as
the fundamental unit of virtual machines (VM). The ID of a virtual machine is its number
of processing elements (PEs), the MIPS is its execution speed per PE, and the prenumber is
the number of PEs within the virtual machine. VM is the machine identification number
for a virtual machine [30–35].

Definition 1 (Task). To determine how many PES are required to accomplish a task on a suitable
virtual machine (VM), you must know the task’s ID (id), length (in millimeters imperial), and the
number of PE (the number of PE needed to run a job on a VM).

Definition 2 (optimal solution). To maximize your resources, your running time, and your
overall cost, you must plan in advance. This study found that different sets of tasks should be split
up among many different types of virtual machines (VMs).

Definition 3 (degree of imbalance” (DI)). To determine how evenly your virtual machines are
used [36–42]. Therefore, a lower DI value demonstrates that the load is more evenly distributed.
The formula Equation is utilised to compute the DI (1).

DI =
Mmax −Mmin

Mavg
(1)

Maximum and minimum execution times, together with an overall average, are
reported for each VM.

Definition 4 (the length of time a virtual machine exists). This is the overall amount of time
required for a virtual machine (VM) to complete all of its operations [43–48]. Equation (2) indicates
that it is denoted by the letter “CM”. n is the number of virtual machines [12] and jobs that can be
executed concurrently (2).

CMi = ∑n
j=1

Mj.Length
vmi.pesnumber× vmi.mips

, with i ∈ {1, 2, . . . m} (2)

Definition 5 (make-span). Each task includes a “make-span” that indicates how long it will
take to accomplish all of them [5]. Therefore, the scheduler is doing an excellent job of allocating
workloads to resources. EQ summarizes it thus, (3):

makespan = max 1≤i≤m{CMi} (3)

Definition 6. Utilization of resources is a performance metric that measures the workplace use
of resources. If cloud service providers have a high rate of resource usage, they can optimize their
earnings. Equation (4) computes the RL [17], or resource consumption:

RL =
∑m

i=1 CMi

makespan× i
(4)

Definition 7 (execution expenditure). Execution costs (EX) are the fees a cloud user pays to the
cloud provider for the utilisation of resources to meet a project’s objectives. Most consumers must
utilise cloud computing in an efficient manner with a short payback period. We can determine the
execution cost using Equation (5), and algorithm notations are provided in Abbreviations.

Sustainability 2022, 14, 11982 6 of 20

3.2. Using BPSO to Schedule Tasks

In the context of BPSO work scheduling, particles are characterized as matrices, and
one feasible solution is task distribution among heterogeneous virtual machines using a
m × n position allocation matrix. In the matrix, columns represent job allocation and rows
represent jobs assigned to virtual machines. A single virtual machine is required for each
task, and the number 1 in each column indicates that a particular task has been given to
a virtual machine, whilst zero indicates that no work has been assigned. Abbreviations
demonstrates that there are three virtual machines, each with seven workloads. Similar to
the location matrix, the velocity matrix for each particle has an element range of [0, 1]. To
illustrate the ideal method for distributing jobs across heterogeneous virtual machines, we
can use the notations “pBest” and “gBest”, which are matrices of zero and one, respectively.

3.3. Binary Particle Swarm Optimization

Using metaheuristics, optimization problems involving discrete functions such as
integer programming, scheduling, and routing can be resolved. Eberhart and Kennedy
conceived and suggested binary particle swarm optimization (BPSO), which examines
the binary search space to determine what exists. In an effort to create a middle ground
between exploration and extraction, BPSO blends local and global search algorithms. All
particles’ velocities are continuously updated by combining the particle’s position with the
best possible location for that particle (pBest), and the greatest possible location globally
(pGlobal) (gBest).

Unlike PSO, which changes the position of each particle based on its current position
and velocity, BPSO uses only the particle’s current velocity. The sigmoid function is widely
applied for updating particle locations. Binary numbers can also be used to demonstrate
where and how fast particles in a population are moving.

3.4. Problem Description

Consider swarm optimization with p particles, m VMs of heterogeneous types, and
n distinct forms of workload (T). This matrix, expressed as (m × n) = (m + n), depicts the
distribution of jobs across these virtual machines. This is a position allocation matrix for a
particle k that specifies where the task corresponds to (5).

PAK =

Vm1
Vm2

.

.

.
Vmm

x1,1x1,2x1,3 x1,n−1x1,n
x2,1x2,2x2,3 x2,n−1x2,n

.

.

.
xm,1xm,2xm,3 xm,n

 (5)

where xij = {1 i f Tj is assigned to Vmi

0 else

Each particle in the swarm represents a possible solution that could lead to a viable
solution. In other words, this indicates that the perfect solution may exist within the
subatomic particle k. Therefore, in this procedure, all particles are subjected to the same
number of iterations prior to the identification of a particle that provides the expected
ideal response, based on repeated comparisons between these particles. As illustrated
by the equation, one technique to expedite the procedure is to iterate each particle the
same number of times (5). As a meta-heuristic algorithm, BPSO becomes less applicable
in real-world circumstances. If you lack a particle that can produce an optimum response,
you cannot guarantee an ideal outcome. The distinct activities and three virtual machines
tasks are provided in Table 2. This work therefore contains two sub-problems, which are as
follows [40–48]:

Sustainability 2022, 14, 11982 7 of 20

1. How to use the BPSO method to organize and balance different kinds of jobs on
different kinds of virtual machines in the cloud.

2. How can the time complexity of BPSO be reduced so that it can be used in real-world
situations?

Table 2. A particle k for seven distinct activities and three virtual machines.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

VM1 0 1 0 0 1 0 0

VM2 1 0 1 0 0 0 1

VM3 0 0 0 1 0 1 0

3.5. Scheduling and Load Balancing via Binary Particle Swarm Optimization

Here, we elaborate on a new, low-complexity, low-cost BPSO for scheduling and
balancing heterogeneous cloud-based virtual machine operations. First, we explain the
suggested BPSO framework and define the problem-related objective function in order to be
more specific. To accelerate research into binary space, we have established a revolutionary
concept and calculation for each particle in our model. This provides for substantial time
savings while delivering the highest quality solution available. In light of this, we present
two constraints, namely update and optimization constraints, to determine how many
fitness solutions can quickly generate an ideal solution [49–53]. The final step in our effort
to reduce simulation costs is to develop a more accurate model of particle position, based
on a load balancing method with an updating constraint. Our fitness evaluation technique
has been improved to prevent particles from wandering too far from the optimal response.

3.5.1. The BPSO Framework

BPSO can be utilised to address the problem of job scheduling and load balancing
utilising the cloud computing paradigm depicted in Figures 1 and 2. These are the three
components that comprise the cloud system; the demands of users are divided into several
tasks and sent to the cloud management as the initial module. For each virtual machine,
cloud management (CM) generates a local work queue (VM). IBPSO-LBS, together with our
pricing model and mapping, is a submodule of CM. IBPSO-LBS schedules all jobs across
heterogeneous VMs based on updating and optimization constraints [54–59]. Mapping
assigns each local queue to a VM, and the price model determines the execution cost for
all user tasks. A virtual machine manager for many hosts concludes the third module.
Numerous virtual machines are deployed for various purposes.

3.5.2. Objective Function

Virtual machines (VMs) running on a variety of hosts and performing a range of
tasks each have their own unique completion time, according to Equation CTi (2). The
completion time difference of m diverse projects is defined as:

dct =
∣∣CTi − CTj

∣∣ (6)

where i and j have values between 1 and m, and i and j are not equivalent. dct is
meant to identify virtual machines that are overcrowded or underloaded. As indicated
in Equation (6), the objective function attempts to reduce the disparity between available
heterogeneous VMs and overall completion time, while reducing user task waiting times.
This strategy simultaneously reduces time and metrics.

As a result, Equation (7) represents the objective function:

f (CT) = max(CTi − CTj
∣∣/1 ≤ i

∣∣j ≤ m
}

Sustainability 2022, 14, 11982 8 of 20

where CT:
(CT1, CT2, CT3, . . . CTm)dctmax (7)

As restrictions for updating and optimising, the sigmoid function and the minimum
completion time for unique VMs are utilised, respectively. The computation of these
constraints is detailed in Section 3.5.4.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 24

Figure 1. Proposed ANN-BPSO system architecture.

Figure 2. BPSO Framework.

3.5.2. Objective Function

Figure 1. Proposed ANN-BPSO system architecture.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 24

Figure 1. Proposed ANN-BPSO system architecture.

Figure 2. BPSO Framework.

3.5.2. Objective Function

Figure 2. BPSO Framework.

Sustainability 2022, 14, 11982 9 of 20

3.5.3. Definition of a Particle in Context

This stage of the study aims to identify a reference particle in order to expedite the
search in binary space and permit convergence on an ideal solution. This value has been
calculated using the output of the sigmoid function. As a starting point, the researchers
determine the potential solution of a particle.

S is utilized to transform values between zero and one in the velocity (Vk(i, j)) of each
k-particle, as demonstrated in Equation (8). Using the transformed data, it is feasible to
anticipate which virtual machine will be assigned to which task. Negative velocity values
are applied first, followed by the multiplication of random values in Equation (8), such that
the usable value of 1 is preserved:

S(Vk(i, j)) = 1
1+exp(−Vk(i,j)∗r

with i ∈ {1, 2, . . . , m}
and j ∈ {1, 2, . . . , n}

(8)

The ith row and jth column element of the kth velocity matrix (n) illustrate the number
of different kinds of virtual machines (m) and jobs (n). In Equation (9), all of the up-to-date
values from each VM are utilised to determine the normalization coefficient for a particle k:

zi
k =

n

∑
j=1

S(Vk(i, j)) (9)

The normalisation coefficient of particle k in the ith row is. It is possible to determine
the particle k’s maximum and minimum normalising coefficients from Equation (9) and its
average and intermediate normalising coefficients from Equations (10)–(13). It is essential to
differentiate between average and intermediate normalising coefficients, as they correspond
to distinct value ranges between the two extremes:

sigk
max = maxk

1≤i≤m(zk
i) (10)

sigk
min = mink

1≤i≤m(zk
i) (11)

sigk
avg =

sigk
max + sigk

min

2
(12)

sigk
int =

sigk
max + sigk

avg

2
(13)

There are a few ways to calculate the updating coefficients for Equations (9)–(12). The
most important is to use Equations (14)–(16):

vck sigk
max

l max
(14)

vck
avg =

sigk
avg

l
(15)

vck sigk
int

l int
(16)

Calculating optimization coefficient and update coefficient based on Equations (14)–(16),
we may determine the interval [0, 1] for these coefficients. Equations (17) and (18) describe
how to execute two subtractions in order to arrive at the best coefficients:

xc = vck
max − vck

avg (17)

yc = vck
max − vck

int (18)

vck =
xc + yc

2
(19)

Sustainability 2022, 14, 11982 10 of 20

qck = xc + y (20)

A particle’s influence on a future solution may be measured using the updating and
optimization coefficients in Equations (19) and (20).

3.5.4. Execution Time for the Gap

Definition 8. In this study, the phrase “gap execution time” refers to the maximum execution
time difference (dctmax) that can lead to an optimal solution, as determined by the capacity of a
particle. The optimization and update coefficients determine this capacity. Constraints based on
optimization and updating coefficients are employed to establish two optimization and updating
constraints, which correspond to the longest and shortest gap execution periods, as illustrated in
Equations (21) and (22):

getkkminmax (21)

getkkminmin (22)

With the help of Equations (19) and (20), we can determine which heterogeneous VM
has the fastest completion time for particle k and a certain update.

Particle position updates are controlled by defining a minimum gap execution time
in Section 3.5.6. Because particles could get stuck in local optima and move too far away
from the best solution, the maximum gap execution time has been set. Based on our
calculations of the optimization and updating coefficients, we can identify two possible
ranges of optimal fitness solutions. In the first scenario, it is impossible to discover a fitness
solution that is smaller than or equal to the minimum gap execution time. Local optima are
difficult to achieve because particles can become trapped in them. Consequently, the total
running duration is greatly increased.

The second constraint on the fitness solution is the minimum and maximum gap
execution lengths. Local optimum conditions are insufficient to hold these particles. With
less time and a smaller window, scheduling efficiency increases.

3.5.5. Particle Velocity Is Updated

At each iteration t, the velocity matrix of a particle is updated using the following
Equation (23):

Vt+1
k(i, j) = w×Vt

k(i, j) + d1 × e1
×
(

pBestt
k(i, j)− Xt

k(i, j)
)
+ d2 + e2

×
(

pBestt
k(i, j)− Xt

k(i, j)
) (23)

where w is the inertia factor influencing the local and global abilities of the algorithm;
∀(i.j), i /∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}, Vt

k(i, j) /∈ [0, 1] and Xt
k(i, j) /∈ {0, 1} are the

element in ith row and jth column of the kth velocity matrix and the element in ith row
and jth column of the kth position matrix at iteration t, respectively; a random number is
defined in terms of its position in space (0 or 1), whereas the weights impacting cognitive
factors (D1) and social factors (D2) are defined in terms of their values (0 or 1). pBestt

k and
gBestt

k represent particle k’s global and local best position, respectively.

3.5.6. Interia Value

LDDIW is used as the starting point for iterative inertia weighting, which is implemented
as a variable parameter here. An example of this may be found in Equation (24), below:

y = ymax +
(ymin − ymax)

itermax
× iter (24)

Sustainability 2022, 14, 11982 11 of 20

For the BPSO algorithm, the maximum and minimum inertia weights can be found
here ymax and ymin here. iter and itermax denote the current and maximum iteration time,
both of which are set to 100. The best values are between 0.9 and 0.5.

3.6. Proposed ANN-BPSO Algorithm

The suggested ANN-IBPSO algorithm, as depicted in Algorithm 1 and Figure 3 is
described in this section.

Algorithm 1. Pseudocode of ANN-BPSO

1. Initiate the position and velocity vectors of each particle.
2. Create a discrete version of the continuous position vector.
3. Calculate the fitness value of each particle using a fitness function.
4. This is the first time that the best location has been allocated to a particle’s “psobest”.

Instead of using “pbest”, use the particle’s current position value instead if its current fitness
value is higher than its “psobest”.

5. The particle with the highest fitness value should be chosen as the best.
6. Change the vectors of each particle using the following equations:

Vj + 1 = qVj + i1n1 ∗ (psobest− xj) + i2n2 ∗ (psobest− xj), jits f oriteration (25)

Xj + 1 = Xj + Vj + 1 (26)

Since the acceleration coefficients are n1 and n2, we can use them to produce random values
for psobest, which is the optimal position for all of the particles in our population.

7. Once the termination condition has been met, return to step 2 and repeat step 7. Once all
iterations have been completed, we have reached the terminating condition when there is no
further change in particle fitness.

8. Finally, the best particle is produced.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 24

Figure 3. Flowchart for ANN using BPSO algorithm.

Algorithm 1. Pseudocode of ANN-BPSO
1. Initiate the position and velocity vectors of each particle.
2. Create a discrete version of the continuous position vector.
3. Calculate the fitness value of each particle using a fitness function.
4. This is the first time that the best location has been allocated to a particle’s “psobest”.

Instead of using “pbest”, use the particle’s current position value instead if its current
fitness value is higher than its “psobest”.

5. The particle with the highest fitness value should be chosen as the best.
6. Change the vectors of each particle using the following equations: 𝑉𝑗 + 1 = 𝑞𝑉𝑗 + 𝑖1𝑛1 ∗ (𝑝𝑠𝑜𝑏𝑒𝑠𝑡 − 𝑥𝑗) + 𝑖2𝑛2 ∗ (𝑝𝑠𝑜𝑏𝑒𝑠𝑡 − 𝑥𝑗), 𝑗𝑖𝑡𝑠𝑓𝑜𝑟𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (25) 𝑋𝑗 + 1 = 𝑋𝑗 + 𝑉𝑗 + 1 (26)

Since the acceleration coefficients are n1 and n2, we can use them to produce random
values for psobest, which is the optimal position for all of the particles in our popu-
lation.

7. Once the termination condition has been met, return to step 2 and repeat step 7. Once
all iterations have been completed, we have reached the terminating condition when
there is no further change in particle fitness.

8. Finally, the best particle is produced.

Figure 3. Flowchart for ANN using BPSO algorithm.

Sustainability 2022, 14, 11982 12 of 20

Using a binary PSO algorithm, Jean Pepe Buanga Mapetu and his coworkers devel-
oped their method. We require an immediate solution for the scheduling and balancing of
a large number of diverse VMs. Utilizing an appropriate BPSO algorithm architecture, task
scheduling and load balancing are performed. In this structure, there are three components.
In the first module, user requirements are broken into individual jobs. This responsibility
falls to the cloud administrator. The Cloud Manager, the second module, creates a local
queue for each virtual machine. In this module, the BPSO approach is used to balance work
by assigning each local queue to the appropriate virtual machine, taking optimization con-
straints into account. In addition, the pricing model takes the whole cost of the completed
work into account. Three modules rely on many hosts; the virtual machine manager keeps
track of all the virtual machines that are being utilized to accomplish user-initiated tasks.
This method is scalable if executed correctly.

3.7. Analysis of Complexity

The ANN-BPSO method proposed in this study may be divided into two fundamental
phases: the initialization of particles and velocity, and updates to particle positions and
velocities, as well as fitness solution evaluations. Before estimating the algorithm’s time
complexity, it is crucial to determine how long it takes to complete each stage. Position and
velocity must be initialized for each particle in a swarm optimization of p particles. Each
particle can be viewed as having a n ∗ n matrix of virtual machines (VMs). This calculation
involves O particles, O virtual machines, and O tasks (pnm).

Additional rounds of t (the number of iterations) are employed to analyse the position
and velocity of each particle in order to find a fitness solution. This phase’s time complexity
is determined by the number of iterations, particles, tasks, and virtual machines (VMs).
In this circumstance, you must fight with these two extremes. Consider the number of
repetitions. If we wish to identify the ideal solution, we must determine how many
iterations and particles we skipped during our search. Temporal complexity is equal to
zero because all iterations and particles have concluded (spnm). In an ideal situation, x, s,
and y should be satisfied quickly by line 2 and 5 of Algorithm 1 O (s-x) (p-y) nm is the new
temporal complexity’s new complexity.

4. Result and Evaluation

In this section, we compare our proposed ANN-BPSO method to the state-of-the-
art scheduling algorithms already in use, and we explain the experimental findings and
evaluation of its performance. Five other scheduling algorithms were compared to our
suggested algorithm to see how well it worked in terms of make-span, average waiting
time, response time, and resources used.

Environmental Setup

It is difficult to try out new approaches or ideas when the infrastructure is inflexible, as
it often is in a cloud computing environment like Amazon EC2 or Microsoft Azure, because
of issues like security, speed, and the high cost in currency of repeating testing [60–64].
These sorts of tests are difficult to execute on real-world cloud infrastructures since they
need a lot of effort to make them scalable and repeatable.

According to previous research, the CloudSim-3.0.3 simulator may be used to assess a
proposed algorithm’s performance in real-world scenarios. Additional data was created
at random by the simulator itself and used in the testing. It was possible to write all of
the Java code and execute it concurrently on an Intel Core i5-6500 PC running at 3.2 GHz
with 4GB of RAM. Table 3 lays out the components and parameters of our model. First,
the experiment on independent jobs and the impact of update coefficient, and second,
experiments on varied workloads and number of virtual machines are related to these
factors in CloudSim parameters [65,66]. Since all VMs are spread evenly across all hosts, the
first value represents how things were originally set up. The VMs are distributed unevenly
between hosts, which is reflected in the second result.

Sustainability 2022, 14, 11982 13 of 20

Table 3. Degree of Imbalance (DI) analysis of ANN-BPSO technique with existing methods.

Degree of Imbalance (s)

N. of Tasks Heuristic Meta-Heuristic PSO IBPSO-LBS Heuristic-FSA ANN-BPSO

1000 3.678 2.275 1.985 0.957 0.197 0.0365
2000 3.875 2.945 2.256 1.234 0.214 0.0628
3000 3.987 2.845 2.578 1.856 0.296 0.8751
4000 4.238 3.214 2.865 1.334 0.398 0.0911
5000 4.967 3.546 2.983 0.987 0.324 0.0998

As a way to test our proposed ANN-BPSO method, we established a task size of
100,000 to 600,000 MI for a single job, and between 1000 and 5000 tasks can be assigned at
a time, with the number of heterogeneous virtual machines being constant at 150. Each
of the 15 hosts had an equal number of virtual machines. Under capacity limits, more
tasks means more incoming user tasks, which is what we are testing in this study. This
experiment employs a large number of tasks to find out how well ANN-BPSO performs in
a scenario where the number of tasks increases but all hosts have about the same number
of VMs and overall processing speeds. Below, Table 3 illustrates the outcomes of our
algorithm in contrast to other current algorithms such as Heuristic, Meta-Heuristic, PSO,
and IBPSO-LBS, in terms of degree of imbalance, average result utilization, average waiting
time tasks and resource utilization, and make-span and reaction times.

As demonstrated in Figure 4, the ANN-BPSO method has a lower degree of imbalance
than the Heuristic-FSA, Heuristic, Meta-heuristic, PSO, and IBPSO-LBS methods. As a
result, the proposed approach outperforms the other current methods in terms of load
balancing. For 1000 tasks considered, the degree of imbalance is 0.0365 s for the ANN-BPSO
method, whereas for Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA the DI
is 3.678 s, 2.275 s, 1.985 s, 0.957 s, and 0.197 s, respectively. For 5000 tasks, the DI for the
ANN-BPSO method is 0.0998 s while it is 4.967 s, 3.546 s, 2.983 s, 0.987 s, and 0.324 s for
Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA, respectively.
Sustainability 2022, 14, x FOR PEER REVIEW 15 of 24

Figure 4. Degree of Imbalance (DI) analysis of ANN-BPSO technique with existing methods.

From Figure 5 & Table 4, we can see that, there is a noticeable difference between
ANN-BPSO and the other algorithms in terms of the average resource utilisation (RU).
Never underestimate the importance of RU. This necessitates a very minimal amount of
resource waste. Because of this, the ANN-BPSO method makes optimal use of the various
heterogeneous resources readily available. For 1000 tasks considered, the RU is 96.84% for
the ANN-BPSO method, whereas for Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and
Heuristic-FSA, the DI is 91.23%, 92.24%, 93.36%, 94.05%, and 95.34%, respectively. For
5000 tasks, the RU for the ANN-BPSO method is 93.56% while it is 87.26%, 88.24%, 89.12%,
90.27%, and 91.91% for Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA,
respectively.

Table 4. Average resource utilization analysis of ANN-BPSO technique with existing methods.

Average Resource Utilization (%)
N. of Tasks Heuristic Meta-Heuristic PSO IBPSO-LBS Heuristic-FSA ANN-BPSO

1000 91.23 92.24 93.36 94.05 95.34 96.84
2000 90.56 91.45 92.24 93.65 94.37 95.21
3000 89.45 90.39 91.41 92.26 93.29 94.54
4000 88.36 89.23 90.52 91.34 92.36 94.09
5000 87.26 88.24 89.12 90.27 91.91 93.56

Figure 4. Degree of Imbalance (DI) analysis of ANN-BPSO technique with existing methods.

From Figure 5 & Table 4, we can see that, there is a noticeable difference between
ANN-BPSO and the other algorithms in terms of the average resource utilisation (RU).
Never underestimate the importance of RU. This necessitates a very minimal amount of
resource waste. Because of this, the ANN-BPSO method makes optimal use of the various
heterogeneous resources readily available. For 1000 tasks considered, the RU is 96.84%
for the ANN-BPSO method, whereas for Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and
Heuristic-FSA, the DI is 91.23%, 92.24%, 93.36%, 94.05%, and 95.34%, respectively. For
5000 tasks, the RU for the ANN-BPSO method is 93.56% while it is 87.26%, 88.24%, 89.12%,

Sustainability 2022, 14, 11982 14 of 20

90.27%, and 91.91% for Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA,
respectively.

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 24

Figure 5. Average resource utilization analysis of ANN-BPSO technique with existing methods.

The make-span of the ANN-BPSO approach in comparison to the other existing tech-
niques is provided in Figure 6 and Table 5. There is a reduction in overall execution time
while using our suggested approach for a different job. The make-span for the ANN-BPSO
method is 90 units for 1000 tasks considered, whereas the make-span for Heuristic, Meta-
Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA is 365 s, 260 s, 150 s, 96 s, and 95 s, respec-
tively. For 5000 tasks, the make-span for the ANN-BPSO method is 150 s, while it is 395 s,
297 s, 200 s, 170 s, and 170 s for Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-
FSA, respectively.

Table 5. Make-span analysis of ANN-BPSO technique with existing methods.

Make-Span (s)

N. of Tasks Heuristic
Meta-

Heuristic PSO
IBPSO-

LBS
Heuristic-

FSA
ANN-
BPSO

1000 365 260 150 96 95 90
2000 371 265 170 110 100 96
3000 385 255 190 130 120 100
4000 390 280 195 140 140 120
5000 395 297 200 170 170 150

Figure 5. Average resource utilization analysis of ANN-BPSO technique with existing methods.

Table 4. Average resource utilization analysis of ANN-BPSO technique with existing methods.

Average Resource Utilization (%)

N. of Tasks Heuristic Meta-Heuristic PSO IBPSO-LBS Heuristic-FSA ANN-BPSO

1000 91.23 92.24 93.36 94.05 95.34 96.84
2000 90.56 91.45 92.24 93.65 94.37 95.21
3000 89.45 90.39 91.41 92.26 93.29 94.54
4000 88.36 89.23 90.52 91.34 92.36 94.09
5000 87.26 88.24 89.12 90.27 91.91 93.56

The make-span of the ANN-BPSO approach in comparison to the other existing
techniques is provided in Figure 6 and Table 5. There is a reduction in overall execution
time while using our suggested approach for a different job. The make-span for the ANN-
BPSO method is 90 units for 1000 tasks considered, whereas the make-span for Heuristic,
Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA is 365 s, 260 s, 150 s, 96 s, and 95 s,
respectively. For 5000 tasks, the make-span for the ANN-BPSO method is 150 s, while it
is 395 s, 297 s, 200 s, 170 s, and 170 s for Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and
Heuristic-FSA, respectively.

Sustainability 2022, 14, x FOR PEER REVIEW 17 of 24

Figure 6. Make-span analysis of ANN-BPSO technique with existing methods.

In Table 6 and Figure 7, the AWT of ANN-BPSO’s is lower than the six other methods.
There will be less waiting time for each job to be assigned to a virtual machine, which will
result in faster processing times. For AWT, the ANN-BPSO algorithm performs better. For
1000 tasks, the ANN-BPSO method has an AWT of 74 s, whereas the Heuristic, Meta-
Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA methods have AWTs of 142 s, 140 s, 135 s,
120 s, and 108 s, respectively. For 5000 number of tasks, the AWT for the ANN-BPSO
method is 110 s while it is 159 s, 155 s, 150 s, 161 s, and 134 s for Heuristic, Meta-Heuristic,
PSO, IBPSO-LBS, and Heuristic-FSA, respectively.

Table 6. Average waiting time task (AWT) analysis of ANN-BPSO technique with existing methods.

Average Waiting Time Task(s)
N. of Tasks Heuristic Meta-Heuristic PSO IBPSO-LBS Heuristic-FSA ANN-BPSO

1000 142 140 135 120 108 74
2000 149 145 139 134 115 70
3000 150 149 141 146 120 85
4000 155 150 145 159 125 90
5000 159 155 150 161 134 110

Figure 6. Make-span analysis of ANN-BPSO technique with existing methods.

Sustainability 2022, 14, 11982 15 of 20

Table 5. Make-span analysis of ANN-BPSO technique with existing methods.

Make-Span (s)

N. of Tasks Heuristic Meta-Heuristic PSO IBPSO-LBS Heuristic-FSA ANN-BPSO

1000 365 260 150 96 95 90
2000 371 265 170 110 100 96
3000 385 255 190 130 120 100
4000 390 280 195 140 140 120
5000 395 297 200 170 170 150

In Table 6 and Figure 7, the AWT of ANN-BPSO’s is lower than the six other methods.
There will be less waiting time for each job to be assigned to a virtual machine, which
will result in faster processing times. For AWT, the ANN-BPSO algorithm performs better.
For 1000 tasks, the ANN-BPSO method has an AWT of 74 s, whereas the Heuristic, Meta-
Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA methods have AWTs of 142 s, 140 s, 135 s,
120 s, and 108 s, respectively. For 5000 number of tasks, the AWT for the ANN-BPSO
method is 110 s while it is 159 s, 155 s, 150 s, 161 s, and 134 s for Heuristic, Meta-Heuristic,
PSO, IBPSO-LBS, and Heuristic-FSA, respectively.

Table 6. Average waiting time task (AWT) analysis of ANN-BPSO technique with existing methods.

Average Waiting Time Task(s)

N. of Tasks Heuristic Meta-Heuristic PSO IBPSO-LBS Heuristic-FSA ANN-BPSO

1000 142 140 135 120 108 74
2000 149 145 139 134 115 70
3000 150 149 141 146 120 85
4000 155 150 145 159 125 90
5000 159 155 150 161 134 110

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 24

Figure 7. (AWT) analysis of ANN-BPSO technique with existing methods.

In Figure 8 and Table 7, the reaction times for various numbers of jobs for the Heu-
ristic, Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-LBS methods are provided, as well
as the proposed ANN-BPSO approach. For the large number of tasks considered, the
ANN-BPSO method has a response time of 1.84 s, whereas the Heuristic, Meta-Heuristic,
PSO, IBPSO-LBS, and Heuristic-FSA methods have response times of 3.99 s, 3.54 s, 2.89 s,
2.24 s, and 1.99 s, respectively. For 100 tasks, the response time for the ANN-BPSO method
is 5.81 s, while it is 9.75 s, 8.73 s, 8.49 s, 7.63 s, and 6.55 s for Heuristic, Meta-Heuristic,
PSO, IBPSO-LBS, and Heuristic-FSA, respectively.

Table 7. Response time analysis of ANN-BPSO technique with existing methods.

Response Time in Seconds
N. of Tasks Heuristic Meta-Heuristic PSO IBPSO-LBS Heuristic-FSA ANN-BPSO

20 3.99 3.54 2.89 2.24 1.99 1.84
40 5.66 4.87 4.53 3.87 3.66 2.56
60 6.96 5.91 5.74 5.33 4.76 3.17
80 7.54 7.23 6.93 6.75 5.36 4.38

100 9.75 8.73 8.49 7.63 6.55 5.81

Figure 7. (AWT) analysis of ANN-BPSO technique with existing methods.

In Figure 8 and Table 7, the reaction times for various numbers of jobs for the Heuristic,
Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-LBS methods are provided, as well as
the proposed ANN-BPSO approach. For the large number of tasks considered, the ANN-
BPSO method has a response time of 1.84 s, whereas the Heuristic, Meta-Heuristic, PSO,
IBPSO-LBS, and Heuristic-FSA methods have response times of 3.99 s, 3.54 s, 2.89 s, 2.24 s,
and 1.99 s, respectively. For 100 tasks, the response time for the ANN-BPSO method is
5.81 s, while it is 9.75 s, 8.73 s, 8.49 s, 7.63 s, and 6.55 s for Heuristic, Meta-Heuristic, PSO,
IBPSO-LBS, and Heuristic-FSA, respectively.

Sustainability 2022, 14, 11982 16 of 20
Sustainability 2022, 14, x FOR PEER REVIEW 19 of 24

Figure 8. Response time analysis of ANN-BPSO technique with existing methods.

In Figure 9 and Table 8, the resource utilization of the proposed ANN-BPSO ap-
proach with existing methods for various numbers of jobs is illustrated. The resource uti-
lization for the ANN-BPSO method is 0.25 s for the number of tasks considered, whereas
the resource utilization for the Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-
FSA methods is 0.72 s, 0.65 s, 0.53 s, 0.43 s, and 0.36 s, respectively. For 50 tasks, the re-
source utilisation for the ANN-BPSO method is 0.66 s, while it is 0.97 s, 0.93 s, 0.88 s, 0.75
s, and 0.69 s for Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA, respec-
tively.

Table 8. Resource utilization analysis of ANN-BPSO technique with existing methods.

Resource Utilization in Seconds
N. of
Tasks Heuristic

Meta-
Heuristic PSO IBPSO-LBS Heuristic-FSA

ANN-
BPSO

10 0.72 0.65 0.53 0.43 0.36 0.25
20 0.87 0.79 0.68 0.58 0.41 0.38
30 0.91 0.83 0.75 0.66 0.59 0.42
40 0.94 0.87 0.83 0.67 0.64 0.57
50 0.97 0.93 0.88 0.75 0.69 0.66

Figure 8. Response time analysis of ANN-BPSO technique with existing methods.

Table 7. Response time analysis of ANN-BPSO technique with existing methods.

Response Time in Seconds

N. of Tasks Heuristic Meta-Heuristic PSO IBPSO-LBS Heuristic-FSA ANN-BPSO

20 3.99 3.54 2.89 2.24 1.99 1.84
40 5.66 4.87 4.53 3.87 3.66 2.56
60 6.96 5.91 5.74 5.33 4.76 3.17
80 7.54 7.23 6.93 6.75 5.36 4.38
100 9.75 8.73 8.49 7.63 6.55 5.81

In Figure 9 and Table 8, the resource utilization of the proposed ANN-BPSO approach
with existing methods for various numbers of jobs is illustrated. The resource utilization for
the ANN-BPSO method is 0.25 s for the number of tasks considered, whereas the resource
utilization for the Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA methods
is 0.72 s, 0.65 s, 0.53 s, 0.43 s, and 0.36 s, respectively. For 50 tasks, the resource utilisation
for the ANN-BPSO method is 0.66 s, while it is 0.97 s, 0.93 s, 0.88 s, 0.75 s, and 0.69 s for
Heuristic, Meta-Heuristic, PSO, IBPSO-LBS, and Heuristic-FSA, respectively.

Sustainability 2022, 14, x FOR PEER REVIEW 20 of 24

Figure 9. Resource utilization analysis of ANN-BPSO technique with existing methods.

5. Conclusions and Future Scope
In order to reduce the amount of time spent waiting for and balancing cloud compu-

ting resources, this study created ANN-BPSO, a low-cost binary variant of the well-known
PSO algorithm (BPSO). Our solution outperforms the traditional BPSO task scheduling
algorithm by increasing resource utilization by 22% and decreasing mean time by 33%.
The following adjustments are essential:
• A low-complexity and low-cost load balancing approach based on BPSO is being de-

veloped.
• A reference for each particle is being sought to accelerate the search for an optimal

solution and the search exploration in binary space.
• The method of updating particle positions about the load balancing strategy is being

enhanced to prevent overloaded and underloaded VMs.
BPSO uses two “reference” coefficients: optimization and updating; this is essential

to remember. The optimization and updating constraints depend on the maximum and
minimum execution time gaps, per this reference. In this system, there are two constraints:
an optimization constraint that inhibits the attainment of local optimums and an updating
constraint that governs particle location updates about the method and goal of load bal-
ancing. By imposing an optimization constraint, it is possible to lower both the running
time of the ANN-BPSO method and the waiting time for user tasks. At the same time, an
objective function predicts the most significant difference in completion time across all
assigned VMs. It has been demonstrated that the ANN-BPSO algorithm outperforms FSA
and meta-heuristic approaches such as IBPSO-LB when simulating environmental
changes. VMs, distinct tasks (ICTs), and varied workload sizes are examples of ILTs. This
unique technique is faster than heuristic algorithms in real-world computing environ-
ments with low temporal complexity, which benefits consumers by reducing request wait
times. Our proposed method successfully balances the load, schedules work, and makes
the system scalable. In the last few years, energy-aware strategies have drawn considera-
ble attention from the research community. However, in our proposed algorithm, we do
not have to consider energy consumption, which is one of the critical parameters

Figure 9. Resource utilization analysis of ANN-BPSO technique with existing methods.

Sustainability 2022, 14, 11982 17 of 20

Table 8. Resource utilization analysis of ANN-BPSO technique with existing methods.

Resource Utilization in Seconds

N. of Tasks Heuristic Meta-Heuristic PSO IBPSO-LBS Heuristic-FSA ANN-BPSO

10 0.72 0.65 0.53 0.43 0.36 0.25
20 0.87 0.79 0.68 0.58 0.41 0.38
30 0.91 0.83 0.75 0.66 0.59 0.42
40 0.94 0.87 0.83 0.67 0.64 0.57
50 0.97 0.93 0.88 0.75 0.69 0.66

5. Conclusions and Future Scope

In order to reduce the amount of time spent waiting for and balancing cloud computing
resources, this study created ANN-BPSO, a low-cost binary variant of the well-known
PSO algorithm (BPSO). Our solution outperforms the traditional BPSO task scheduling
algorithm by increasing resource utilization by 22% and decreasing mean time by 33%. The
following adjustments are essential:

• A low-complexity and low-cost load balancing approach based on BPSO is being
developed.

• A reference for each particle is being sought to accelerate the search for an optimal
solution and the search exploration in binary space.

• The method of updating particle positions about the load balancing strategy is being
enhanced to prevent overloaded and underloaded VMs.

BPSO uses two “reference” coefficients: optimization and updating; this is essential
to remember. The optimization and updating constraints depend on the maximum and
minimum execution time gaps, per this reference. In this system, there are two constraints:
an optimization constraint that inhibits the attainment of local optimums and an updating
constraint that governs particle location updates about the method and goal of load bal-
ancing. By imposing an optimization constraint, it is possible to lower both the running
time of the ANN-BPSO method and the waiting time for user tasks. At the same time, an
objective function predicts the most significant difference in completion time across all
assigned VMs. It has been demonstrated that the ANN-BPSO algorithm outperforms FSA
and meta-heuristic approaches such as IBPSO-LB when simulating environmental changes.
VMs, distinct tasks (ICTs), and varied workload sizes are examples of ILTs. This unique
technique is faster than heuristic algorithms in real-world computing environments with
low temporal complexity, which benefits consumers by reducing request wait times. Our
proposed method successfully balances the load, schedules work, and makes the system
scalable. In the last few years, energy-aware strategies have drawn considerable attention
from the research community. However, in our proposed algorithm, we do not have to
consider energy consumption, which is one of the critical parameters nowadays. So, in the
future, we aim to satisfy both cloud service providers and their customers by including
energy usage and live migration factors that significantly impact cloud performance and
load balancing. The ANN-BPSO model method will be tested with actual workflows,
workloads, and cloud infrastructures. The study of multi-goal objectives will form the
basis of our future work. We also aimed to learn more about the dynamic load balancing
method to combat this waste of cloud resources. These findings suggest that we should
also implement measures to reduce SLA violations to boost service quality.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Sustainability 2022, 14, 11982 18 of 20

Abbreviations

Notations Description of notations
M Number of virtual machines (VM)
N Number of tasks arrived at given instance time
VM l VM with lowest completion time
VM h VM with highest completion time
dct max Maximum completion time difference
Xt

k Current particle position for particle k at iteration t
pBestt

k Best distribution of tasks into heterogeneous VMs for particle k at iteration t
Optsol Optimal solution
gBestt

k global best distribution of tasks into heterogeneous VMs for particle k at iteration t
F(gBestt

k) Fitness value of gBest

References
1. Manasrah, A.M.; Ali, H.B. Workflow Scheduling Using Hybrid GA-PSO Algorithm in Cloud Computing. Wirel. Commun. Mob.

Comput. 2018, 2018, 1934784. [CrossRef]
2. Nirmala, S.J.; Bhanu, S.M.S. Catfish-PSO based scheduling of scientific workflows in IaaS cloud. Computing 2016, 98, 1091–1109.

[CrossRef]
3. Mishra, K.; Majhi, S.K. A binary Bird Swarm Optimization based load balancing algorithm for cloud computing environment.

Open Comput. Sci. 2021, 11, 146–160. [CrossRef]
4. Junaid, M.; Sohail, A.; Ahmed, A.; Baz, A.; Khan, I.A.; Alhakami, H. A Hybrid Model for Load Balancing in Cloud Using File

Type Formatting. IEEE Access 2020, 8, 118135–118155. [CrossRef]
5. Awad, A.I.; El-Hefnawy, N.A.; Abdel-kader, H.M. Enhanced particle swarm optimization for task scheduling in cloud computing

environments, International Conference on Communication, Management and Information Technology (ICCMIT2015). Procedia
Comput. Sci. 2015, 65, 920–929. [CrossRef]

6. Arabnejad, H.; Barbosa, J.G.; Prodan, R. Low-time complexity budget–deadline constrained workflow scheduling on heteroge-
neous resources. Future Gener. Comput. Syst. 2016, 55, 29–40. [CrossRef]

7. Sharma, S.; Verma, S.; Jyoti, K. Kavita Hybrid Bat Algorithm for Balancing Load in Cloud Computing. Int. J. Eng. Technol. 2018,
7, 26–29. [CrossRef]

8. Kruekaew, B.; Kimpan, W. Enhancing of Artificial Bee Colony Algoithm for Virtual Machine Scheduling and Load Balancing
Problem in Cloud Computing. Int. J. Comput. Intell. Syst. 2020, 13, 496–510. [CrossRef]

9. Meng, X.B.; Gao, X.Z.; Lu, L.; Liu, Y.; Zhang, H. A new bio-inspired optimization algorithm: Bird Swarm Algorithm. J. Exp. Theor.
Artif. Intell. 2016, 28, 673–687. [CrossRef]

10. Yadav, M.; Gupta, S. Hybrid Meta-Heuristic VM Load Balancing Optimization Approach. J. Inf. Optim. Sci. 2020, 41, 577–586.
[CrossRef]

11. Banerjee, S.; Adhikari, M.; Kar, S.; Biswas, U. Development and analysis of a new cloudlet allocation strategy for QoS improvement
in cloud. Arab. J. Sci. Eng. 2015, 40, 1409–1425. [CrossRef]

12. Chaudhary, D.; Kumar, B. An analysis of the load scheduling algorithms in the cloud computing environment. In Proceedings of
the IEEE 2014 9th International Conference on Industrial and Information Systems (ICIIS), Gwalior, India, 15–17 December 2014;
pp. 1–6.

13. Gupta, N.; Maashi, M.S.; Tanwar, S.; Badotra, S.; Aljebreen, M.; Bharany, S. A Comparative Study of Software Defined Networking
Controllers Using Mininet. Electronics 2022, 11, 2715. [CrossRef]

14. Devi, D.C.; Uthariaraj, V.R. Load balancing in cloud computing environment using improved weighted round robin algorithm
for nonredemptive dependent tasks. Sci. World J. 2016, 2016, 3896065. [CrossRef]

15. Guo, L.; Zhao, S.; Shen, S.; Jiang, C. Task scheduling optimization in cloud computing based on heuristic algorithm. J. Netw. 2012,
7, 547–553. [CrossRef]

16. Ramezani, F.; Lu, J.; Hussain, F.K. Task-based system load balancing in cloud computing using particle swarm optimization. Int.
J. Parallel Program. 2014, 42, 739–754. [CrossRef]

17. Ramezani, F. Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments. World
Wide Web 2015, 18, 1737–1757. [CrossRef]

18. Babu, L.D.; Krishna, P.V. Honeybee behavior inspired load balancing of tasks in cloud computing environments. Appl. Soft
Comput. 2013, 13, 2292–2303.

19. Gaidhane, P.J.; Nigam, M.J. A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of
complex systems. J. Comput. Sci. 2018, 27, 284–302. [CrossRef]

20. Pan, K.; Chen, J. Load balancing in cloud computing environment based on an improved particle swarm optimization. In
Proceedings of the 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
23–25 September 2015.

http://doi.org/10.1155/2018/1934784
http://doi.org/10.1007/s00607-016-0494-9
http://doi.org/10.1515/comp-2020-0215
http://doi.org/10.1109/ACCESS.2020.3003825
http://doi.org/10.1016/j.procs.2015.09.064
http://doi.org/10.1016/j.future.2015.07.021
http://doi.org/10.14419/ijet.v7i4.12.20986
http://doi.org/10.2991/ijcis.d.200410.002
http://doi.org/10.1080/0952813X.2015.1042530
http://doi.org/10.1080/02522667.2020.1733190
http://doi.org/10.1007/s13369-015-1626-9
http://doi.org/10.3390/electronics11172715
http://doi.org/10.1155/2016/3896065
http://doi.org/10.4304/jnw.7.3.547-553
http://doi.org/10.1007/s10766-013-0275-4
http://doi.org/10.1007/s11280-015-0335-3
http://doi.org/10.1016/j.jocs.2018.06.008

Sustainability 2022, 14, 11982 19 of 20

21. Khanesar, M.A.; Teshnehlab, M.; Shoorehdeli, M.A. A novel binary particle swarm optimization. In Proceedings of the 16th
Mediteranean Conference on Control & Automation, Corsica, France, 25–27 June 2008; pp. 1–6.

22. Abdi, S.; Motamedi, S.A.; Sharifian, S. Task scheduling using modified PSO algorithm in cloud computing environment. In
Proceedings of the International Conference on Machine Learning. Electrical and Mechanical Engineering, Duba, United Arab
Emirates, 8–9 January 2014; pp. 37–41.

23. Saramu, K.A.; Jaganathan, S. Intensified scheduling algorithm for virtual machine tasks in cloud computing. Artif. Intell. Evol.
Algorithms Eng. Syst. 2015, 325, 283–290.

24. Gomathi, B.; Krishnasamy, K. Task scheduling algorithm based on hybrid particle swarm optimization in cloud computing
environment. J. Theor. Appl. Inf. Technol. 2013, 55, 33–38.

25. Panda, S.K.; Jana, P.K. An efficient resource allocation algorithm for IaaS cloud. In Proceedings of the ACM/11th International
Conference on Distributed Computing and Internet Technology, Bhubaneswar, India, 5–8 February 2015; pp. 351–355.

26. Alex, M.E.; Kishore, R. Forensics framework for cloud computing. Comput. Electr. Eng. 2017, 60, 93–205. [CrossRef]
27. Luong, N.C.; Wang, P.; Niyato, D.; Wen, Y.; Han, Z. Resource management in cloud networking using economic analysis and

pricing models: A survey. IEEE Commun. Surv. Tutor. 2017, 19, 954–1001. [CrossRef]
28. Masdari, M.; Salehi, F.; Jalali, M.; Bidaki, M. A survey of PSObased scheduling algorithms in cloud computing. J. Netw. Syst.

Manag. 2017, 25, 122–158. [CrossRef]
29. Kumar, S.; Sahoo, B.; Parida, P.P. Load balancing in cloud computing: A big picture. J. King Saud Univ.—Comput. Inf. Sci. 2018,

32, 149–158.
30. Hoang, H.N.; Van, S.L.; Maue, H.N.; Bien, C.P.N. Admission control and scheduling algorithms based on ACO and PSO heuristic

for optimizing cost in cloud computing. Recent. Dev. Intell. Inf. Database Syst. Sci. 2016, 642, 15–28.
31. Shishira, S.R.; Kandasamy, A.; Chandrasekaran, K. Survey on Meta heuristic optimization techniques in cloud computing. In

Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur,
India, 21–24 September 2016; pp. 1434–1440.

32. Thakur, A.; Goraya, M.S. A taxonomic survey on load balancing in cloud. J. Netw. Comput. Appl. 2017, 98, 43–57. [CrossRef]
33. Ghomi, J.; Rahmani, A.M.; Qader, N.N. Load-balancing algorithms in cloud computing: A survey. J. Netw. Comput. Appl. 2017,

88, 50–71. [CrossRef]
34. Vigneshwaran, P.; Umamakeswari, G.S.; ShaileshDheep, G. A study of various meta-heuristic algorithms for scheduling in cloud.

Int. J. Pure Appl. Math. 2017, 115, 205–208.
35. Madni, S.H.H.; Latiff, M.S.A.; Coulibaly, Y.; Abdulhamid, S.M. An appraisal of meta-heuristic resource allocation techniques for

IaaS cloud. Indian J. Sci. Technol. 2016, 9, 1–14. [CrossRef]
36. Roy, S.; Banerjee, S.; Chowdhury, K.R.; Biswas, U. Development and analysis of a three phase cloudlet allocation algorithm. J.

King Saud Univ. —Comput. Inf. Sci. 2017, 29, 473–483. [CrossRef]
37. Djebbar, E.I.; Belalen, G. Tasks scheduling and resource allocation for high data management in scientific cloud computing

environment. In Springer International Conference on Mobile, Secure and Programmable Networking; Springer: Cham, Switzerland,
2016; Volume 10026, pp. 16–27.

38. Adhikari, M.; Amgoth, T. Heuristic-based load balancing algorithm for IaaS cloud. Future Gener. Comput. Syst. 2018, 81, 156–165.
[CrossRef]

39. Diwakar, M.; Tripathi, A.; Joshi, K.; Memoria, M.; Singh, P. Latest trends on heart disease prediction using machine learning and
image fusion. Mater. Today Proc. 2021, 37, 3213–3218. [CrossRef]

40. Bharany, S.; Sharma, S.; Badotra, S.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Alassery, F. Energy-Efficient Clustering Scheme for
Flying Ad-Hoc Networks Using an Optimized LEACH Protocol. Energies 2021, 14, 6016. [CrossRef]

41. Kaur, K.; Bharany, S.; Badotra, S.; Aggarwal, K.; Nayyar, A.; Sharma, S. Energy-efficient polyglot persistence database live
migration among heterogeneous clouds. J. Supercomput. 2022. [CrossRef]

42. Bharany, S.; Sharma, S.; Bhatia, S.; Rahmani, M.K.I.; Shuaib, M.; Lashari, S.A. Energy Efficient Clustering Protocol for FANETS
Using Moth Flame Optimization. Sustainability 2022, 14, 6159. [CrossRef]

43. Bharany, S.; Sharma, S.; Khalaf, O.I.; Abdulsahib, G.M.; Al Humaimeedy, A.S.; Aldhyani, T.H.H.; Maashi, M.; Alkahtani, H. A
Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing. Sustainability 2022, 14, 6256. [CrossRef]

44. Bharany, S.; Kaur, K.; Badotra, S.; Rani, S.; Kavita; Wozniak, M.; Shafi, J.; Ijaz, M.F. Efficient Middleware for the Portability of PaaS
Services Consuming Applications among Heterogeneous Clouds. Sensors 2022, 22, 5013. [CrossRef]

45. Heidari, A.; Jabraeil Jamali, M.A.; Jafari Navimipour, N.; Akbarpour, S. Internet of Things offloading: Ongoing issues, opportuni-
ties, and future challenges. Int. J. Commun. Syst. 2020, 33, e4474. [CrossRef]

46. Shuaib, M.; Badotra, S.; Khalid, M.I.; Algarni, A.D.; Ullah, S.S.; Bourouis, S.; Iqbal, J.; Bharany, S.; Gundaboina, L. A Novel
Optimization for GPU Mining Using Overclocking and Undervolting. Sustainability 2022, 14, 8708. [CrossRef]

47. Jabraeil Jamali, M.A.; Bahrami, B.; Heidari, A.; Allahverdizadeh, P.; Norouzi, F. The IoT Landscape. In Towards the Internet of
Things; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 1–8. [CrossRef]

48. Bharany, S.; Sharma, S. Intelligent Green Internet of Things: An Investigation. In Machine Learning, Blockchain, and Cyber Security
in Smart Environments; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022; pp. 1–15.

49. Heidari, A.; Jafari Navimipour, N. Service discovery mechanisms in cloud computing: A comprehensive and systematic literature
review. Kybernetes 2021, 51, 952–981. [CrossRef]

http://doi.org/10.1016/j.compeleceng.2017.02.006
http://doi.org/10.1109/COMST.2017.2647981
http://doi.org/10.1007/s10922-016-9385-9
http://doi.org/10.1016/j.jnca.2017.08.020
http://doi.org/10.1016/j.jnca.2017.04.007
http://doi.org/10.17485/ijst/2016/v9i4/80561
http://doi.org/10.1016/j.jksuci.2016.01.003
http://doi.org/10.1016/j.future.2017.10.035
http://doi.org/10.1016/j.matpr.2020.09.078
http://doi.org/10.3390/en14196016
http://doi.org/10.1007/s11227-022-04662-6
http://doi.org/10.3390/su14106159
http://doi.org/10.3390/su14106256
http://doi.org/10.3390/s22135013
http://doi.org/10.1002/dac.4474
http://doi.org/10.3390/su14148708
http://doi.org/10.1007/978-3-030-18468-1_1
http://doi.org/10.1108/K-12-2020-0909

Sustainability 2022, 14, 11982 20 of 20

50. Heidari, A.; Jafari Navimipour, N. A new SLA-aware method for discovering the cloud services using an improved nature-inspired
optimization algorithm. PeerJ Comput. Sci. 2021, 7, e539. [CrossRef] [PubMed]

51. Bharany, S.; Sharma, S.; Frnda, J.; Shuaib, M.; Khalid, M.I.; Hussain, S.; Iqbal, J.; Ullah, S.S. Wildfire Monitoring Based on Energy
Efficient Clustering Approach for FANETS. Drones 2022, 6, 193. [CrossRef]

52. Talwar, B.; Arora, A.; Bharany, S. An Energy Efficient Agent Aware Proactive Fault Tolerance for Preventing Deterioration of
Virtual Machines within Cloud Environment. In Proceedings of the 2021 9th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions) (ICRITO), Nodia, India, 3–4 September 2021.

53. Heidari, A.; Jabraeil Jamali, M.A.; Jafari Navimipour, N.; Akbarpour, S. Deep Q-Learning Technique for Offloading Offline/Online
Computation in Blockchain-Enabled Green IoT-Edge Scenarios. Appl. Sci. 2022, 12, 8232. [CrossRef]

54. Oryani, B.; Moridian, A.; Sarkar, B.; Rezania, S.; Kamyab, H.; Khan, M.K. Assessing the financial resource curse hypothesis in
Iran: The novel dynamic ARDL approach. Resour. Policy 2022, 78, 102899. [CrossRef]

55. Heidari, A.; Jafari Navimipour, N.; Unal, M. The History of Computing in Iran (Persia)—Since the Achaemenid Empire.
Technologies 2022, 10, 94. [CrossRef]

56. Sarkar, A.; Guchhait, R.; Sarkar, B. Application of the Artificial Neural Network with Multithreading within an Inventory Model
Under Uncertainty and Inflation. Int. J. Fuzzy Syst. 2022, 24, 2318–2332. [CrossRef]

57. Heidari, A.; Navimipour, N.J.; Unal, M. Applications of ML/DL in the management of smart cities and societies based on new
trends in information technologies: A systematic literature review. Sustain. Cities Soc. 2022, 85, 104089. [CrossRef]

58. Shi, J.; Li, J.; Usmani, A.S.; Zhu, Y.; Chen, G.; Yang, D. Probabilistic real-time deep-water natural gas hydrate dispersion modeling
by using a novel hybrid deep learning approach. Energy 2021, 219, 119572. [CrossRef]

59. Kugele AS, H.; Ahmed, W.; Sarkar, B. Geometric programming solution of second degree difficulty for carbon ejection controlled
reliable smart production system. RAIRO—Oper. Res. 2022, 56, 1013–1029. [CrossRef]

60. Shi, J.; Li, X.; Khan, F.; Chang, Y.; Zhu, Y.; Chen, G. Artificial bee colony Based Bayesian Regularization Artificial Neural Network
approach to model transient flammable cloud dispersion in congested area. Process Saf. Environ. Prot. 2019, 128, 121–127.
[CrossRef]

61. Shi, J.; Xie, W.; Huang, X.; Xiao, F.; Usmani, A.S.; Khan, F.; Yin, X.; Chen, G. Real-time natural gas release forecasting by using
physics-guided deep learning probability model. J. Clean. Prod. 2022, 368, 133201. [CrossRef]

62. Choi, S.-B.; Dey, B.K.; Kim, S.J.; Sarkar, B. Intelligent servicing strategy for an online-to-offline (O2O) supply chain under demand
variability and controllable lead time. RAIRO—Oper. Res. 2022, 56, 1623–1653. [CrossRef]

63. Shi, J.; Chang, Y.; Khan, F.; Zhu, Y.; Chen, G. Methodological improvements in the risk analysis of an urban hydrogen fueling
station. J. Clean. Prod. 2020, 257, 120545. [CrossRef]

64. Mahapatra, A.S.; Mahapatra, M.S.; Sarkar, B.; Majumder, S.K. Benefit of preservation technology with promotion and time-
dependent deterioration under fuzzy learning. Expert Syst. Appl. 2022, 201, 117169. [CrossRef]

65. Shi, J.; Chang, Y.; Xu, C.; Khan, F.; Chen, G.; Li, C. Real-time leak detection using an infrared camera and Faster R-CNN technique.
Comput. Chem. Eng. 2020, 135, 106780. [CrossRef]

66. Bharany, S.; Badotra, S.; Sharma, S.; Rani, S.; Alazab, M.; Jhaveri, R.H.; Reddy Gadekallu, T. Energy efficient fault tolerance
techniques in green cloud computing: A systematic survey and taxonomy. Sustain. Energy Technol. Assess. 2022, 53, 102613.
[CrossRef]

http://doi.org/10.7717/peerj-cs.539
http://www.ncbi.nlm.nih.gov/pubmed/34084936
http://doi.org/10.3390/drones6080193
http://doi.org/10.3390/app12168232
http://doi.org/10.1016/j.resourpol.2022.102899
http://doi.org/10.3390/technologies10040094
http://doi.org/10.1007/s40815-022-01276-1
http://doi.org/10.1016/j.scs.2022.104089
http://doi.org/10.1016/j.energy.2020.119572
http://doi.org/10.1051/ro/2022028
http://doi.org/10.1016/j.psep.2019.05.046
http://doi.org/10.1016/j.jclepro.2022.133201
http://doi.org/10.1051/ro/2022026
http://doi.org/10.1016/j.jclepro.2020.120545
http://doi.org/10.1016/j.eswa.2022.117169
http://doi.org/10.1016/j.compchemeng.2020.106780
http://doi.org/10.1016/j.seta.2022.102613

	Introduction
	Literature Survey
	Proposed System
	The Following Definitions Are Included in This Section
	Using BPSO to Schedule Tasks
	Binary Particle Swarm Optimization
	Problem Description
	Scheduling and Load Balancing via Binary Particle Swarm Optimization
	The BPSO Framework
	Objective Function
	Definition of a Particle in Context
	Execution Time for the Gap
	Particle Velocity Is Updated
	Interia Value

	Proposed ANN-BPSO Algorithm
	Analysis of Complexity

	Result and Evaluation
	Conclusions and Future Scope
	References

