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Abstract: Despite the attractiveness of Photovoltaic (PV) cells for electrification and supplying power
in term of environmental criteria and fuel saving, their efficiency is relatively low and is further
decreased by temperature increment, as a consequence of absorption of solar radiation. In order to
prevent efficiency degradation of solar cells due to temperature increment, thermal management
is suggested. Active cooling of solar cells with use of liquid flow is one of the most conventional
techniques used in recent years. By use of nanofluids with improved thermophysical properties, the
efficiency of this cooling approach is improvable. In this article, Single Walled Carbon Nano Tube
(SWCNT)/water nanofluid is used for cooling of a PV cell by considering variations in different factors
such as volume fraction of solid phase, solar radiation, ambient temperature and mass flow rate.
According to the findings, use of the nanofluid can lead to improvement in performance enhancement;
however, this is not significant compared with water. In cases using water and the nanofluid at
0.5% and 1% concentrations, the maximum improvement in the efficiency of the cell compared with
the cell without cooing were 49.2%, 49.3 and 49.4%, respectively. In addition, sensitivity analysis
was performed on the performance enhancement of the cell and it was noticed that solar radiation
has the highest impact on the performance enhancement by using the applied cooling technique,
followed by ambient temperature, mass flow rate of the coolants and concentration of the nanofluid,
respectively. Moreover, exergy analysis is implemented on the system and it is noticed that lower
ambient temperature and solar radiation are preferred in term of exergy efficiency.

Keywords: nanofluid; solar energy; PV cell; thermal management; sensitivity analysis

1. Introduction

In regard to fossil fuel sources’ limitations, fluctuation in their cost and environ-
mental pollution, cleaner energy technologies using renewable energy sources such as
wind and solar have been developed in recent decades [1–3]. The solar photovoltaic (PV)
cell is one of the most fascination technologies used for clean power generation [4]. The
attractiveness of PV cells is mostly attributed to the possibility of power generation in
different scales, simple operation and installation, relatively low maintenance cost and
availability of solar radiation in different regions. Due to these advantages of solar cells,
these systems are applied for different purposes, including electrification of buildings in
remote areas and supplying the power to different systems such as desalination plants,
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electrolyzers, etc. [5–8]. Despite the advantages, relatively low efficiency in addition to
the unavailability of solar radiation in night hours, meaning no power generation, are the
main disadvantages. In order to overcome the problem related to unavailability of solar
power during night hours, using storage units such as batteries is recommended. In terms
of resolving the issues concerning low efficiency, several methods and solutions have
been proposed including the modification of cell material, use of concentrators and pro-
viding the operating conditions leading to performance enhancement [9,10]. Numerous
elements including solar radiation, operating conditions, working temperature, material
of the cell, etc., influence the operation and output of solar cells [11–13]. One of the most
influential operating factors that influences the cell efficiency is temperature. Increment
in the temperature of PV cells degrades their efficiency and consequently the output at
constant solar radiation. In this regard, thermal management of cells is recommended to
achieve better efficiency without any change in the operating elements.

Performance of thermal management applied in PV cells, influencing the cell tempera-
ture and output power, depends on certain elements. Conventional approaches applied
for cell thermal management are divided into two main groups: active and passive [14].
In active methods, such as making use of fluid flow for heat removal from the cell, an
additional component such as a pump or fan is used to circulate a fluid in order to cool
down the cell, while in passive methods, such as Phase Change Material (PCM), there is
no additional energy consuming unit [15–17]. Using PCM and heat pipes without activity
in the condenser section are some of the passive approaches that are used for thermal
management of cells [16,18]. These techniques have shown significant performance in
decreasing the temperature of cells and consequently improving efficiency and output [19].
In spite of the acceptable performance of passive techniques, using active methods can
be preferred in term of heat transfer. Temperature reduction of cells in cases using active
methods depends on various elements. In active methods with coolant flow, using liquids
is preferred due to their higher heat transfer capacity compared with gases. Use of liq-
uids for cooling the cell remarkably decreases the temperature of the cell and improves
its efficiency. For instance, Shalaby et al. [20] found that using water cooling for a PV
cell can causes around 14% increase in power generation. Regarding the influence of the
thermal properties of the liquids in heat transfer of fluid flows, use of liquids with modified
properties, e.g., nanofluids, would be more beneficial for efficient thermal management.
In some studies [21], both active and passive methods such as PCM and liquid flow have
been integrated in order to arrive at a technique with higher efficiency in cooling the cell.
Despite the better performance of these approaches, based on the integration of two or
more techniques, the complexity of the system is increased.

Nanofluids are prepared by the dispersion of solid materials with nanometer dimen-
sions in a base fluid. The solid phase can be in different shapes, such as cylinder, platelet,
tubes, etc. Dispersion of the solid phase in the base fluid leads to modification in some
thermal properties such as thermal conductivity [22,23]. Variations in the properties of the
fluids regarding the existence of the solid phase is affected by different elements such as
the material of solids, concentration, features of the fluid, etc. [24,25]. Generally, addition
of solid phase will increase thermal conductivity and dynamic viscosity, while the specific
heat is mainly decreased due to the lower specific heat of solid materials compared to the
liquids used as base fluids. In the following section, equations are provided which are used
for the estimation of these properties. Regarding the increment in thermal conductivity,
convective heat transfer of nanofluids can be higher compared with conventional fluids
without solid nanoparticles. The modified characteristics of nanofluids, in term of heat
transfer, make them an attainable alternative to the conventional fluids used for thermal
management and heat transfer [26]. Nanofluids have been extensively used in different
solar systems in recent years [27]. Making use of nanofluids in the solar system would
improve the overall performance. For instance, Nazari et al. [28] used Fe3O4/Ag hybrid
ferro particles in the basin water of a solar still and observed an increment in the produc-
tivity of the systems. In another study [29], Cu2O nanoparticles were applied in a solar
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still integrated with a thermoelectric cooling channel. Making use of the nanofluid with
0.08% concentration caused 81% improvement in the productivity of the system. In another
work [30], Cu2O nanoparticles were used in a solar water heating system, based on an
evacuated tube solar collector and concentrator, and improvement in exergy efficiency of
the system was around 12.7%.

Thus far, regarding the significant effect of active approaches in thermal management,
several studies have focused on this concept; however, some aspects have not been con-
sidered. In this study, Single Walled Carbon Nanotube (SWCNT)/water nanofluid, as one
of the most conductive nanofluids, is applied as coolant for thermal management of a cell
in order to boost heat transfer as much as possible. In order for full investigation, several
factors such as concentration of nanofluid, mass flow rate, solar radiation and ambient
temperature are taken into consideration and their effects are discussed. Furthermore,
exergy analysis is implemented to obtain a better insight into the system. Finally, sensitivity
analysis is carried out in order to determine the importance level of various factors. In the
following sections, methodology, results and conclusion are provided.

2. Material and Methods

To numerically investigate the effect of various cooling parameters on performance, a
PV cell, monocrystalline silicon type, is considered, with length and width of 200 mm and
83 mm, respectively. Five layers, glass, EVA, cell, EVA and Tedlar, are considered in the
module as shown in Figure 1. The thicknesses of these layers are 3 mm, 0.5 mm, 0.5 mm,
0.5 mm and 1 mm, respectively. In addition, a cooling channel with length and width
of 3 mm is used for cooling the cell. In order to show the simulation procedure, applied
equations and assumptions are represented in this section.
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Figure 1. Schematic of the PV module and its sublayers.

For numerical simulation and determination of the cell temperature and efficiency, an
energy equation is applied. According to Figure 2, absorbed energy from solar radiation is
partly converted into electrical energy. The remaining part causes increment in the internal
energy of the cell, dissipated via radiation or convection from the walls. For simplification
of the simulation, produced electricity is considered as heat dissipation by considering the
variations of efficiency with temperature of the cell.
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Energy conversion in solar cell can be given by Equation (1):

ρCpδ
dTs

dt
= qs − qel − qh − qr − qliquid (1)

where qs, qel, qh, qr and qliquid are absorbed heat from solar radiation by the cell, generated
electricity, heat transfer due to convection, heat transfer due to radiation and heat removal
by the liquid flow, respectively. Absorbed heat from solar radiation is calculated by using
Equation (2) as follows:

qs = ε0Qs (2)

where Qs and ε0 are normal solar radiation and absorption coefficient, assumed as equal
to 0.9, respectively. Electricity generation by the cell is dependent on efficiency and is
determined as follows:

qel = βQs (3)

where β is the temperature-dependent efficiency of the cell and is calculated as follows [32]:

β = −0.1757 Ts + 21.737 (4)

In Equation (4), Ts denotes the cell temperature. Other heat transfer terms related to
convection and radiation are determined as follows [32]:

qh = hh (Ts − Ta) (5)

qr = ε1σsb

(
T4

s − T4
a

)
(6)

where Ta and hh are ambient temperature and coefficient of convection heat transfer,
respectively. σsb and ε1 are Stefan Boltzmann constant and emissivity of cell, respectively.
In Equation (5), Ta and hh are ambient temperature and convective heat transfer coefficient,
respectively. In Equation (6), ε1 and σsb are emissivity and Stefan Boltzmann constant
(5.67 × 10 −8 W

m2K4 ), respectively. Radiative heat transfer is applied on both upper and
lower sides of the cell.
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Convection heat transfer is considered on the walls of cell components. In order
to simplify the simulation, Equation (7) is used to obtain the convective heat transfer
coefficient [32].

hh = 2.8 + 3.8uw

(
W

m2K

)
(7)

In Equation (7), uw refers to the wind speed in m/s. Here, the speed of wind is
considered as equal to 2 m/s in all of the simulations. In the present work, two coolants,
water and SWCNT/water, are used. It should be noted that two volume fractions of
the nanomaterials, 0.5% and 1%, are considered here. In order to determine density,
specific heat, thermal conductivity and dynamic viscosity, the following equations are
applied [33,34]:

ρn f = (1 −∅)ρb f +∅ρnp (8)

cn f = (1 −∅)cb f +∅cnp (9)

kn f = k f

 (1 −∅) + 2∅
(

kCNT
kCNT−kb f

)
ln
( kCNT+kb f

2kb f

)
(1 −∅) + 2∅

( kb f
kCNT−kb f

)
ln(

kCNT+kb f
2kb f

 (10)

µn f

µb f
=

1

(1 −∅)2.5 (11)

where subscripts of bf, nf and np refer to base fluid, nanofluid and nano particle, respectively.
In order to generate mesh, ANSYS Meshing is applied. To evaluate grid independency,
different sizes were tested and the optimal condition is selected. In Figure 3, average
temperature of the cell, in case of using water as coolant with mass flow rate of 0.003 kg/s,
ambient temperature of 30 ◦C and solar radiation of 1000 W/m2, with different numbers
of elements, is shown. According to this figure, utilization of the model with around
2,400,000 mesh is the optimal condition and further reduction in the size does not affect the
results. The meshed model in optimal condition is illustrated in Figure 4.
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Beside the energy analysis, exergy analysis is implemented on the system. The
equations used for the exergy analysis are obtained from Ref. [35]. According to this
reference, inlet exergy of the system, considering both coolant and the cell, is determined
as follows:

∑
.

Exin =
.

Exin,th,PV +
.

Exin,el,PV (12)

where the first and second terms on the right hand side, thermal and electrical exergy,
respectively, are determined as follows:

.
Exin,th,PV =

.
m f ·Cp f ·

[
(Tav,i,PV − T0)− T0·ln

Tav,i,PV

T0

]
(13)

.
Exin,el,PV = APV ·I·

[
1 − 4

3

(
Ta

Ts

)
+

1
3
·
(

Ta

Ts

)4
]

(14)

where
.

m f is mass flow rate of the fluid, Cp f is the specific heat of the fluid, T0 is the ambient
temperature, Ts is sun surface temperature and is equal to 5777 K, A is solar cell area and I
refers to the solar radiation. Tav,i,PV is calcuated as follows:

Tav,i,PV =
Tf s + Tout,PV

2
(15)

where Tf s is temperature of fluid supply and Tout,PV is the outlet fluid temperature of PV
module. Outlet exergy of the system is determined as follows:

∑
.

Exout =
.

Exout,th,PV +
.

Exout,el,PV (16)
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The right hand side terms are calculated as follows:

.
Exout,th,PV=

.
m f ·Cp f ·

[
(Tout,PV − T0)− T0·ln

Tout,PV

T0

]
(17)

.
Exout,el,PV = APV ·β·I·

[
1 − 4

3

(
Ta

Ts

)
+

1
3
·
(

Ta

Ts

)4
]

(18)

The exergy efficiency of the system is determined as follows:

ηex =
∑

.
Exout

∑
.

Exin
(19)

In this study, firstly, a numerical simulation is implemented by considering different
conditions including two mass flow rates of coolant, two concentrations of the nanofluids,
two solar radiations and two ambient temperatures. Afterwards, based on the determined
values for the generated electricity, efficiency of the cell and temperature at the outlet of the
channel, the exergy analysis is carried. Results of the study are presented and discussed in
the following section.

3. Results and Discussion

After preparing the modeling and grid independency evaluation, a comparison
is performed between the results of the current simulation and a previous study by
Birjandi et al. [31], in case of no cooling. As shown in Table 1, the obtained data are
very close in the case of ambient temperature of 18 ◦C, qs of 1000 W/m2. According to the
comparison, the results are very close to each other which validates the present model and
simulation. Afterwards, simulation is performed by considering different working condi-
tions. Two ambient temperatures, 30 and 40 ◦C, two solar radiations, 600 and 1000 W/m2,
three coolants, water and SWCNT/water in 0.5% and 1% concentrations, and two mass
flow rates of coolants, 0.0015 and 0.003 kg/s, are considered in order to investigate different
factors and their impacts on the cell average temperature and efficiency enhancement in
comparison with the condition of no cooling.

Table 1. Comparison between the present and previous studies.

Wind Speed (m/s) Average Temperature of the
Current Simulation (◦C)

Average Temperature in the Previous
Work (Approximated) [31] (◦C)

2 49.25 44.83

3 42.43 40.05

4 38.12 37.23

3.1. Energy Analysis

As the first analysis, the performance of the cell is determined based on its energy
efficiency under various operating states. Using this cooling method causes reduction in
the temperature of the cell. In Figure 5, temperature contour of the cell in case of ambient
temperature of 40 ◦C and mass flow rate of 0.0030 kg/s, solar radiation of 600 W/m2 using
water as the coolant is illustrated.
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3.2. Effect of Mass Flow Rate

In Figure 6, average temperature of the cell in different conditions, without any
cooling, is presented. According to the determined values of temperature, the maxi-
mum temperature in condition of no cooling is around 68.09 ◦C for solar radiation of
1000 W/m2 and ambient temperature of 40 ◦C. In Figure 7a–d, average temperatures of
the cell in different conditions are presented. Average cell temperatures in condition of
solar radiation of 1000 W/m2 and ambient temperature of 40 ◦C are around 41.42 and
40.7 for water mass flow rates of 0.0015 kg/s and 0.0030 kg/s, respectively. It can be
noticed that making use of water for thermal management causes remarkable decrement
in the average temperature. Furthermore, it is concluded that increment in the mass
flow rate of the coolants causes reduction in the average cell temperature, which means
higher efficiency. With increment in the mass flow rate, the velocity of the fluid in
constant area of the channel would be increased and, consequently, the Reynolds number
is increased which causes higher convective heat transfer coefficient. Higher convective
heat transfer coefficient means higher ability of heat removal from the cell, which means
lower temperature and improved efficiency.
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Figure 7. Average temperature of the cell for (a) solar radiation of 600 W/m2 and ambient temperature
of 30 ◦C, (b) solar radiation of 1000 W/m2 and ambient temperature of 30 ◦C, (c) solar radiation of
600 W/m2 and ambient temperature of 40 ◦C, and (d) solar radiation of 1000 W/m2 and ambient
temperature of 40 ◦C.

3.3. Effect of Concentration

As shown in Figure 7a–d, it can be noticed that using the nanofluid causes better
cooling of the cell and lower temperature. As was denoted, dispersion of SWCNTs in
water increases the thermal conductivity. By considering the same condition, i.e., equal
Nusselt number, convective heat transfer coefficient would be increased regarding the
higher thermal conductivity due to the existence of the conductive nanostructures. Further
increment in the concentration of SWCNts causes further increase in the thermal conductiv-
ity. As a consequence, the convective heat transfer coefficient would be further increased
which means more efficient thermal management and more decrement in the average cell
temperature. It should be taken into account that there are some restrictions on increments
in the concentration of solid phase. At high concentrations, the possibility of agglomeration
of solid structures is increased that can deteriorate heat transfer. In addition, increase in
concentration causes higher dynamic viscosity which would increase pressure loss and
required power for circulating the fluid inside the cooling channels.

3.4. Effect of Ambient Temperature and Solar Radiation

Higher ambient temperature (Figure 7c,d) and solar radiation (Figure 7a–d) cause
increment in the temperature of the cell without cooling. As shown in Figure 6, at solar
radiation of 1000 W/m2, an increase in ambient temperature from 30 ◦C to 40 ◦C causes
an increment in average cell temperature from 58.09 ◦C to 68.09 ◦C. With increment in the
ambient temperature, convective heat transfer to the surrounding is decreased while, in
the case of 600 W/m2 and ambient temperature of 40 ◦C, due to higher temperature of
surrounding compared with the cooled cell, thermal energy is transferred to the cell. In
addition, higher solar radiation means increment in the absorbed energy by the cell which
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causes more increment in its internal energy and causes increase in temperature. In this case,
applying thermal management would be more beneficial in term of efficiency enhancement.
In case of solar radiation of 1000 W/m2 and water mass flow rate of 0.0030 kg/s, increase
in ambient temperature from 30 ◦C to 40 ◦C causes an increment in the average cell
temperature from 36.47 ◦C to 40.77 ◦C. Although there is increment in the cell temperature
due to increase in ambient temperature, its value is lower than in the case of no cooling.
This is attributed to increment in heat transfer between the coolant and cell due to increase
in temperature difference, which causes higher heat removal.

3.5. Performance Enhancement

To assess the effect of applied thermal management technique, efficiency of the cell
must be compared with this condition. Use of cooling causes temperature reduction in the
PV cell temperature and consequently the efficiency of the cell. In order to investigate its
impact, performance enhancement as a new parameter (τ) is defined to assess the impact
of cooling in different conditions. This parameter is defined as follows:

τ = 100 ∗ e f f iciency o f the cell with cooling − e f f iciency o f the cell without cooling
e f f iciency o f the cell without cooling

Performance enhancement of the cell in different cooling modes is represented in
Figure 8. It can be noticed that increase in the mass flow rate, solar radiation and concen-
tration of the nanofluid causes higher efficiency enhancement which means improvement
in the cooling of the cell. The maximum performance enhancement, for mass flow rate
of 0.003 kg/s, solar radiation of 1000 W/m2, nanofluid concentration of 1% and ambient
temperature of 40 ◦C, is around 49.42%, which is remarkable and shows the effectiveness
of this technique in significant enhancement of efficiency, while in cases of applying water
as coolant the maximum value of performance enhancement is approximately 49.17%. This
means that using the nanofluid in this range of concentration does not remarkably improve
efficiency in comparison with water. The maximum improvement in the efficiency by
using the proposed approach in this study is very significant. For instance, in the previous
study [31], utilizing Multi Walled Carbon Nanotube (MWCNT)-Fe3O4/water with 0.3%
concentration and mass flow rate of 0.00020 kg/s, the highest enhancement in efficiency
compared with no cooling condition was around 35%.
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Figure 8. Performance enhancement of the cell for (a) solar radiation of 600 W/m2 and ambient
temperature of 30 ◦C, (b) solar radiation of 1000 W/m2 and ambient temperature of 30 ◦C, (c) solar
radiation of 600 W/m2 and ambient temperature of 40 ◦C, and (d) solar radiation of 1000 W/m2 and
ambient temperature of 40 ◦C.
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3.6. Exergy Analysis

Due to the energy absorption of the coolant in addition to the improvement in the
electrical output of the cell, it is anticipated to show higher exergy efficiency in the case
of using coolants. In Figure 9a–e, exergy efficiency of the system in different conditions is
represented. It can be noticed that applying cooling (Figure 9b–e) can significantly improve
exergy efficiency compared with no cooling (Figure 9a). Moreover, it is concluded that
increment in both ambient temperature and solar radiation causes decrement in the overall
exergy efficiency of the system which is attributed to the reduction in the cell electrical
output. Furthermore, it is seen that, for cases of high ambient temperatures, the exergy
efficiency of the systems with lower mass flow rate of coolant is higher, which is attributed
to the higher thermal exergy of the system. According to the obtained data, it can be
denoted that the maximum exergy efficiency of the cell is obtained in case of solar radiation
of 600 W/m2 and ambient temperature of 30 ◦C, which is around 15.987% and 16.002% for
water and for the nanofluid with 1% concentration, respectively.
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Figure 9. Exergy efficiency of the system for (a) without cooling (b) solar radiation of 600 W/m2

and ambient temperature of 30 ◦C, (c) solar radiation of 1000 W/m2 and ambient temperature of
30 ◦C, (d) solar radiation of 600 W/m2 and ambient temperature of 40 ◦C, and (e) solar radiation of
1000 W/m2 and ambient temperature of 40 ◦C.
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4. Sensitivity Analysis

Despite the fact that all of the considered factors influence the efficiency enhancement
of the cell, their impact is different and some are more effective. In order to evaluate
impact of the variables, including ambient temperature, solar radiation and concentration
of the nanofluid, sensitivity analysis must be carried out. This procedure is performed by
determining dependency factor, which is in a range of −1 and 1. Higher absolute value of
this parameter means higher influence of the corresponding variable. It should be noted
that negative and positive values reveal decrement and increment in the output as the
consequence of increment in the related variable. Relevancy factor of the parameters, by
consideration of efficiency enhancement as the output, is determined by using Equation (12)
as follows [36]:

r =
∑N

i=1
(
Xk,i − Xk

)
(yi − y)√

∑N
i=1
(
Xk,i − Xk

)2
∑N

i=1(yi − y)2
(20)

where y is average value of the output and yi refers to the ith output value. Xk is the average
value of the kth input variable and Xk,i is the ith value of the kth input. Determined values
for the variables are represented in Figure 10. It can be noticed that the relevancy factor
value for solar radiation is the highest, followed by ambient temperature, mass flow rate of
coolants and the concentration of nanofluid, respectively. It can be concluded that solar
radiation has the highest influence on the variations of system efficiency; in another word,
variations in this parameter change the efficiency more significantly compared with other
considered factors. Moreover, it can be denoted that the effect of concentration, regarding
its very low relevancy factor, is negligible compared with the three others.
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5. Conclusions

In the present article, effects of solar radiation, ambient temperature, mass flow rate of
coolants and concentration of the nanofluid on the performance of solar cell are investi-
gated. It is noticed that use of the nanofluids leads to further enhancement in performance
enhancement of the cell efficiency; however, its impact is very low. The maximum enhance-
ments in the cell efficiency in the present study by using the nanofluid, with concentration
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of 1%, and water are around 49.42% and 49.17%, respectively. In addition, it is noticed
that increment in mass flow rate and concentration of the nanofluid causes higher reduc-
tion in temperature and, consequently, further enhancement in efficiency. Moreover, it
is concluded that using the cooling technique is more beneficial, in term of performance
enhancement, at higher solar radiation and ambient temperature. The maximum exergy
efficiency of the system in cases of using water and nanofluid was around 15.987% and
16.002%, respectively. It is found that, by increasing solar radiation and ambient tem-
perature, exergy efficiency decreased. Finally, sensitivity analysis is carried out on the
performance enhancement of the cell when using the present cooling technique in order
to assess the impacts of different parameters. The determined values of relevancy factors
reveal that solar radiation has the highest impact, followed by ambient temperature, mass
flow rate of the coolant and concentration of the nanofluid, respectively.
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Nomenclature

A Area
C Specific heat (J/kg.K)
Ex Exergy (J)
k Thermal conductivity (W/m.K)
r Relevancy factor
T Temperature (K)
µ Viscosity (N/m.s)
ρ Density (Kg/m3)
∅ Volume fraction
β Cell efficiency
τ Performance enhancement (%)
σsb Stephan Boltzmann constant (W/m2·K4)
Subscripts
a Ambient
el Electrical
h Convection
in Inlet
nf Nanofluid
out Outlet
pf Pure fluid
rad Radiation
S Surface
w Wind
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