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Abstract: A linear regression machine learning model to estimate the reference evapotranspiration
based on temperature data for South Korea is developed in this study. FAO56 Penman–Monteith
(FAO56 P–M) reference evapotranspiration calculated with meteorological data (1981–2021) obtained
from sixty-two meteorological stations nationwide is used as the label. All study datasets provide
daily, monthly, or annual values based on the average temperature, daily temperature difference,
and extraterrestrial radiation. Multiple linear regression (MLR) and polynomial regression (PR) are
applied as machine learning algorithms, and twelve models are tested using the training data. The
results of the performance evaluation of the period from 2017 to 2021 show that the polynomial
regression algorithm that learns the amount of extraterrestrial radiation achieves the best performance
(the minimum root-mean-square errors of 0.72 mm/day, 11.3 mm/month, and 40.5 mm/year for
daily, monthly, and annual scale, respectively). Compared to temperature-based empirical equations,
such as Hargreaves, Blaney–Criddle, and Thornthwaite, the model trained using the polynomial
regression algorithm achieves the highest coefficient of determination and lowest error with the
reference evapotranspiration of the FAO56 Penman–Monteith equation when using all meteorological
data. Thus, the proposed method is more effective than the empirical equations under the condition
of insufficient meteorological data when estimating reference evapotranspiration.

Keywords: linear regression; machine learning; Penman–Monteith; polynomial regression; refer-
ence evapotranspiration

1. Introduction

Evapotranspiration is an important factor in the hydrological cycle, and it is defined
as the sum of the total amount of evaporation released into the atmosphere as water va-
por from the surface of water or soil and the amount of transpiration released into the
atmosphere through leaf surfaces [1–3]. Evapotranspiration is considered as the basic
data for the hydrological cycle and rainfall-runoff model verification and development,
and for climate and meteorological prediction models. It needs to be considered for the
management of agricultural water, which includes the planning and design of hydrological
facilities and irrigation plans [4–8]. Reliable water resource management and planning
can only be achieved by accurately calculating evapotranspiration because evapotranspira-
tion is sensitive to changes in the growth stage or meteorological conditions during crop
production [1,7,9].

The primary meteorological factors affecting evapotranspiration include radiation, air
temperature, humidity, and wind speed. Considering the reference crop (alfalfa or grass),
the maximum amount of evapotranspiration affected only by meteorological factors in
a state where the soil is completely saturated with moisture, i.e., potential evapotranspira-
tion, is referred to as reference evapotranspiration (ET0), and the actual evapotranspiration
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value for each crop period is determined by the product of ET0 and crop coefficient for each
crop-growth period. ET0 is calculated using only meteorological data according to the Food
and Agriculture Organization (FAO) guidelines, which is an accurate model for use in any
region [6,10]. Following the Penman, Blaney–Criddle, and Modified Penman equations, at
present, the FAO recommends the FAO56 Penman–Monteith (FAO56 P–M) equation as the
standard; furthermore, it is used in legal plans, such as the long-term comprehensive plan
for water resources and the rationalization plan for agricultural water use in South Korea.

Despite the accuracy of the evapotranspiration calculation, the FAO56 P–M equation
is difficult to apply to areas with insufficient or missing meteorological data [8,11]. This
model is difficult to apply realistically in areas with a low meteorological observation
density or short observation history because the installation and maintenance of a me-
teorological station that collects meteorological data is expensive and laborious [12–15].
Given these limitations, the Blaney–Criddle, Hargreaves, Thornthwaite, and Priestly Taylor
equations, which can help estimate reference evapotranspiration values with minimal
climatic parameters, such as average and daily temperature differences, have been used,
even though they are not as accurate as the Penman–Monteith model [6,16–19]. However,
the problems associated with low accuracy, such as overestimation compared to that using
FAO56 P–M, have been identified as a limitation [1,16,19]. Meanwhile, techniques used for
calculating the amount of evapotranspiration on a spatial continuum using the vegetation
index and thermal imaging are being developed given the development of remote sensing
technologies, such as drones and satellite images. However, there are still limitations in the
scope of application because of the discrepancies in the ground observation values, low
temporal resolutions, and lack of verification in a space other than the ground observation
point [20].

Machine learning technology is useful for predicting time-series data, such as evap-
otranspiration, without the prior knowledge of physical processes. Various studies have
attempted to estimate ET0 from a small amount of meteorological data. Bellido-Jiménez
et al. [13] tested a machine learning technique to estimate ET0 from the temperature data
of southern Spain, which is a semi-arid region. Among the testing algorithms, such as
multilayer perceptron (MLP), generalized regression neural network, extreme learning
machine (ELM), support vector machine (SVM), random forest (RF), and XGBoost, MLP
and ELM that only use the highest and lowest temperatures and solar radiation data
demonstrated the best performance, with a root-mean-square error (RMSE) of at least
0.67 mm. Mehdizadeh et al. [14] applied neuro-fuzzy inference algorithms, such as the
adaptive neuro-fuzzy inference system (ANFIS), ANFIS shuffled frog-leaping algorithm,
and ANFIS invasive-weed optimization in Iran, which has a dry climate, to calculate the
evapotranspiration using only temperature data and an RMSE minimum value of up to
0.83 mm/day. Dimitriadou and Nikolakopoulos [21] tested the utility of multiple linear
regression (MLR) for estimating the reference evapotranspiration (ET0) in the Peloponnese,
Greece. Sixteen regression models were tested that combined seven factors, including
sunshine hours (N), mean temperature (Tmean), solar radiation (Rs), net radiation (Rn),
wind speed (u2), vapor pressure deficit (es–ea), and altitude (Z). As a result, the MLR5
model using N, Tmean, u2, es-ea, and Rn was evaluated as the best performance (RMSE
0.28 mm/day, Adjueted R2 = 98.1%). For the semi-arid regions of Brazil with a lack of
meteorological data, Reis et al. [22] calculated evapotranspiration more accurately than the
Hargreaves equation using artificial neural networks, multiple linear regression (MLR),
and ELM algorithms using only temperature data. Dou and Yang [23] applied ANN, SVM,
ANFIS, and ELM to four different grasslands, forests, arable land, and wetlands in the
United States, Germany, Belgium, and Sweden, respectively, where the performance based
on the temperature, sunlight, relative humidity, and soil temperature data was the most
accurate in the forests and the least accurate in the wetlands. Granata [24] applied machine
learning (RF, M5P, Bagging) for estimating crop evapotranspiration in Florida, which is
a humid subtropical region, and he reported the best performance using all climate factors
required for using the FAO56 P–M equation, as well as a sufficient performance with
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an RMSE of 0.35–0.40 mm/day using only three factors, such as average temperature, solar
radiation, and relative humidity. Raza et al. [25] revealed that the SVM algorithm is the best
model for estimating the reference evapotranspiration when all meteorological factors used
in the FAO56 P–M equation are used, despite the different climatic zones. Ferreira et al. [26]
tested the ANN, RF, XGBoost, and multivariate adaptive regression splines algorithms
that calculated the ET0 using only temperature and humidity data, and they attempted to
interpolate the prediction results by linear regression again to overcome the disadvantages
of the meteorological conditions in Brazil. Choi et al. [27] tested the neural network model
and MLR algorithm using all meteorological factors necessary for calculating the FAO56
P–M equation for two stations as independent variables, which reported that the perfor-
mance of the MLR model was not inferior as long as there was no derivation of negative
values. These aforementioned studies suggest that the appropriate algorithm for estimating
the ET0 may differ based on the spatial and climatic characteristics of the study subjects and
composition of training data owing to the characteristics of machine learning technology
that reproduces empirical patterns.

Suitable methods with dependable accuracy are needed to estimate the ET0 due to its
importance in meteorological, hydrological, and agricultural studies [28]. Especially re-
cently, there has been an increase in the research and development for implementing smart
agricultural water management; however, the meteorological data and evapotranspiration
observations that support it rely on the observation network of the Korea Meteorological
Administration with a low observation density. Although it is desirable to measure meteoro-
logical data and evapotranspiration directly on the farmland subject to water management,
it is unrealistic in terms of cost and management to install the facilities required to measure
all meteorological items necessary for calculating the ET0 on farmland pavements or in
each neighborhood. There is no choice but to use distant point data through spatial interpo-
lation or an area-weighted method. Even if all meteorological factors cannot be observed,
calculating reliable ET0 by only observing minimum factors, such as air temperature, will
allow building the observation system required for smart water management.

This study aims to develop a technology that enables the accurate estimation of ET0,
even under conditions where it is difficult to estimate FAO56 P–M ET0 due to sparse meteo-
rological data. Therefore, ET0 was estimated based on a machine learning algorithm using
limited data (only temperature data), and its applicability was reviewed through a compar-
ison with empirical equations, such as those of Hargreaves [8], Blaney–Criddle [29], and
Thornthwaite [30]. The machine learning algorithm used simple and easy-to-understand
linear regression algorithms [31].

2. Methods

This study examined whether ETo can be satisfactorily estimated using a linear regres-
sion machine learning algorithm without using all the meteorological factors necessary for
calculating the FAO56 P–M equation. As shown in Figure 1, twelve linear regression models
were tested and the performance of the models was compared. A machine learning model
was implemented using Python library’s Scikit-Learn, Pandas, Numpy, and Matplotlib. The
regression model was used by changing the degree options to 1, 2, and 3 based on the MLR
and PR models in the PolynomialFeatures function of the Scikit-Learn library. Furthermore,
the SGDRegressor function of the Scikit-Learn library was used to apply the SGD method
for minimizing the loss function. The maximum number of iterations was limited to 1000,
and learning was performed at an adaptive learning rate; this was performed because the
method using the adaptive learning rate had a greater learning efficiency than that when
repeatedly using the learning rate directly designated by the user [19,31–33]. Each model
was trained on a daily, monthly, and annual scale, respectively. The learning performance
between twelve regression models was compared. In addition, the applicability of the
proposed method was reviewed, compared with the ET0 experience equation calculated
using only temperature data.
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Figure 1. Procedure of ET0 calculation using MLR and PR algorithms.   Figure 1. Procedure of ET0 calculation using MLR and PR algorithms.

2.1. Linear Regression Machine Learning Models

The ET0 calculation method was tested by focusing on the most basic linear regression
analysis algorithm among machine learning algorithms. MLR and polynomial regression
(PR) algorithms were applied based on the composition of independent variables. Linear
regression learns relatively quickly, has a high explanatory power, and has no significant
difference in performance compared to other algorithms [31,34–36].

Linear regression is a representative regression algorithm that models a linear re-
lationship between a dependent variable and one or more independent variables. The
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relationship between the independent and dependent variables is explained using the
linear expression.

y = w1x1 + b (1)

where y is the dependent variable (output value), x1 is the independent variable (input
value), w1 is the weight for the independent variable, and b is the bias.

The MLR model is applied when one dependent variable and two or more independent
variables are used as input data. This method is significant when each independent variable
has a linear relationship with the dependent variable; however, the correlation between the
independent variables is not high. The MLR model is expressed as

y = w1x1 + w2x2 + w3x3 + · · · + wnxn + b (2)

A PR model is a model that uses a linear model for learning nonlinear data; it is
expressed as polynomials, such as quadratic and cubic equations, instead of the monomials
of independent variables (Equation (2)). Quadratic and cubic polynomials were tested in
this study.

y = w2x2
1 + w1x1 + b (3)

In machine learning, linear regression is a learning model that identifies the parameter
weights (w1, w2, . . . , wn) and deviation (b) that minimize the cost function (loss function)
in a linear relationship. The cost function minimizes the loss by calculating the cost of the
result predicted as an initial condition, i.e., repeating the process of calculating the loss,
updating the model by modifying the parameters, and calculating the cost again, where
the least-squares method to calculate the mean squared error (MSE) is often used. The
least-squares method is a method of finding a parameter that minimizes the residual sum
of squares between the target and predicted values, and is presented as follows:

MSE =
1
N

N

∑
i =1

(
yi,target − yi,prediction

)2
(4)

where yi,target is the i-th target value (actual value), yi,prediction is the i-th predicted value,
and N is the number of data.

Gradient descent is applied to find the optimal solution by gradually moving the
learning rate and to find the parameter that minimizes the loss function. Gradient descent
is simply used in machine learning to obtain the values of a function’s parameters that
minimize a lose function as far as possible. In this study, stochastic gradient descent (SGD)
was used among the gradient descent methods. SGD has received a considerable amount
of attention just recently in the context of large-scale learning, and is suitable for regression
problems with a high number of training samples (>10,000) [37,38]. Additionally, this
method is more efficient than those using the entire batch, and it ensures more stable
calculations than when using some randomized data [39].

Five-fold cross-validation was performed to use all independent variables for train-
ing and validation and to prevent overfitting or underfitting problems. The model was
verified by dividing the training data into five equal parts, learning four parts (80%), and
sequentially repeating the process of using the remaining one part (20%) as validation data
five times.

The MSE, mean absolute error (MAE), RMSE, and coefficient of determination (R2)
were used as indices to evaluate the input data composition of the machine learning model
necessary for calculating ET0 and the performance according to the optimal model and for
determining the best option.

MAE =
1
n

n

∑
i =1

∣∣∣yi,target − yi,prediction

∣∣∣ (5)
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MSE =
1
n

n

∑
i =1

(
yi,target − yi,prediction

)2
(6)

RMSE =
√

MSE (7)

R2 =
SSE
SST

= 1− SSR
SST

= 1−
1
n ∑n

i =1

(
yi,target − yi,prediction

)2

1
n ∑n

i =1

(
yi,target − ytarget

)2 = 1− MSE

var
(

ytarget

) (8)

where SSE is the explained variation sum of squares, SSR is the unexplained variation sum
of squares, SST is the total variation sum of squares (SSE + SSR), and n denotes the number
of test data.

The coefficient of determination (R2) can be interpreted as the ratio of the variance
of the predictable dependent variable in the independent variable. The coefficient of
determination can take values between −∞ and 1 according to the mutual relation between
the ground truth and prediction model [40]. The assumption that the R2 is greater than
or equal to zero is based on the assumption that obtaining a negative R2 discards the
regression calculation in use and utilizes the mean value. That is, when R2 is negative,
it means an abnormal case in which the prediction performance is lower than the model
predicted by the mean value. In particular, it can be negative when calculated on out-of-
sample data (or for a linear regression without an intercept) [41].

2.2. Data Collection and Processing

In this study, daily data obtained from sixty-two meteorological stations were collected
(Figure 2). The fifty-seven meteorological stations (excluding Jeju) had automated synoptic
observation system (ASOS) data collected for more than 30 years, from 1981 to 2021. The
five meteorological stations (Andong, Changwon, Taebaek, Bonghwa, and Cheorwon)
collected data from 1983 to 2021, when continuous observation data existed.

The meteorological data between April and October (i.e., during the rice cultivation
period) were limited to daily maximum temperature (DXT), daily minimum temperature
(DNT), daily mean temperature (DMT), daily mean wind speed (DWS), daily relative
humidity (DRH), daily solar radiation (DSR), or daily sunshine duration (DSD). From these
collected data, 536,926 data were used as the research data by applying the average value
of data collected from nearby observation stations. The daily ET0 was calculated using the
FAO56 P–M equation as the label data for machine learning (Table 1). Based on the FAO56
P–M equation, the national average annual ET0 was 707.9 mm and the standard deviation
was 59.6 mm. Figure 3 presents the spatiotemporal distribution of the average annual ET0
from April to October. ET0 was 711.1 mm/year from 1981 to 1990, 704.9 mm/year from
1991 to 2000, 706.3 mm/year from 2001 to 2010, and 720.0 mm/year from 2011 to 2021.
In the past, ET0 was high in the southern region, but recently, it has been on the rise in the
central and northern regions of Gyeonggi-do.

2.3. Learning Model and Training Dataset

The learning model was constructed by varying the conditions of the available meteo-
rological items to search for the daily ET0 calculation model based on limited meteorological
items. The daily ET0 based on the FAO56 P–M equation was set as a label, and 12 input
variable datasets were created: 4 for each learning algorithm, with different combinations of
temperature and radiation items (Table 2). Among the input variables, the diurnal tempera-
ture range (DTR) and daily extraterrestrial radiation (DER) were, respectively, calculated
and processed from the daily maximum and minimum temperatures and the latitude and
longitude coordinates of the meteorological station. Extraterrestrial radiation was included
in the training data to consider the effect of solar radiation while minimizing the omission
of training data because solar radiation was not observed at all the meteorological stations.
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Table 1. Nationwide average statistics of the collected climate data and calculated ET0 for the
irrigation period from April to October.

Statistics
Daily Climate Data

ET0 by FAO56 P–M
(mm/Year)DXT

(◦C/Day)
DNT

(◦C/Day)
DRH

(%/Day)
DWS
(m/s)

DSR
(MJ/m2/Day)

DSD
(h/Day)

Maximum 41.0 30.9 100.0 17.9 15.7 14.3 969.0
Minimum –1.5 –12.4 12.1 0.0 1.5 0.0 423.7
Average 24.8 14.5 72.3 1.9 7.7 6.4 707.9

Standard deviation 5.4 6.6 13.4 1.2 2.0 4.1 59.6

DXT: daily maximum temperature, DNT: daily minimum temperature, DRH: daily relative humidity,
DWS: daily mean wind speed, DSR: daily solar radiation, DSD: daily sunshine duration, FAO56 P–M: FAO56
Penman–Monteith.
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For each learning model, a total of 470,586 data from 1981 to 2016 collected from
62 meteorological stations nationwide were used as training data; the test performance was
evaluated with a total of 66,340 data obtained from 2017 to 2021. For testing the learning
model for monthly and annual ET0 calculations, a training dataset was added by processing
the monthly and annual average values of the features in Table 2 for each observation
station. In the monthly based training, a total of 17,563 training data and 2170 test data
were used for 62 meteorological stations nationwide, whereas 2509 and 310 training and
test data were used in the yearly based training.
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Table 2. Twelve models of daily-based machine learning datasets.

Models Algorithms Label Features

MLR_M
Multiple linear

regression (MLR)
Daily ET0 by FAO56

P–M

DXT, DNT
MLR_MR DXT, DNT, DER
MLR_R DMT, DTR

MLR_RR DMT, DTR, DER

PR2_M
Quadratic polynomial

regression (PR)
Daily ET0 by FAO56

P–M

DXT, DNT
PR2_MR DXT, DNT, DER
PR2_R DMT, DTR

PR2_RR DMT, DTR, DER

PR3_M
Cubic polynomial

regression (PR)
Daily ET0 by FAO56

P–M

DXT, DNT
PR3_MR DXT, DNT, DER
PR3_R DMT, DTR

PR3_RR DMT, DTR, DER
DXT: daily maximum temperature, DNT: daily minimum temperature, DER: daily extraterrestrial radi-
ation, DMT: daily mean temperature, DTR: daily diurnal temperature range, and FAO56 P–M: FAO56
Penman–Monteith.

3. Results and Discussion
3.1. Performance of Models in Daily ET0

The individual learning performances of the 12 models are presented in Table 3. The
comparison of these performances indicates that the PR3_RR model trained as a cubic
polynomial regression model using DMT, DTR, and DSR achieved the best results, with
an MSE of 0.473 mm2/day2 (Table 3). For the test performance, all four performance
indicators achieved the best results compared to the other models. Among the models
that used only temperature data, the PR3_R and PR3_M models achieved the least errors,
with RMSE = 0.888 mm/day and MAE = 0.724 mm/day. The PR algorithm showed
an RMSE = 0.89 mm/day for the model that only learned temperature data without using
extraterrestrial radiation data; this RMSE was less than that (RMSE = 0.94 mm/day) of the
MLR algorithm. The model that learned extraterrestrial radiation together instead of using
only temperature achieved a high performance in both training and test data regardless
of the algorithm. For the R2 obtained with the daily ET0 using FAO56 P–M, all models
learning DER showed a high explanatory power of 0.6 or more (Figure 4). Therefore, the
method of using temperature and extraterrestrial radiation data together, and learning with
the PR model instead of the MLR model, helped predict the daily ET0 more accurately than
that when using only the temperature.

Table 3. Performance of the applied models in training and test phases for daily ET0 predictions.

Models
Training Test

MSE 5-Fold MSE MSE RMSE MAE R2

MLR_M 0.802 0.809 0.876 0.936 0.775 0.485
MLR_MR 0.586 0.595 0.642 0.801 0.643 0.623
MLR_R 0.801 0.809 0.874 0.935 0.773 0.486

MLR_RR 0.586 0.595 0.641 0.800 0.642 0.623
PR2_M 0.738 0.746 0.796 0.892 0.728 0.532

PR2_MR 0.495 0.504 0.547 0.740 0.579 0.678
PR2_R 0.733 0.741 0.793 0.891 0.728 0.534

PR2_RR 0.477 0.485 0.528 0.727 0.561 0.690
PR3_M 0.732 0.740 0.789 0.888 0.724 0.536

PR3_MR 0.480 0.488 0.529 0.727 0.564 0.689
PR3_R 0.730 0.738 0.788 0.888 0.724 0.537

PR3_RR 0.473 0.482 0.521 0.722 0.557 0.694
MSE: mean squared error, 5-fold MSE: Average value of MSE with K-fold cross-validation, RMSE: root-mean-
square error, MAE: mean absolute error, and R2: coefficient of determination. Bold font: best results.
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PR algorithms.

The error and regression fit of the monthly accumulated ET0 from 2017 to 2021 using
the learning model were analyzed against the monthly ET0 (mm/month) calculated using
FAO56 P–M for each national meteorological station (Figure 5). The PR3_RR and PR2_RR
models achieved the least errors compared to the other ten models, and presented higher
explanatory powers than the daily-based comparison with R2 = 0.78. As indicated by
the daily-based comparison, models using extraterrestrial radiation data as learning data
presented less errors than models only using temperature data (R2 was also higher than
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0.75). The application of the PR algorithm was observed to be more appropriate than the
MLR algorithm.
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Figure 5. Comparison of monthly accumulated ET0 using different models.

The comparison of the annual accumulated ET0 from April to October with the annual
ET0 (mm/month) calculated using FAO56 P–M for each meteorological station in South
Korea, as presented in Figure 6, indicated that the MLR_M model trained with only
DXT and DNT with the MLR algorithm showed the best performance with an RMSE of
66.6 mm/year and an MAE of 51.5 mm/year. Unlike that of both the daily and monthly
accumulated ET0, the annual accumulated ET0 presented the smallest error when using
the learning result of an MLR algorithm. However, in all models, there was no correlation
between the annual ET0 obtained using FAO56 P–M and an R2 of 0 or less. When R2 was
less than 0, it indicates an abnormal case whose prediction performance was lower than
the model predicted by the average value. Therefore, it was not appropriate to calculate
the annual ET0 using daily learning results.
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Figure 6. Comparison of annual accumulated ET0 using different models.

3.2. Performance of Models in Monthly ET0

The monthly average data of the independent variables for all twelve learning models
presented in Table 3 were prepared to learn about monthly evapotranspiration for testing
the application of linear regression machine learning technology for estimating monthly
ET0. The monthly sum of the daily ET0 values calculated by FAO56 P–M was used as
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the label, and the monthly average of DXT (MDXT), monthly average of DNT (MDNT),
monthly average of DTR (MDTR), and monthly average of DER (MDER) were prepared as
the training data.

Although the PR3_RR model was the best in daily learning, in monthly learning,
the PR3_MR model presented a slightly better performance than PR3_RR in all phases
of training, validation, and testing (Table 4 and Figure 7). The test performance of the
PR3_MR model was evaluated as MSE = 127.69 mm2/month2, RMSE = 11.30 mm/month,
MAE = 8.75 mm/month, and R2 = 0.81. For the model that only learned temperature data
by excluding extraterrestrial radiation, PR3_R using MDMT and MDTR as input data
achieved the best results, with MSE = 19.28 mm2/month2 and MAE = 16.47 mm/month.
However, there was a considerable difference in the performances from the models learning
MDER together. Similar to daily learning, the performance was better when using PR rather
than MLR, and when using extraterrestrial radiation data simultaneously with temperature
data rather than only temperature data. Furthermore, R2 presented greater explanatory
power for monthly learning than daily learning. Instead of accumulating the daily ET0, as
presented in Figure 5, the approach of predicting the monthly ET0 was better in terms of
error and coefficient of determination.

Table 4. Performance of applied models in training and test phases for monthly ET0 predictions.

Models
Training Test

MSE 5-Fold MSE MSE RMSE MAE R2

MLR_M 333.21 337.51 401.31 20.03 17.12 0.40
MLR_MR 127.40 131.67 154.07 12.41 9.60 0.77
MLR_R 333.20 337.59 400.58 20.01 17.10 0.40

MLR_RR 127.40 131.77 153.77 12.40 9.59 0.77
PR2_M 321.98 326.43 384.69 19.61 16.70 0.43

PR2_MR 109.06 113.47 135.84 11.66 9.03 0.80
PR2_R 320.28 325.01 379.76 19.49 16.64 0.43

PR2_RR 109.04 113.76 136.26 11.67 9.05 0.80
PR3_M 320.76 325.21 381.89 19.54 16.65 0.43

PR3_MR 100.77 104.94 127.69 11.30 8.75 0.81
PR3_R 317.44 321.85 371.75 19.28 16.47 0.45

PR3_RR 101.84 106.45 128.84 11.35 8.81 0.81
MSE: mean squared error, 5-fold MSE: average value of MSE with K-fold cross-validation, RMSE: root-mean-
square error, MAE: mean absolute error, and R2: coefficient of determination. Bold font: best results.

3.3. Performance of Models in Annual ET0

The learning model for estimating the annual ET0 was tested using the accumulated
ET0 for 214 days from April 1 to October 31 calculated using FAO56 P–M as the label. From
the daily meteorological data, the annual average of DXT (ADXT), annual average of the
DNT (ADNT), annual average of the DTR (ADTR), and annual average of the DER (ADER)
were prepared as the input data.

As with monthly learning, the PR3_MR model performed the best (Table 5). The
test performance of the PR3_MR model was evaluated as MSE = 1639.7 mm2/year2,
RMSE = 40.49 mm/year, MAE = 32.26 mm/year, and R2 = 0.49. Among the models that
only learned temperature data, PR3_M using ADXT and ADNT as input data achieved the
best results, with RMSE = 41.32 mm/year and MAE = 32.94 mm/year. Similar to daily and
monthly learning, the performance was better when using PR rather than MLR, and when
using extraterrestrial radiation data simultaneously with temperature data rather than only
temperature data. However, R2 = 0.5 or less in all models, and the explanatory power was
lower than that of the daily or monthly learning. Furthermore, compared with the results
presented in Figure 6, the value predicted by learning the annual meteorological data was
more appropriate than the value obtained by accumulating daily ET0 estimates.
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Table 5. Performance of the applied models in training and test phases for annual ET0 predictions.

Models
Training Test

MSE 5-Fold MSE MSE RMSE MAE R2

MLR_M 1837.7 1907.5 1921.0 43.83 34.49 0.40
MLR_MR 1836.4 1918.9 1924.0 43.86 34.51 0.40
MLR_R 1838.0 1907.1 1926.1 43.89 34.53 0.40

MLR_RR 1836.7 1918.6 1931.1 43.94 34.57 0.39
PR2_M 1792.4 1866.0 1787.5 42.28 33.65 0.44

PR2_MR 1776.0 1888.0 1720.5 41.48 33.07 0.46
PR2_R 1786.7 1866.2 1758.3 41.93 33.31 0.45

PR2_RR 1769.1 1887.7 1697.0 41.20 32.73 0.47
PR3_M 1780.3 1853.4 1707.4 41.32 32.94 0.46

PR3_MR 1761.1 1887.2 1639.7 40.49 32.26 0.49
PR3_R 1781.6 1860.9 1727.4 41.56 33.16 0.46

PR3_RR 1761.8 1892.6 1663.9 40.79 32.45 0.48
MSE: mean squared error, 5-fold MSE: average value of MSE with K-fold cross-validation, RMSE: root-mean-
square error, MAE: mean absolute error, and R2: coefficient of determination. Bold font: best results.

3.4. Comparison with Temperature-Based Empirical Methods

Methods, such as Hargreaves, Blaney–Criddle, and Thornthwaite, which can esti-
mate ET0 using temperature data alone, are used when there are insufficient observed
meteorological data or when the reliability of the data is insufficient. These methods are
recommended when calculating ET0 for at least ten days, and the accuracy of calculating
ET0 decreases depending on the climate. However, these methods are still widely used in
situations with limited meteorological data because they only require temperature data
for the calculations [8,29]. Monthly and annual ET0 were calculated using the Hargreaves,
Blaney–Criddle, and Thornthwaite equations using only temperature data obtained from
2017 to 2021 for sixty-two meteorological stations nationwide to analyze the usefulness of
linear regression machine learning technology. For the Hargreaves equation, which can
also calculate daily evapotranspiration, the daily ET0 was calculated and compared with
the result obtained by machine learning [42].

The results of the PR3_RR and PR3_R models were compared with the Hargreaves
equation’s daily evapotranspiration calculation results (Table 6). Daily ET0 according
to FAO56 P–M used as the reference had maximum and minimum values of 9.80 and
0.76 mm/day, respectively; the range of the daily ET0 by Hargreaves and the PR3_R and
PR3_RR learning models was narrower. PR3_RR had the maximum and minimum values
of 6.73 and 1.05 mm/day, respectively, in the narrowest range. The average of the daily
ET0 using the PR3_R and PR3_RR learning models was 3.37 mm/day, which was similar to
the 3.38 mm/day of the FAO56 P–M. However, as shown in Figure 8, Hargreaves achieved
a tendency of overestimation with 3.93 mm/day, compared to that of FAO56 P–M and
PR3_RR. Comparing the error with FAO56 P–M, the Hargreaves equation presented a
greater error with RMSE = 0.95 mm/day compared to PR3_R (0.89 mm/day) and PR3_RR
(0.72 mm/day). Therefore, the PR learning model achieved an appropriate level of accuracy
as an alternative to the Hargreaves equation when estimating the daily ET0.

The results of PR3_MR and PR3_R and those of the Hargreaves, Blaney–Criddle, and
Thornthwaite equations were compared with the monthly ET0 by FAO56 P–M (Table 6). The na-
tional average of monthly evapotranspiration by FAO56 P–M was about 103.3 mm/month; the
maximum value was 171.55 mm/month, and the minimum value was 42.25 mm/month. The av-
erages of the Hargreaves, Blaney–Criddle, and Thornthwaite equations were 120.27 mm/month,
157.03 mm/month, and 105.76 mm/month, respectively. Figure 9 shows that the temperature-
based empirical equation overestimates the monthly ET0 compared to the FAO56 P–M.
Such results are attributed to the limitations of the empirical equations, as reported in the
previous studies conducted by [1,43,44]. The PR3_R and PRPR3_MR models, to which ma-
chine learning was applied, presented similar statistics as that of FAO56 P–M with averages
of 103.03 and 102.96 mm/month. For the error against FAO56 P–M, PR3_MR achieved the
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lowest RMSE of 11.30 mm/month and MAE of 8.75 mm/month. The error of the Blaney–
Criddle equation, which was widely used in the design of agricultural reservoirs in the past
when meteorological data were not sufficient, was the highest at RMSE = 57.52 mm/month
and MAE = 53.77 mm/month. In addition to the Thornthwaite equation, R2 was also less
than 0, which indicated no correlation at all. The Hargreaves equation showed a better
error than the Blaney–Criddle and Thornthwaite equations; however, it achieved a larger
error than the RMSE of 19.28 mm/month and MAE of 16.47 mm/month of PR3_R, which
learned the monthly average temperature and diurnal temperature range. Thus, the ma-
chine learning method was observed to be more useful than the empirical equations when
calculating the monthly ET0.

Table 6. Comparison of the daily, monthly, and annual ET0 from 2017 to 2021 for all sixty-two meteo-
rological stations by ET0 estimation methods.

Models
Statistics Errors

Max. Min. Avg. Std. dev RMSE MAE R2

By daily parameters
FAO56 P–M 9.80 0.76 3.38 1.30 - - -
Hargreaves 7.87 0.66 3.93 1.25 0.95 0.79 0.47

PR3_R 7.62 1.35 3.37 0.89 0.89 0.72 0.54
PR3_RR 6.73 1.05 3.37 1.03 0.72 0.56 0.69

By monthly parameters
FAO56 P–M 171.55 42.25 103.28 25.89 - - -
Hargreaves 190.34 55.96 120.27 28.49 22.39 19.73 0.25

Blaney–Criddle 211.70 87.67 157.03 30.04 57.52 53.77 −3.94
Thornthwaite 192.93 22.42 105.76 42.89 32.32 26.93 −0.56

PR3_R 158.61 68.45 103.03 15.84 19.28 16.47 0.45
PR3_MR 149.31 50.74 102.96 21.43 11.30 8.75 0.81

By annual parameters
FAO56 P–M 859.98 573.33 722.94 56.46
Hargreaves 1016.38 643.33 841.91 71.67 149.00 134.99 −5.96

Blaney–Criddle 1162.08 932.43 1099.24 36.88 378.75 376.30 −44.0
Thornthwaite 831.50 570.26 740.34 43.02 44.44 37.20 0.38

PR3_M 792.02 614.77 723.55 32.54 41.32 32.94 0.46
PR3_MR 791.01 611.96 723.89 32.74 40.49 32.26 0.49

Max.: maximum, Min.: minimum, Avg.: average, Std.dev: standard deviation, RMSE: root-mean-square error,
MAE: mean absolute error, and R2: coefficient of determination.
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Figure 9. Monthly ET0 by empirical equations compared with FAO56 P–M and PR3_MR.

For the annual evapotranspiration values, the PR machine learning method showed
a lower error against FAO56 P–M than the empirical equations. The national average of
annual ET0 by FAO56 P–M was 722.94 mm/year, whereas the Hargreaves and Blaney–
Criddle equations overestimated it to 841.91 and 1099.24 mm/year, respectively. For
Thornthwaite, the average value was 740.34 mm/year and the maximum value was
831.50 mm/year, which was similar to the values for FAO56 P–M. The averages of PR3_MR
and PR3_M, which showed the best performances in annual learning, were 723.89 and
723.55 mm/year, respectively; the maximum values were 791.01 and 792.02 mm/year,
respectively, which suggest statistics closer to FAO56 P–M than those of the Hargreaves or
Blaney–Criddle equations (Figure 10).

For the error with FAO56 P–M, the Hargreaves equation had a high error rate with
an RMSE of 149.00 mm/year and R2 less than 0. This meant that there was no correlation,
and this was an abnormal case where the prediction performance was lower than the
model predicted by the mean value. The RMSE of the Blaney–Criddle equation was
excessive at 378.75 mm/year. However, the Thornthwaite equation had an RMSE of
44.44 mm/year with FAO56 P–M, which was the same for PR3_M and PR3_MR, with
RMSEs of 41.32 and 40.49 mm/year, respectively. The Hargreaves or Blaney–Criddle
equations were not appropriate for annual ET0, and Thornthwaite showed the best error
among the empirical equations. Similar to the daily and monthly results, the polynomial
regression machine learning showed the closest results to the FAO56 P–M in annual
reference evapotranspiration, and it was appropriate as an alternative to the temperature-
based empirical equation.
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4. Conclusions

A linear regression machine learning model that can estimate the reference evapo-
transpiration under limited conditions of meteorological data was tested, and its reliability
was reviewed by comparing it to FAO56 P–M. The applicability of the proposed method
was evaluated by comparing it to temperature-based empirical equations, such as Harg-
reaves, Blaney–Criddle, and Thornthwaite. To this end, meteorological data obtained from
sixty-two meteorological stations across the country collected over 41 years (1981 to 2021)
were used by applying multiple linear regression (MLR) and polynomial regression (PR)
algorithms using Python-based libraries, such as Scikit-Learn. A total of twelve learning
models were tested based on the composition of input datasets, such as maximum tem-
perature, minimum temperature, average temperature, diurnal temperature range, and
extraterrestrial radiation. Using four performance indicators, such as MSE, RMSE, MAE,
and R2, the daily ET0, monthly accumulated ET0, and annual accumulated ET0 by FAO56
P–M from 2017 to 2021, respectively, were used as controls, and the test performance of
each learning model was evaluated on a daily, monthly, and annual scale.

The cubic PR machine learning model (PR3_MR or PR3_RR) showed the best per-
formance in the daily ET0, monthly ET0, and annual ET0 prediction tests. Compared to
models that did not learn extraterrestrial radiation, models that learned the DTR or average
temperature and extraterrestrial radiation together showed less errors in all tests. Further-
more, the PR algorithm showed a better performance than the MLR algorithm in all time
scales (for example, the best R2 were daily 0.62, 0.69; monthly 0.77, 0.81; annual 0.40, 0.49
MLR and PR algorithms, respectively) and predicted an ET0 closer to FAO56 P–M than
the temperature-based empirical equations. Therefore, if only the temperature data were
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measured, they can be learned using the cubic PR machine learning model along with the
extraterrestrial radiation data (calculated based on temperature-observation-point-location
information). This proposed method can calculate the ET0 of the smallest error compared
to the FAO56 P–M, and can substitute the empirical equation.

This study proposed a linear regression learning model that has sufficient applicability
compared to the empirical equations and can be applied to all of South Korea. However,
inland and coastal areas are different, and there may be errors in predicting the ET0
according to the spatiotemporal deviation of learning data. Thus, it is necessary to study
the optimal model for each region by examining other training data and learning models
considering regional characteristics.
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