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Abstract: A photovoltaic/thermal system (PV/T) was investigated experimentally using silicon
carbide nanofluid as a cooling fluid. A PV/T system was tested in Oman with 0.5 wt.% of nanopar-
ticles in terms of thermophysical properties, performance parameters, and efficiencies. At 25 ◦C,
it was found that there is an increase in the fluid’s thermal conductivity, density, and viscosity up
to 6.64%, 13%, and 12%, respectively. When examining the effect of increasing the density and
viscosity (by adding nanoparticles to the base fluid) on the pumping power, it was found that using
turbulent flow reduces the required pumping force and vice versa for the case of laminar flow. The
electrical efficiency was enhanced by up to 25.3% compared with the conventional PV module and
the thermal efficiency by up to 98.6% compared with the water-cooling PV/T system. The results
were compared with the literature in terms of cooling methods, nanoparticles, and similar studies that
used SiC nanofluid. The results and comparison of this study are useful for engineers and researchers
interested in nanofluid cooling of PV/T systems. The study aims to facilitate the task of engineers
and designers of photovoltaic plants in Oman to obtain the best means to overcome the effects of high
solar radiation intensity and high ambient temperatures and the best PV/T systems for this purpose.

Keywords: PV/T system; nano-SiC; stability; pumping power; thermophysical properties

1. Introduction

There are many sources of renewable energy, but solar energy has become more
attractive in the last few decades. The sunshine daily sends light and heat to the Earth.
Solar light is utilized by solar photovoltaics (PV) to generate electricity [1], while thermal
collectors utilize solar thermal energy [2]. Solar thermal energy is collected using solar
collectors for many applications such as solar water heaters, air heating, and concentrating
systems to generate electricity, etc. [3]. Combining PV and thermal collectors will produce
a photovoltaic/thermal (PV/T) system. The PV/T system will reduce the located area
and improve the system efficiency [4,5]. Many research studies have been conducted
to investigate PV/T systems in terms of technical, economic, environmental, and social
aspects. PV/T systems could be classified based on the type of cooling fluid, collector
configuration, etc. [6]. Furthermore, the PV/T fluid will reduce the PV temperature and
improve its electrical efficiency. Many studies published in the literature have investigated the
PV/T performance theoretically, experimentally, numerically, or a mix of approaches [7,8].

Many researchers and specialists have proposed and created new and different method-
ologies and strategies to evaluate the performance of PV/T systems. A concise survey
of these strategies is exhibited here. Sivamurugan et al. [9] designed and developed a
hybrid collector in which a PV panel is cooled with a nanofluid formed from manganese
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oxide–water. The electrical and thermal efficiencies of the system were examined when
the nanofluid was circulated at the flow rates of 0.5 and 1.0 LPM. The maximum thermal
efficiencies reached 48.1% and 53.8% when the nanofluid was circulated at volume flow
rates of 0.5 and 1.0 LPM, respectively. The highest electrical efficiencies reached were
18.32% and 19.35%, respectively, for the same two flow rates. Kim et al. [10] added silicon
carbide/indium tin oxide (SiC/ITO) to water to be used as a working coolant in a PV/T sys-
tem. The researchers used the optical transmittance at different mixing ratios to determine
the optimal mixing ratio of the SiC and ITO nanofluid. The hybrid liquid nanofluid showed
a maximum photothermal efficiency of 34.1%, which is 38.7% higher than that resulted
from using nano-SiC–water nanoparticles. Elangovan et al. [11] studied the effect of adding
nano-TiO2 to water on the temperature of the PV module and compared it to cooling
the module with water. The thermal efficiency of the nanofluid-cooled system reached
48.38% and 54.03% at flow rates of 0.5 l/m and 1.0 l/m, respectively. The highest electrical
efficiencies of the PV/T system were 18.32% and 19.35% for volume flow rates of 0.5 l/m
and 1.0 l/m, respectively. In addition, Menon et al. [12] used water/nano-CuO nanofluid
to cool an unglazed PVT system using a thermal collector made of serpentine sheets and
tubes. While the temperature of the PV panel reached 68.4 ◦C (at noon), the temperatures
of the PV panels in the water and nanofluid-cooled PV/T systems were reduced by 15 ◦C
and 23.7 ◦C, respectively. The electrical efficiencies of the water and nanofluid-cooled PV/T
systems were also increased by 12.32% and 35.67% compared to conventional PV modules,
respectively. The overall efficiency of the nanofluid-cooled PV/T system was above that of
the water-cooled PV/T system by 21%.

The execution of a PV/T system that used nanofluid as heat transducer media has
been explored by Matin Ghadidri et al. [13]. It was announced that the overall sys-
tem productivity is approximately 76% using the nanofluid for cooling with 3 wt.%.
Michael et al. [14] have considered the use of 0.05 wt.% copper oxide–water nanofluid
flow in copper pipes of the PV/T system. The authors claimed that the thermal produc-
tivity was 45.76%. Adun et al. [15] used a new type of liquid (trinary nanofluids), which
is a composite of three types of nanoparticles added together in the base liquid. The
researchers used nano-Al2O3-ZnO-Fe3O4 added to water. The results showed that the
concentration of trinary nanoparticles best suited for both laminar and turbulent flows was
0.5% by volume. The highest electrical and thermal efficiencies achieved were 13.75% and
59.38%, respectively. The PV panel temperature of the trinary PV/T system was decreased
by 8.81 ◦C. The performance of the hybrid PV/T system was investigated by Ying-Ying
Wu et al. [16]. The results show that the unglazed PV/T system delivers higher perfor-
mance using nanofluid. To maximize the productivity of the flat plate hybrid collector,
Srimanickam [17] used two types of coolants (water and nanofluids). The nanofluid was
prepared from nano-Al2O3 (0.1% vol.) added to water. Four volume flow rates (0.5, 1.0, 1.5,
and 2.0 LPM) were tested. The best cooling effect of the PV/T system was achieved when
using a flow rate of 2.0 LPM. At the time, the conventional PV temperature reached its
maximum value of 68.2 ◦C, and the temperature of the nanofluid-cooled PV/T system was
63.8 ◦C. The flat platform PV/T system types are presented by Fudholi et al. [18], in which
collectors and their performance are evaluated with water, air, and both. Mortada and
Hussein [19] experimentally studied the effect of using coolants such as water or aqueous
nano-Al2O3 in a PV/T system. Various concentrations of nanoparticles and flow rates
were tested. The nanofluid with a concentration of 3% of nano-Al2O3 achieved the highest
reduction in the surface temperature of the PV module and was about 23.14% compared
to the conventional PV one. At turbulent flow, the electrical efficiency increased by 20.2%
compared to laminar flow (15%).

Sopian et al. [20] developed a PV/T design that significantly enhanced the thermal
efficiency of the PV/T system after comparing the traditional PV/T system with the
building integrated PV/T (BIPV/T) system. BIPV/T systems were found to produce better
efficiencies than traditional PV/T systems. The system produced higher thermal energy
and was largely affected by the cost, leakage, and light weight of the system.
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Thakare et al. [21] developed a system for evaluating the PV/T system in stagnant
water retention. In the case of active water flow, the best mass flow rate found was
235 ml/h. The thermal energy efficiency found was 49.68%. On the other hand, the water’s
low density of the mass flow at 173 ml/h was able to generate more efficient results. The
performance of thermal energies was measured at 51.27%, and the electrical performance
was 12.54%. The authors concluded that active water flow would increase thermal efficiency
compared to conventional methods.

Kazem et al. [6] conducted a comparison study for three different PV/T configurations
(direct, web, and spiral flow) in Sohar, Oman. The study compared the experimental and
simulation (using COMSOL) results. Moreover, thermal and electrical performance were
compared, evaluated, and discussed. The authors claimed that the spiral flow configuration
gave the best electrical and thermal performances compared to the other two configura-
tions. It was worth mentioning that water is used as a cooling fluid. Table 1 illustrates a
comparison of the PV/T system using a different type of nanofluid (nanoparticles–water).

Table 1. The critical findings of using nanofluid in various PV/T applications.

Nanoparticles Critical Findings Reference

MWCNTs

The increase in the volumetric concentration of MWCNT in the base fluid (SG/H2O)
contributed to the improvement of the thermal and electrical conductivities of the used PV/T
system. The researchers determined the optimal conditions to reach the best electrical and
thermal efficiencies. These conditions are an operating temperature of 66.2 ◦C and a
concentration of MWCNT of 0.125% by volume in the nanofluid.

[22]

SiO2

Nano-SiO2 was added to water in variable volume ratios (0.1–0.2–0.3%). The researchers
concluded that radiation, flow rate, and nano-SiO2 volumetric concentration are the most
influential factors in electrical and thermal efficiency. When comparing the experimental results
with the results of the developed mathematical models for both electrical and thermal efficiency
of the PV/T system, a good convergence was found between them.

[23]

Fe3O4

Nano-Fe3O4 was added to the base fluid (water), and a vertical magnetic field was imposed on
the flowing fluid to increase the cooling rate of the bimetallic system, thus improving its
electrical and thermal efficiency. The addition of Nano-Fe3O4 lowered the PF unit temperature,
which increased the electrical and thermal efficiencies by 0.05% and 0.39%, respectively.

[24]

SiO2, Al2O3, ZnO,
and CuO

Four types of nanoparticles (SiO2, Al2O3, ZnO, and CuO) were added to water, and the
produced nanofluids were used to cool the CPVT collector. The maximum increase in the heat
transfer rate was when using water–nano-SiO2 then water–nano-Al2O3, water–nano-ZnO,
water–nano-CuO, and finally water. The researchers found that water–nano-SiO2 transfers and
dissipates heat better than other nanofluids due to its high thermal conductivity.

[25]

Graphene
nanoplatelets
(GNPs)

The study results show that the highest nanofluid stability was achieved at (1-1) SDBS-GNPs
sample with 60 min of ultrasonication mixing. The thermal conductivity of nanofluid enhanced
to 8.36% was compared with pure water, which has the lowest viscosity of 7.4%.

[26]

Mg-Ag It was found that the hybrid nanofluid enhances the heat transfer. The study found that the
prediction model shows high accuracy compared with the experimental results. [27]

Fe3O4

The authors investigated and compared a conventional PV module with a PV/T system in
terms of efficiency improvement. It is found that PV/T efficiency is 52% compared with 4.4%
for conventional PV. The PV/T efficiency increased up to 76% when Fe3O4 nanofluid was used
with a 3% concentration. More efficiency enhancement was produced when a magnetic field
was used with the nanofluid, where the efficiency improved to 79%.

[13]

Al2O3
The nanofluid viscosity increased with the increase of the nanoparticles’ volume fraction. The
stability of the nanofluid that contained oleic acid was less impacted by the viscosity increment. [28]

Al2O3 and CuO
The authors claimed that the stability of nanofluid is highly affected by the thermal
conductivity and viscosity of the nanofluid. However, the stability increased with the decrease
of viscosity, and the increase of nanoparticle mass fraction will decrease the stability.

[29]
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Table 1. Cont.

Nanoparticles Critical Findings Reference

Ag, SiO2, and CNT
Multi-walled carbon nanotubes with SiO2 and Ag were used in the investigation. The new
mixture reduced the solar cell temperature and enhanced power production. The CNT and
silica added to the basic silver nano-disc enhanced the absorption of the ultraviolet rays.

[30]

CuO and Al2O3

The study reveals that cooling is enhanced when distilled water is used compared with
ethylene glycol-base fluid. Moreover, the Cu nanofluid shows the highest electrical, thermal,
and overall efficiencies compared with Al2O3–water and Al2O3–Ethylene glycol.

[31]

Al2O3

The authors found that the increase in solar irradiance will increase the PV productivity but at
the same time increase temperature, which reduces the productivity. The use of Al2O3
nanofluid cooled the PV and enhanced the productivity compared with pure water cooling.

[32]

SiC

The study investigated SiC nanofluid and pure water for PV/T cooling. It was found that at 3%
weight of SiC, the viscosity, density, and thermal conductivity increased by 5.18%, 8.2%, and
4.3%, respectively. Moreover, it was found that there is an efficiency increase of 24% compared
with conventional PV modules. Finally, it was found that the heat transfer efficiency increased
to 100.19% in comparison to water cooling only.

[33]

CuO and Al2O3

The economic effects of using CuO and Al2O3 nanofluids to cool PV/T systems were studied.
When comparing the performance of the systems with those operating with conventional
liquids, the results showed that the nanofluid-cooled PV/T systems have a lower recovery
period, which results in better economic savings compared to the water-cooled systems.

[34]

SiC

In this study, an economic evaluation of a grid-connected PV/T system cooled with a water +
nano-SiC nanofluid is evaluated. The annual production factor of the studied GCPVT system
ranges from 128.34 to 183.75 kWh/kW. The energy cost of this system was 0.196 USD/kWh, the
payback period was 7–8 years, and the efficiency was 14.25%.

[35]

MWCNT

In this study, the researchers used MWCNT water added as the cooling fluid in the PVT system.
The addition of MWCNT caused an increase in the cooling of the PV/T system and a decrease
in the temperature of the solar panel by about 12◦ C and also caused a clear increase in the
thermal and electrical efficiencies, bringing the total efficiency of the system to about 83.26%.

[36]

SiC

In this study, three types of base liquids were prepared, which were water, water + 35%
ethylene glycol, and water + 35% propylene glycol, to which nano-SiC and cetyltrichromyl
ammonium bromide were added. The thermal conductivity of the prepared fluids was close,
while the density and viscosity of glycol fluids were higher than water. The stability of
nanoparticles in glycol suspensions was more than that of water when mixed with ultrasonic
vibration for a period of 4 to 6 h.

[37]

MWCNT, Al2O3,
and CuO

The use of nanofluids in the PV/T system caused a higher electrical and thermal output
compared to cooling with water. The use of a nanofluid containing MWCNT and CuO caused a
temperature reduction of about 19% in PV modules’ temperatures. The electrical efficiency of
PV/T systems operating with MWCNT, Al2O3, and CuO nanofluids increased by 60%, 55%,
and 52% compared to conventional PV.

[8]

Nano-MXene
(Ti3C2)

Nano-MXene (Ti3C2) with three mass fractions 0.05, 0.10, and 0.20% was added to water, and
the produced nanofluid was used to cool the PV/T system. The thermal conductivity of the
nanofluid when adding 0.20% mass fraction increased by 47% compared to water. The
maximum electrical efficiency was 13.95%, and the maximum thermal efficiency was 81.15%
when cooling with water/MXene nanofluid.

[38]

GNT, TiO2, and
SiO2

The PV/T system was cooled using nanofluid composed of graphene tubes, TiO2, and SiO2
nanoparticles. The maximum thermal efficiency obtained using graphene and water suspension
was 89.11%. The highest increase in electrical efficiency was 24.15% compared to water cooling.

[39]

Fe2O3

Nano-Fe2O3 was added to water and ethylene glycol to form a nanofluid that cooled the PEFT
system. The addition of 2% of nanoparticles caused an increase in the thermal conductivity of
the nanofluid by 140%, and this fluid has good stability. The highest overall system efficiency
obtained was 72% higher than that of an independent single crystal PV system. When using
polycrystalline PV, the highest overall efficiency increase was 77.65% compared to the
standalone PV system.

[40]

SiC

Nano-SiC was added to water to form a nanofluid that cooled the nano-paraffin in a PV/T
collector tank. The electrical efficiency of the system was greatly improved, and the electrical
power output increased. The maximum electrical efficiency obtained was 13.7% compared to
7.11% for a conventional PV system. The temperature of the PV/T system panel was reduced to
39.52 ◦C compared to 68.3 ◦C for a conventional PV panel.

[41]
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From Table 1, it is found that the effect of the trend of using different nanoparticles
is an increase in heat transfer and an improved cooling process, which lead to improved
efficiency. Moreover, some nanoparticles used in cooling nanofluid show superior per-
formance compared to others, such as single-wall carbon nanotubes, SiC, Cu, and Al2O3.
Furthermore, the increase in nanoparticle mass fraction will affect the nanofluid physical
properties and increase the cost and pump power consumption.

The current study aims to evaluate the PV/T system cooled using SiC nanofluid
in Oman based on experimental data sets. A PV/T and conventional PV module were
installed and tested in Sohar, Oman. The novelty of this study is to evaluate the electrical
and thermal behavior of nanofluid-based PV/T systems in harsh weather conditions.
Moreover, a different comparison of PV/T results has been conducted and presented
concerning similar studies in the literature in terms of cooling methods by other nanofluids
and SiC nanofluid. The results of the study will give a roadmap for engineers and designers
to establish PV fields in Oman on the best method to overcome the effects of high solar
radiation intensity and high temperatures and the best PV/T systems for this purpose.

This paper contains four sections as follows: (Section 1) Introduction, (Section 2)
Experimental Setup, (Section 3) Results and Discussion, and (Section 4) Conclusions. The
results section contains (Section 3.1) Thermophysical Properties, (Section 3.2) Experimental
Results, and (Section 3.3) Comparison with Literature.

2. Experimental Setup
2.1. Sohar Metrological Data

The investigated systems were installed north of Oman near the coast in Sohar city
at 24.3461 N latitude and 56.7075 E longitude, respectively. Sohar have a desertic weather
and is hot in summer. Figure 1a–d show a twelve-months record of ambient temperature,
precipitation, sunshine hours, and solar radiation, respectively [42,43]. The highest tem-
perature reached 50 ◦C in summer. However, rainfall was found to be high in winter. In
general, sunshine hours are relatively high in Oman, ranging between 8 and 12 h. Dust is
suspended clearly in the air of Sohar, and its accumulation causes a decrease in the produc-
tivity of photovoltaic panels [42,43]. This factor is considered one of the most important
difficulties that interfere with the results of the tests. To completely neutralize its effect on
the photovoltaic panels, the photovoltaic panels were cleaned before sunrise in the morning
for all days of the tests.
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2.2. Materials

In choosing the materials used in the experiments, the research team relied on several
practical studies that have been conducted since 2016 until today in the study area. In
order not to repeat the experiments, nano-SiC was chosen as the nanoparticles additive
based on the results of [33,44]. The base fluid was chosen as the mixture of water + ethanol
glycol by volume fractions of 75% water to 25% ethylene glycol based on the results
of [45]. Cetyltrichromyl ammonium bromide (CTAB) was adopted as a surfactant added by
0.51 ml/l depending on the results of [37]. As for the added mass fraction of nano-SiC to
the base fluid, it was chosen as 0.5% depending on the results of [46]. The used nano-SiC
has high thermal conductivity of about 150 W/m K compared to the particle used in the
previous reference, which was 40 W/m K). Nano-SiC particles were added to the base
fluid and mixed for three and a half hours depending on [47,48]. After the mixing was
completed, samples were taken from the prepared suspension, and thermophysical tests
were performed on them. Table 2 lists the nano-SiC specifications used.

Table 2. SiC nanoparticles’ specifications.

Feature Specification

Supplier Zhenxin Ferroalloy Supplier (China)

External shape Black powder

Purity 98.8%

pH 3.5–7.5

Crystal form Cubic

Particles size (nm) 20–35

Density (g/cm3) 3180

Melting point (◦C) 2740

Microhardness (kg/cm3) 3280

Thermal conductivity (W/m K) 125–167

After mixing the nanoparticles with the base fluid and surfactant, samples were taken
from it to examine the thermophysical properties before starting the experiments. During
the experiments and after operating for a whole day, a sample of the nanofluid was taken,
and its thermal conductivity and stability were checked to ensure that this fluid did not
lose the required basic properties. Despite the difficulty of this matter, such an unprece-
dented procedure in previous research is very important to practically ensure the quality of
the results.

2.3. The PV/T System Employed in the Tests

The experimental setup of the proposed PV/T and PV systems installed horizontally in
the Engineering building at Sohar University, Oman, is shown in Figure 2a. The horizontal
position (while usually PV modules are installed with a tilt angle of 28◦ depending on
the location) was chosen for two main reasons: First, to neutralize the effect of the tilt
angle of the PV panel on the rate of received solar radiation. Second, the location of the
tested modules allows them to receive sunlight for the longest period of time without
hindrance. This installation method is consistent with the method used in many recent
studies, such as [5,6,8,15]. Moreover, Figure 2b,c show the constructions of the PV module
and cross-section of the PV/T system. The PV modules for all systems are monocrystalline
and identically selected to have 100 W, 22.32 V, and 5.94 A rated power, open-circuit voltage,
and short-circuit current, respectively. In the PV/T systems, the thermal collectors used
were of spiral flow type to gain the maximum possible cooling depending on the results
of [6]. These collectors were welded on the PV panels’ back, which was coated by a thin
layer of silicon oil to prevent air gaps forming between the collectors’ walls and the PV.
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Figure 2. (a) Experimental setup of PV/T; (b) constructions of PV module; (c) cross-section of
PV/T module.

Two W1209 digital temperature sensors (temperature range: −50 to 110 ◦C, accuracy
±0.1 ◦C) were connected at the PV/T inlet and outlet PV/T collector to measure the
temperature via seven segment displays, while two DS18B20 sensors (temperature range:
−55 to 125 ◦C, accuracy ±0.5 ◦C) were connected at the PV and PV/T cells to measure the
temperatures of the cells. A 1 to 30 liter/minute water flow rate sensor (1/2-inch water
flow sensor, model YF-S201, accuracy ±10%) and a DC water pump (model: FL-2201, 1.6 A,
12 V) were used to circulate the water through the pipe that was used. However, the
losses due to the pump consumption have not been considered in this study. Data have
been recorded for September and October 2021. The best three days’ measurements were
recorded and considered from 08:00 AM till 05:00 PM for the period 1st–3rd October
2021. A sensor and data acquisition system were used to measure and record the PV and
PV/T current and voltage as shown in Figure 3. Moreover, solar irradiance and ambient
temperature were recorded. The recorded measured values are saved in the computer to be
analyzed. For data reduction, the data acquisition has been set to take measurements every
30 min.
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In this study, a comparison between three identical PV modules, two of them with
a thermal collector (PV/T) as shown in Figure 2a, is presented. In the first PV/T system,
water was used as a cooling fluid. In the second PV/T system, SiC nanofluid (SiC-water)
was used as a cooling fluid to transfer the thermal energy (heat) from the solar cells to
enhance the PV efficiency and increase the extracted thermal energy.

2.4. Performance Evaluation Parameters and Uncertainty

The performance evaluation parameters are illustrated in Table 3. Equations (1)–(5)
illustrated the performance parameters used to evaluate the PV/T system. Equations (1)
and (2) were used to calculate maximum PV/T electrical and thermal power, respectively.
Equations (3)–(5) were used to determine the electrical, thermal, and overall efficiencies,
respectively [3].

Pmax = Imp × Vmp (1)

Qu =
.

mCp(To − Ti) (2)

ηe =
Pmax

Is × Apanel
(3)

ηth =
Qu

Is × Ac
(4)

(ηt) = ηt = ηth + ηe =
Qu + P
Is × At

(5)

Table 3. PV/T performance evaluation parameters formula.

Parameter Unit No. of Equation

PV/T power W Equation (1)

Collected heat W Equation (2)

Electrical efficiency % Equation (3)

Thermal efficiency % Equation (4)

PV/T efficiency % Equation (5)

An ultrasonic vibrating mixer (TELSONIC ULTRASONICS CT-I2) was used to achieve
an accurate result. The added weights were verified using an accurate digital scale, type
METTLER TOLEDO’s (US made), that measures up to 0.0001 gram. The thermal con-
ductivity of the prepared nanofluids was measured with a KD2 Pro analyzer scale (ICT
International, India). As for the stability of the prepared fluids, it was measured using
Nano Zeta-Sizer (ZSN) (GmbH). Each set of experiments and measurements was repeated
three times as a way to confirm the repeatability of experiments and reduce measurement
uncertainty. Each instrument was calibrated before use, and their accuracy was determined.
These values were used to determine the uncertainty, the details of which are listed in
Table 3. The following equation [49] shows the total uncertainty of the experiments:

eR =

[(
∂R
∂V1

e1

)2
+

(
∂R
∂V2

e2

)2
+ . . . +

(
∂R
∂Vn

en

)2
]0.5

(6)

where eR, R, ei, and ∂R
∂V1

represent the results of uncertainty, independent variable’s function,
the uncertainty interval in the nth variable, and single variable measured result sensitiv-
ity, respectively. Table 4 lists the instruments used and their uncertainties. The total
test instrumentations’ uncertainty was 1.802, which reveals acceptable accuracy of the
measuring devices.
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Table 4. Instrumentations’ uncertainties.

No. Measured Variable Measuring Devise Uncertainty (%)

1 Electrical variables (current and voltage) Multi-meter 0.96
2 Nanofluid flow rate Flowmeter 0.28
3 Temperature Thermocouples 0.34
4 Irradiance Solar radiation intensity meter 0.91
5 Nanoparticle mass fraction weight Sensitive weight 0.001
6 Nanofluids density Density tester 0.42

7 Nanofluids viscosity Brookfield Programmer Viscometer (Model:
LVDV-III Ultra-programmable) 0.53

8 Thermal conductivity and capacity Hot desk Tps 500 0.92

3. Results and Discussion
3.1. Thermophysical Properties

An additive mass fraction of nano-SiC 0.5% was chosen based on the results of [33],
as mentioned previously. The effect of temperature change on samples of the prepared
suspension was examined. Table 5 shows this effect of the nano-suspension samples at
10 ◦C phases. The samples were heated from 25 ◦C to 75 ◦C, which is the summer operating
temperature range of PV/T systems in Sohar.

Table 5. The effect of temperature on the samples’ thermophysical properties.

Temperature (◦C)

Property
Density
(kg/m3)

Viscosity
(mPs.s)

Thermal Conductivity
Enhancement Rate (%)

Stability (Zeta
Potential)

25 1.13 1.12 6.64 63

35 1.045 1.07 6.98 61

45 0.98 1.01 7.67 58.7

55 0.94 0.985 7.98 57.3

65 0.89 0.955 8.16 56.5

75 0.85 0.923 8.72 55.8

Measurements show that a significant increase occurs when nano-SiC is added to
water, reaching 13% in its density. However, the density decreases rapidly with increasing
temperatures. Heat causes the fluid to expand and thus to decrease its density, and since
the nanofluid has a high conductivity, its expansion speed is higher than that of water,
so its density decrease is obvious. The nanofluid density reduced by 12.27% and 21.23%
when the fluid operated at 45 ◦C and 65 ◦C, respectively. The high density of the nanofluid
will cause a high load on the circulating pump, especially at the starting period. However,
this load decreases with the increase in the temperature of the circulating fluid. Here, the
designer must compromise carefully between the benefits gained from the system’s cooling
versus the additional electricity consumption during the start of operation.

The viscosity of the nanofluid increases compared to water by about 12% at a temper-
ature of 25 ◦C, as the measurements show in Table 5. However, this viscosity decreases
with increasing temperature, which causes a higher movement of nanoparticles with the
expansion of the fluid and the separation of these particles suspended in the solution. The
viscosity reduction rates of 4.46%, 12.05, and 17.58% were experienced at 35 ◦C, 55 ◦C, and
75 ◦C operation temperatures, respectively. An increase in viscosity causes a rise in the load
applied to the pump, and its reduction reduces the electricity consumption of the latter.
Therefore, it is expected that the pump start-up will be difficult, and after the nanofluid
acquires heat, the load on it will be significantly reduced.
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Increasing the flow rate of the fluid, whether water or nanofluid, causes an increase
in the amount of heat absorbed by the PV panel. In fact, this statement is not an absolute
but rather limited. After reviewing Equation (2) (Table 3), it is noted that the mass flow
rate and the difference in the temperatures entering and leaving the collector are the two
factors affecting the amount of heat absorbed, given that the Cp change with the increase in
temperature is very limited. So, if the mass flow rate increases dramatically, the temperature
difference will decrease. This inverse relationship depends largely on the intensity of the
solar radiation, the temperature of the PV panel, the rate of heat transfers between the plate
and the coolant, and the collector efficiency.

The increase in the density and viscosity of the base fluid as a result of adding nanopar-
ticles necessitates an increase in the pumping power, which means an increase in electricity
consumption. To prevent any confusion and misleading in this matter, since one could
understand that the pumping power would be reduced when the flow becomes turbulent,
the concept presented by equations in [50] was adopted to estimate the assumed increase
in pumping power:

Laminar f low :

(
Wn f

Wb f

)
=

(
µn f

µb f

)
.

(
ρb f

ρn f

)2

(7)

Turbulent f low :

(
Wn f

Wb f

)
=

(
µn f

µb f

)0.25

.

(
ρb f

ρn f

)2

(8)

where W is pumping power, and nf means nanofluid while bf means base fluid. Table 6 lists
the results of Mansour Equations (7) and (8), which mathematically relates the pumping
power to the density and viscosity of the used fluid and temperature variations for the
studied case. In Table 6, to prevent any misleading in the results, the values listed in the
table are not absolute values of pumping power, which change every second with the
change in the temperature of the working fluid.

Table 6. Laminar and turbulent flow consumption results.

Flow Type 25 ◦C 35 ◦C 45 ◦C 55 ◦C 65 ◦C 75 ◦C

Laminar flow (Equation (7)) 0.877 0.98 1.012 1.046 1.051 1.148

Turbulent flow (Equation (8)) 0.805 0.813 0.886 0.918 0.943 0.966

Ben et al. (2007) [50] suggested that (WNanofluid/Wbf < 1) for both types of flow is
very preferable, since in this case the electricity consumption will not increase due to the
base fluid exchange to nanofluid while maintaining a higher heat transfer rate. Table 6
shows the effect of adding Nano-SiC to water on the pumping power of the system. The
results included show that the use of laminar flow causes an increase in the WNanofluid/Wbf
ratio to above one for operating at a temperature of more than 45 ◦C. Therefore, it is not
recommended to use laminar flow with a nanofluid-cooling PV/T system. In the case
of turbulent flow, the WNanofluid/Wbf values were all below one. Therefore, it must be
emphasized here that this option (the use of turbulent operation) is preferred to be adopted
when working with the studied nanofluid for all operating temperatures. The results of
this study are fully consistent with what Asadi (2018) [51] has reported.

The thermal conductivity of the nanofluid is greatly increased compared to water
due to the high conductivity of the nano-SiC. The conductivity also increases with the
increase in the temperature of the nanofluid, as the heat energy gained causes a rise in the
movement of nanoparticles and in heat transfer. The nanofluid’s thermal conductivity is
enhanced by 5.12%, 15.51%, 20.18%, 22.89%, and 31.32% when its temperature is raised
from 35 ◦C, 34 ◦C, 55 ◦C, 65 ◦C, and 75 ◦C, respectively. The main task of the nanofluid is
heat transfer, and the higher the temperature difference between the fluid and the surface
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of the PV panel, the greater the amount of heat transferred and the better the thermal
performance of the system.

The zeta potentiometer is a measure of fluid stability and the survival of nanoparticles
suspended through it. Whenever this scale is higher than 40, the stability is high and accept-
able. The measurements in Table 5 show acceptable stability at all studied temperatures,
even if the stability decreased by increasing the temperature from 25 ◦C to 75 ◦C by 11.42%.
The accepted stability comes from two factors considered when nano-SiC is selected. First,
the size of particles 25–35 nm (Table 5) is small, which encourage suspension after good
mixing. Secondly, the added mass fraction was limited to ensure good suspension. As the
temperature of the fluid increases, the movement of nanoparticles increases, their collision
with each other increases, and the possibility of their agglomeration becomes greater.

3.2. Experimental Results

In this paper, two photovoltaic modules with a thermal collector (PV/T) and a without
thermal collector (PV) were tested in term temperature and solar irradiance. Electrical
quantities such as voltage, current, and power were measured and recorded. Moreover, PV
and PV/T temperature were measured. Furthermore, the water inlet and outlet temperature
were measured and recorded as shown in Figure 4a–c. The measurement was conducted in
September and October 2020. However, the best three days, 1–3 October, were selected for
analysis, discussion, and comparison.

The PV/T temperature is lower than PV temperature due to the cooling, which is reflected
on voltage and power significantly compared with current. The increase of temperature has
an insignificant increase of current and a significant increase of voltage [1,45,52–58]. Figure 4a
shows the improvement of PV/T voltage compared with conventional PV due to the cooling.
The PV/T voltage curve shows strange spikes caused by the instantaneous increase in
the intensity of solar radiation. Since the measurement here was in min, these spikes
are visible, while they are not visible in the other figures where the average readings are
plotted. The PV/T voltage, power, and efficiency were increased as shown in Figure 4b
compared with the PV module. It is clear that the PV/T voltage improvement reflected
positively on power and efficiency. Figure 4c shows inlet and outlet temperature increment.
It was found that, after 09:20 AM, the inlet and outlet temperatures increased more than
the ambient temperature, where the outlet temperature was higher compared with the inlet
temperature. At 12:10 PM, the difference of the two previews’ temperatures was increased,
the cooling became more effective, and more heat was extracted from the module. To make
sure the cooling is effective through the whole day from sunrise to sunset, it is advisable
to have a large tank size. Moreover, it was found that from 10:00 AM to 05:00 PM, the
PV/T temperature reduced significantly compared with conventional PV. The PV/T curve
is very much fluctuating in the figure due to the difference between the coolant inlet and
exit temperatures and the instantaneous conditions of the solar radiation intensity received
by the PV module. This oscillation can be eliminated by adding a phase-change material
(PCM) attached to the collector, as declared by Al-Waeli et al. [44], Qui et al. [59], and
Fiorentini et al. [60].

Figure 5 shows the change in the electrical and thermal efficiencies of the studied
systems over time. It was noted that the electrical efficiency of the nanofluid-cooled PV/T
system is higher than the other two cases. The increase in the average electrical efficiency
for both water-cooled and nanofluid-cooled PV/T systems was 12.6% and 25.3%, respec-
tively, compared to the electrical efficiency of standalone PV. The recycling of nano-SiC
in the PV/T system caused a superior cooling effect compared to water cooling. The
average thermal efficiency of the two water-cooled and nano-SiC systems reached 17.83%
and 35.02%, respectively, with the latter being superior by 98.6%. The high thermal con-
ductivity of SiC nanofluid absorbs more heat than water, causing the cooling effect to be
approximately doubled.
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3.3. Comparison with Literature

In this section, the study results were compared with literature results. Three compar-
isons were conducted with respect to different cooling methods (Table 7), with respect to
different nanofluids (Figure 6) and with respect to similar studies that used SiC nanoparti-
cles (Figure 7), respectively. It is worth mentioning that, despite the differences of the inves-
tigated systems and locations, the efficiencies gave an indication about the cooling level.
Table 7 illustrates the comparison of PV/T electrical and thermal efficiency in terms of cool-
ing methods. It was found that the thermal efficiency is relatively high and is consistent with
literature results. Moreover, air cooling has the lowest efficiencies (ηe = 7.7%, ηth = 28%),
but nanofluid cooling has the highest efficiencies (ηe = 13.14%, ηth = 68.22%).
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Table 7. Comparison of PV/T based on cooling method.

Ref. Country Thermal
Efficiency (%)

Electrical
Efficiency (%) Cooling Method

[53] China 28 7.7 Air

[54] Canada 48 16.5 Air

[55] Bangladesh 30 9.25 Water

[56] Italy 62 13.19 Water

[57] China 64.4 11.8 Water-air

[58] China 76 17 Water-air

[59] UK 59 8.7 PCM

[60] Australia 45 9 PCM

[33] Malaysia 67 13.5 Nanofluid

[13] Iran 33 17 Nanofluid

[44] Malaysia 72 13.7 Nanofluid-
Nano/PCM

[61] Iran 47 - Nanofluid-
Nano/PCM

Current study Oman 68.22 13.14 SiC Nanofluid

Figure 5 shows the efficiencies as a compound bar where both electrical and thermal
efficiencies are compared considering different nanoparticles [13,30,33,36,62–68]. Despite
the differences of the investigated panel, technology, systems, rating, and locations, the
efficiencies gave an indication about the efficiencies related to the cooling nanofluid. The
CuO, Al2O4, and SiC show the highest efficiencies of 88.78%, 81.00, and 80.50%, respectively.
Moreover, the current study results are consistent with the literature results. The thermal
efficiencies are more effected by nanofluid cooling compared with electrical efficiencies.
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Figure 6 shows a spiral comparison of thermal and electrical efficiencies of PV/T
systems using SiC nanofluid cooling [33,44,63,69–72]. Figure 6a,b illustrate the consistency
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of the tested system efficiencies with other systems in the literature, which verified the SiC
nanofluid’s cooling superiority.
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4. Conclusions

For the purpose of preparing ready-made specifications for designers and decision
makers regarding the quality of the nanofluid to be used in PV/T systems in the Omani city
of Sohar, the PV/T system was tested experimentally using silicon carbide and water. Nano-
SiC with a mass fraction of 0.5% was added to water with a surfactant. The thermophysical
properties of the prepared nanofluid at different operating temperatures were investigated.
At 25 ◦C, the thermal conductivity, density, and viscosity of the nanofluid increased by
6.64%, 13%, and 12%, respectively. The effect of the apparent increase in the density
and viscosity of the nanofluid compared to the base fluid on the pumping power was
investigated. The study showed that the work of the system with the laminar flow will
cause losses in pumping power, while the use of turbulent flow reduces the required power.
The electrical efficiency has increased up to 25.3% compared to a conventional PV module
as a result of proper cooling. Thermal efficiency has also increased by 98.6% compared to
the water-cooled PV/T system. The results of the current study with their counterparts in
the literature, in terms of cooling methods and nanoparticles and similar studies that used
SiC nanofluid, were compared. The results of the comparison show high potential for a
nanofluid prepared by the method used in this study.
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Nomenclature

AC and Amodule Collector and PV areas (m2)
Cp Water heat capacity (J/(K kg))
G Solar irradiance (W/m2)
GS Global solar radiation (W/m2)
ISC and Imp Short circuit and maximum point currents (A)
MF Mass flow (kg/h)
PV Photovoltaic
PVT Photovoltaic/Thermal
Prated and Pmp Rated and maximum point powers (W)
Tambient Ambient temperature (◦C)
TC Cell temperature (◦C)
Tin and Tout Inlet and outlet temperature (◦C)
VOC and Vmp Open circuit and maximum point voltages (V)
WR Uncertainty
ηelectrical and ηthermal Electrical and thermal efficiencies (%)
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