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Abstract: Liquefaction has been responsible for several earthquake-related hazards in the past.
An earthquake may cause liquefaction in saturated granular soils, which might lead to massive con-
sequences. The ability to accurately anticipate soil liquefaction potential is thus critical, particularly
in the context of civil engineering project planning. Support vector machines (SVMs) and Bayesian
optimization (BO), a well-known optimization method, were used in this work to accurately forecast
soil liquefaction potential. Before the development of the BOSVM model, an evolutionary random
forest (ERF) model was used for input selection. From among the nine candidate inputs, the ERF
selected six, including water table, effective vertical stress, peak acceleration at the ground surface,
measured CPT tip resistance, cyclic stress ratio (CSR), and mean grain size, as the most important
ones to predict the soil liquefaction. After the BOSVM model was developed using the six selected
inputs, the performance of this model was evaluated using renowned performance criteria, including
accuracy (%), receiver operating characteristic (ROC) curve, and area under the ROC curve (AUC).
In addition, the performance of this model was compared with a standard SVM model and other
machine learning models. The results of the BOSVM model showed that this model outperformed
other models. The BOSVM model achieved an accuracy of 96.4% and 95.8% and an AUC of 0.93
and 0.98 for the training and testing phases, respectively. Our research suggests that BOSVM is a
viable alternative to conventional soil liquefaction prediction methods. In addition, the findings of
this research show that the BO method is successful in training the SVM model.

Keywords: liquefaction potential; prediction; Bayesian optimization; support vector machines; optimization

1. Introduction

Solid-to-liquid transitions in granular materials are known as liquefaction, and may
be caused by a growth in pore water pressure [1,2]. Seismic liquefaction of saturated soils,
which occurs as a result of earthquakes, is one of geotechnical engineers’ most pressing
problems. This is because the lateral expansion of soil mass might represent a significant
hazard to civil engineering works in the area if it occurs [1–3]. As an example, after the
Wenchuan earthquake of M 8.0 which struck China in 2008, both surface buildings and
subsurface utilities were damaged by liquefaction [1,2,4]. Consequently, estimating the
soil liquefaction potential is a significant issue, and must be considered when building
civil engineering structures [5–10]. Soil liquefaction potential may be measured in a variety
of ways, as described in the scientific literature (e.g., [11–13]). Since in situ observations
can only be made in regions where testing may be done on site, most approaches rely
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on separating non-liquefaction sections from liquefaction components (e.g., the shear
wave velocity (Vs) technique and flat dilatometer tests (DMTs)) [2,14]. Due to the great
uncertainty in both soil properties and earthquake scenarios, it is difficult to find a single
effective empirical formula for regression analysis. This is why scientists are working to
develop scientific predictive methods that are simpler, more intuitive, and more accurate
than the typical empirical models that were previously used to analyze soil liquefaction.

Liquefaction potential may be accurately predicted using artificial neural networks
(ANN)-based models, the most extensively used of all (e.g., [15–19]). In fact, ANNs have
been shown to be more efficient than statistical approaches, but they also display several
shortcomings, such as slow convergence speed, over-fitting, falling into local minima,
poor generalization, and so forth. Using post-liquefaction cone penetration test (CPT)
and standard penetration test (SPT) data, Muduli and Das [20,21] created the multi-gene
genetic programming (MGGP) technique to assess the ability of the soil to be liquefied.
It was discovered that a new instrument for assessing liquefaction could be marketed
and supported efficiently. Particle swarm optimization (PSO) was used to improve a
neuro-fuzzy GMDH model created by Javdanian et al. [22]. This model was shown to
be acceptable and reliable in this area. PSO was also hybridized with a kernel extreme
learning machine (KELM) to evaluate liquefaction potential [23]. To forecast the likelihood
of the soil liquefaction, Hoang and Bui [24] used a least squares support vector machine
(LSSVM) and a kernel Fisher discriminant analysis. Their findings demonstrated that the
suggested model is both acceptable and reliable in this domain. Soil liquefaction was also
predicted using the ensemble group method of data handling (EGMDH) [25]. The EGMDH
model was shown to be more accurate than the standard GMDH model in forecasting
soil liquefaction. Rahbarzare and Azadi [26] proposed an improved fuzzy support vector
machine (FSVM) based on PSO and a genetic method. According to the researchers,
FSVM performance was improved by using PSO and genetic algorithms (GAs). It seems
that machine learning models are able to solve liquefaction potential problems with an
acceptable level of accuracy. It is important to note that such models have been successfully
applied in different areas of civil engineering, as reported by many scholars [27–49]. Some
studies also employed Bayesian models to model the liquefaction triggers [50–52].

SVM models have been frequently utilized to forecast soil liquefaction. This method
has been hybridized with different optimization techniques, including genetic algorithms
(GAs), differential evolution (DE), grey wolf optimization (GWO), and kernel Fisher dis-
criminant analysis (KFDA) [24,53]. However, to the best of our knowledge, no study to
date has hybridized SVM with the Bayesian optimization (BO) technique, which is one
of the most effective optimization techniques. Thus, in order to forecast soil liquefaction
potential, this research develops a hybrid intelligence model (BOSVM). The remainder of
the paper is organized as follows: Section 2 explains the mechanics of soil liquefaction.
Section 3 goes on to describe the SVM and BO frameworks, as well as the datasets that
were employed in this investigation. The results and discussion are described in Section 4.
Finally, Section 5 gives a summary of this study.

2. Process of Soil Liquefaction

Saturated cohesionless soils liquefy when pore pressure rises, causing a loss in firmness
that may lead to cracking and crumbling [1]. More specifically, Sladen et al. [54] describe the
process of soils losing their shear resistance when subjected to cyclic, monotonic, or shock
loadings; subsequently, the soil flows like a liquid until the shear stresses that operate on its
mass are equal to or lower than its lowered resistance. In a broader sense, liquefaction is a
transition from solidity to fluidity that happens when the pore pressure and the functional
stresses are increased or decreased [1]. When soils are subjected to shearing forces, they
have a propensity to shrink in volume, which can lead to the process known as liquefaction.
After being sheared, saturated loose soil tends to compact into tighter particles that take up
fewer pore spaces, analogous to the way that water is driven out of pores when trapped in
them. Penetrating shear loads may cause pore water pressures to increase over time if the
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drainage system is blocked. When this occurs, stress is transferred from the soil mass to the
pore water, reducing the soil’s shear resistance and its effective stress [1]. Liquidity occurs
when the soil’s shear resistance is less than its static, driving shear stress, allowing the soil
to undergo structural damage. True liquefaction occurs only when the flow of soil is greater
than the undrained residual shear resistance of a contracting soil under a static shear stress,
according to Castro’s most restrictive description [55]. It is worth remembering that both
cyclic and monotonic shear stresses may lead to the liquefaction of cohesionless, loose soil.

3. Method

Soil liquefaction was predicted using a hybrid of the SVM model and the BO algorithm.
Input selection, data splitting, model construction, and evaluation were all part of the
procedure. A flowchart of this study is shown in Figure 1.
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3.1. Evolutionary Random Forest (ERF)

Input selection is a critical step in the development of any ML model. Input selection
refers to a process that identifies the most relevant inputs and removes irrelevant inputs
from the dataset and modelling process. In this study, the evolutionary random forest
(ERF) algorithm was employed. It is common practice to apply the random forest (RF)
method and its ensemble theory when working with large datasets, selecting features for
classification, and carrying out regression analyses. The RF method generates a variety of
weak regressors based on decision trees (DTs) using randomly selected inputs or sample
divisions from a training set. Each DT is created using data provided by the user, and
generates a decision-making model. In other words, characteristics in the dataset are
examined and disassembled in order to reach a satisfactory choice. Each model’s forecasted
decision outcomes are obtained by the algorithm throughout the regression procedure.
The mean of all the forecasts is used to reach the final forecast. Regardless of whether
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the overfitting issue is successfully mitigated, the RF’s arbitrary rule may impair learning
capacity. As a result, the evolutionary computation that improves the subset sampling
process [56,57] is expected to play a critical role in complementing the RF by enhancing the
searchability of the complex objective function.

As can be seen in Figure 2, randomly generated rules at the start of the experiment de-
termine data partitions and assign these subsets to each and every poor classifier/regressor.
The regressors anticipate the value of the training data and collect the average forecasts to
make a consensus. Regression accuracy results are used to gauge an individual’s fitness in
the evolutionary process. To improve accuracy and genetic characteristics of the number
of proposed individuals, repeated processes such as choosing, crossover, mutation, and
evaluation are later applied. If the individuals converge, the algorithm stops the replicating
phase and produces an optimum split of individuals as a model for regression. An ensem-
ble regression based on a prior stage’s optimum individual is offered in this subsequent
round of use of the trained model.
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3.2. Support Vector Machines

SVM is a ML approach that incorporates various methodologies such as maximum
interval hyperplane, relaxation variables, and kernel function. Statistical principles are be-
hind this ML model. The classification difficulties associate with few samples, nonlinearity,
and complexity may be solved with this method [58]. SVM has been progressively used in
civil engineering as interdisciplinary integration has become more widespread. A nonlin-
ear transformation is used to translate the input space samples into a high-dimensional
characteristic space, and then an optimum classification plane is found that divides the
samples linearly within the characteristic space as the next step [59,60]. The incidence
of soil liquefaction functions well with the features of the approach to overcome binary
classification issues in the study of soil liquefaction and its risk assessment (e.g., [61]).

Figure 3 depicts a schematic representation of the SVM concept. When a hyperplane is
compared to a sample point, it is known as a margin. The classifier’s capacity to generalize
improves with an increasing margin of error. As a result, finding the hyperplane that
maximizes the margin (i.e., the ideal hyperplane) is the primary goal of the SVM. There are
support vectors for every point on the hyperplane on either side of the margin, and the
categorization border is decided only by the support vectors, not by additional data nor
the quantity of data. Because of this, the optimization of the SVM’s hyperparameters is
essential. Among the several hyperparameters used in SVM, kernel type, C, and gamma
are among the most important. As previously stated, the kernel transforms the observed
data into a feature space. By imposing a penalty for every incorrectly classified data sample,
hyperparameter C manages the exchange between the decision boundary and precision.
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In various kernel types, gamma is a parameter linked to C. The influence of C is minimal
when gamma is large. When gamma is modest, C has an effect on the model comparable to
the effect it would have on a linear one.
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3.3. Bayesian Optimization Algorithm

The adjustment of learning parameters and model hyperparameters is an important
part of the implementation of ML algorithms [62]. Model or training process qualities are
defined by hyperparameters, which have a substantial impact on the model’s ultimate
outcome [63]. Conventional ML algorithms use BO as a hyperparameter optimization
(picking) strategy, as part of their overall design. The BO algorithm is extensively used
in pioneering AI because of its evident benefits when compared with the particle swarm
optimization algorithm, genetic algorithm, or other algorithms [63,64]. The Gaussian
process and the Bayesian theorem are used to optimize parameters in this technique.
A Bayesian ML approach and Gaussian process regression are used to generate a surrogate
for the objective, and to quantify the ambiguity in that surrogate. To determine the sample
position, an acquiring function can be expressed from this substitute. In Appendix A, the
typical circumstances in which the BO algorithm encounters difficulties are explained. In
addition, Figure 4 depicts a generic pseudocode of the BO.
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3.4. Performance Criteria

This study used several well-known performance criteria for classification. These
criteria include the confusion matrix, accuracy (%), the receiver operating characteristic
(ROC) curve, and the area under the ROC curve (AUC). The more accurate the model, the
closer the curve is to the model’s top-left corner. AUC values fall within a range of 0 to 1.
The greater the AUC, the more accurate the model.

3.5. Data for Modeling

The Great Tangshan Earthquake, which occurred on 28 July 1976, was a major natural
catastrophe in China. The number killed put the catastrophe at the top of the list of the most
devastating earthquakes of the 20th century. Hebei’s industrial metropolis of Tangshan,
home to almost a million people, was the epicenter of the earthquake. Initial estimates put
the death toll at 655,000, but this has since been revised to between 240,000 and 255,000, with
164,000 people suffering from serious injuries [1]. In order to build the models described
in this research, a database from prior studies was used [1]. The Tangshan Earthquake
was the subject of this database [65]. Several entries were omitted from the final analysis,
owing to incomplete or inaccurate data. Liquefaction potential was the sole parameter
included in the model output. Variables used in this study are listed in Table 1. A value of
“1” indicates that liquefaction has occurred in each example, whereas “0” indicates that it
has not. The overall cyclic shear stress caused by the earthquake is indicated by the term
τav. Modeling included the utilization of 79 different sets of data. The data were split into
training and test datasets, with a ratio of 70:30. To train the BOSVM model, this study used
5-fold cross-validation. The developed model was then tested using the test data.

Table 1. Variables used in this study.

Variable Symbol Unit Min Max

Earthquake magnitude M - 7.8 7.8
Effective vertical stress σ′v0 kPa 20.6 120.4
Total vertical stress σv kPa 16.7 244.2
Mean grain size D50 mm 0.06 0.48
Water table dw m 0.21 3.6
Peak acceleration at the ground surface amax g 0.1 1.1
Depth ds m 0.9 13.1
Measured CPT tip resistance qc MPa 0.98 18.57
CSR τav

σ′v0
- 0.08 0.42

Liquefaction observed * - - 0 1
* Target variable.

4. Results and Discussion
4.1. Input Selection

Input selection is a critical phase in the machine learning modelling process [54–57,66–69],
and is used to remove unnecessary variables while keeping those that are valuable. This study
employed the evolutionary random forest (ERF) technique for input selection. The dataset
used in this study consisted of nine candidate inputs, including M, dw, ds, σv, σ′v0, amax, qc,
CSR, and D50. These nine parameters were selected because of their effects on the liquefaction
from a geotechnical viewpoint; some of them were used in the previous related studies or
suggested as the most influential factor in liquefaction occurrence [1,19,23,50,51]. Nonetheless,
they have different levels of impact on liquefaction occurrence. It is necessary to keep intelli-
gent models as simple as possible. This can be achieved by considering the most influential
factors. To do this, the ERF selected six inputs, including dw, σ′v0, amax, qc, CSR, and D50.
Based on the ERF findings, a subset of these six inputs outperformed other input subsets on
the dataset utilized in this research. These inputs were used to develop SVM and BOSVM
models to predict soil liquefaction. It is important to mention that several parameters were
used to develop the ERF model. The selection scheme was set as “tournament”, p initialize



Sustainability 2022, 14, 11944 7 of 15

was set as 0.5, p mutation was set as−0.1, and p crossover was set as 0.5. The crossover type
was uniform. The accuracy of this model was 92.50%.

4.2. BOSVM Model Development

The hyperparameter optimization of the prediction model based on SVM was carried
out using the Bayesian optimization (BO) approach in this work. Hyperparameters such
as box constraint level and kernel scale were optimized using the BO technique for SVM
models based on the hybrid model. These settings were configured from 0.001 to 1000.
An overview of how the BO optimization method is used to optimize SVM parameters is
provided below:

1. Preparing the data: Using a suitable ratio, the data set is partitioned into training
and testing sets (70:30). The distribution of inputs after the data split is shown in
Figures 5 and 6.

2. Examination of fitness: The fitness function is computed and assessed before optimiz-
ing the target parameter value. The fitness function in this study is classification error.

3. Adjusting the settings: hyperparameter optimization criteria may be adjusted accord-
ing to the outcomes of each iteration, if desired.

4. Stop checking for conditions: Optimization stops once the best parameters have
been found.
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SVM was used in conjunction with one optimization technique (i.e., BO) to create a
hybrid intelligent model based on SVM that could better forecast soil liquefaction. As a
result of the aforementioned optimization, several hyperparameter settings and model
prediction results were produced.

One hundred iterations of the BOSVM model utilizing the fitness assessment of
classification error were used to obtain the optimal SVM hyperparameters. As shown
in Figure 7, convergence occurred in the BOSVM model before the maximum number of
iterations had been completed. After 19 iterations using the BOSVM approach, the optimum
SVM hyperparameters with the lowest classification error of 0.033 were found. This proves
that the strategy is reasonably effective in identifying the optimum hyperparameters. The
ability of BO to use all knowledge from prior runs in order to discover the next set of
hyperparameters may explain this high rate of convergence [70,71].

As the kernel and regularization parameter (C) were optimized for BO, the linear
kernel and a C value of 18.49 were the hyperparameters that best matched those values.
Prior to modeling, these variables would be used as BOSVM hyperparameter values,
whereas the standard SVM makes use of the default configuration. Both the SVM and
BOSVM models were evaluated using the accuracy (%), confusion matrix, and ROC curve
to verify and evaluate results. The ROC curve shows the predictive power of the models,
while the confusion matrix shows the specifics of the model’s prediction capacity.
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Figure 7. SVM model optimization process.

As stated in Table 2, the training accuracy of BOSVM is demonstrated to be 96.4%,
which is almost 5.5% better than the SVM’s 90.9% training accuracy. Moreover, the SVM
model’s test accuracy improved by 4.1% with the use of the BO algorithm. The BOSVM
model’s training and testing accuracy are fairly close together, indicating the model’s
stability in predicting soil liquefaction. Overall, soil liquefaction was better predicted with
BOSVM than with SVM.

Table 2. The confusion matrix of the models developed in this study.

Model Train Test

Actual Prediction Prediction

0 1 Accuracy (%) 0 1 Accuracy (%)

SVM
0 9 5 90.9 9 1 91.7
1 0 41 1 13

BOSVM
0 12 2 96.4 10 0 95.8
1 0 41 1 13

Figure 8 shows the ROC curve for both the training (Figure 8a) and testing (Figure 8b)
phases. The ROC curve is constructed by graphing the true positive rate versus the false
positive rate at different threshold levels. In addition, values of the area under the ROC
curve (AUC) are shown in this figure. AUC values higher than 0.9 are typically regarded
as excellent, according to Merghadi et al. [72]. Both the training and testing phases of the
BOSVM model have AUC values of above 0.9. There seems to be an adequate distribution
of ROC values for the BOSVM, and the majority are clustered towards the top.

As can be seen in Figure 9, the BOSVM model’s prediction performance was compared
with that of other models, including those for logistic regression, single decision trees,
boosted trees, and artificial neural networks (ANNs). The hybrid optimization model had
better predictive performance than other models (see Figure 6). There can be no doubt that
the BOSVM hybrid model can learn, evaluate, and forecast well from the given findings.
Soil liquefaction can be predicted by applying the suggested BOSVM hybrid model.

In addition, it should be noted that the entire datasets reported in this research were
utilized in the investigations carried out by Xue and Yang [1] and Cai et al. [53]. They
used three more input parameters (i.e., M, ds, and σv) together with the six inputs used
in the current study, and developed an adaptive neuro fuzzy inference system (ANFIS),
a least squares support vector machine (LSSVM) and a radial basis function neural network
(RBFNN) in combination with the optimization algorithms (i.e., the grey wolf optimization
(GWO), differential evolution (DE), and genetic algorithm (GA)) for predicting the soil
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liquefaction values. The current study’s results are comparable to those of the preceding
investigations. This shows that the BOSVM model suggested in this work can make
excellent forecasts.
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This study’s findings compare favorably with those of many previous soil liquefaction
studies that used different datasets. For example, accuracy values of 92.2% and 93.19% were
obtained in the studies conducted by Zhang et al. [61] and Hoang and Bui [24], respectively,
to predict soil liquefaction by introducing grey wolf optimization (GWO)-SVM and kernel
Fisher discriminant analysis (KFDA) with least square support vector machine (LSSVM)
techniques. In other words, the developed BOSVM prediction model outperformed the
other models in terms of accuracy. Consequently, this study recommends that the BOSVM
model be used and developed to anticipate soil liquefaction in the future.
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5. Limitations and Future Works

Future studies might use the model created in this research to predict soil liquefaction.
Soil liquefaction under more severe situations requires further data and research, and this
should be emphasized. Only under identical circumstances and with a suitable range
of database information should the hybrid model described here be used. It is recom-
mended that in the future more data samples and characteristics should be included in the
experimental database in order to improve model accuracy.

6. Conclusions

Soil liquefaction was the subject of this research, which used the hybridization of SVM
models. A renowned optimization strategy (i.e., BO) that has been effectively studied by
other scholars was chosen and integrated with SVM, and a BOSVM hybrid model was
constructed for prediction purposes. This model was constructed using six model inputs
and an output (i.e., soil liquefaction). For input selection, an ERF approach was used prior
to the development of this model. The nine possible inputs were narrowed down to the
six that were ultimately used. The performance of the SVM-based model was assessed
using accuracy (%), ROC curve, AUC, and confusion matrix. In addition, for comparison
purposes we predicted soil liquefaction using other proposed models (i.e., SVM, ANN,
KNN, boosted trees, and bagged trees). The BOSVM model outperformed all other applied
predictive approaches, with an accuracy of 96.4% and 95.8% and an AUC of 0.93 and 0.98
for training and testing, respectively, after being evaluated against all other created and
applied models. Therefore, the model developed in this work may be applied in future
studies to forecast soil liquefaction.

Author Contributions: Conceptualization, X.Z., B.H., M.M.S.S. and D.V.U.; methodology, X.Z., B.H.,
M.M.S.S. and D.V.U.; software, X.Z., B.H., M.M.S.S. and D.V.U.; formal analysis, X.Z., B.H., M.M.S.S.
and D.V.U.; writing—original draft preparation, X.Z., B.H., M.M.S.S. and D.V.U.; writing—review
and editing, X.Z., B.H., M.M.S.S., M.A.-B. and D.V.U.; visualization, X.Z., B.H., M.M.S.S. and D.V.U.;
supervision, M.M.S.S., M.A.-B. and D.V.U.; funding acquisition, M.M.S.S. All authors have read and
agreed to the published version of the manuscript.

Funding: The research is partially funded by the Ministry of Science and Higher Education of the
Russian Federation under the strategic academic leadership program ‘Priority 2030’ (Agreement
075-15-2021-1333 dated 30 September 2021).



Sustainability 2022, 14, 11944 12 of 15

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Acronym Term
AUC Area Under the ROC Curve
ANN Artificial Neural Network
BO Bayesian Optimization
CPT Cone Penetration Test
CSR Cyclic Stress Ratio
DT Decision Tree
DE Differential Evolution
EGMDH Ensemble Group Method of Data Handling
ERF Evolutionary Random Forest
DMT Flat Dilatometer Test
FSVM Fuzzy Support Vector Machine
GA Genetic Algorithm
GWO Grey Wolf Optimization
KELM Kernel Extreme Learning Machine
KFDA Kernel Fisher Discriminant Analysis
LSSVM Least Squares Support Vector Machine
ML Machine Learning
MGGP Multi-Gene Genetic Programming
ANFIS Neuro Fuzzy Inference System
PSO Particle Swarm Optimization
RBFNN Radial Basis Function Neural Network
RF Random Forest
ROC Receiver Operating Characteristic Curve
Vs Shear Wave Velocity
SPT Standard Penetration Test
SVM Support Vector Machine

Appendix A

The following are common situations in which the BO algorithm finds difficulties:

A∗ = arga∈Qmax f (a) (A1)

where Q is the set of possible a. The objective is to select a from Q such that the value of
f (a) is the smallest or largest.

At every iteration of the series optimization problem, BO is required to choose the
most advantageous observation value. The above-mentioned Gaussian method fully solves
this critical issue. The following formula expresses this:

f (a) ∼ GP(µ(a), k(a, a∗)) (A2)

where the mean function denotes µ(a), and the kernel function stands for k(a, a∗). The
following is the formula for the Gaussian kernel:

k(a, a∗) = exp
(
−1

2
‖a− a∗‖2

)
(A3)

The original value of the hyperparameter is replaced with the value determined by
the BO technique. A new hybrid model (BOSVM) is then developed.
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