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Abstract: The enhancement of navigators’ ability has been promoted by on-scene training; however,
considering the safety and repeatability, simulation training (ST) is recommended. Notably, the
training of maritime autonomous surface ship (MASS) remote operators has to be performed in a
systemic simulated environment. In various fields, ST has differentiated levels of training scenarios
considering the proper training effect and evaluation. Although the accuracy and implementation of
a realistic situation have received the most attention in simulated navigation, the objective criteria of
difficulty are to be established for systemic training. For this purpose, this study aims to propose
difficulty criteria in navigation generation scenarios for the development of training simulator MASS
remote operators. Proposed methods generated navigation scenarios with differentiated difficulties,
simulated navigation experiments were performed, and the results were analyzed as a validation of
the differentiated difficulties. Our findings include the difficulty differentiation method, navigation
scenario samples, and simulated navigation experimental results.

Keywords: simulated training; remote operator; navigation scenario generation; differentiated
difficulty; simulated navigation experiments

1. Introduction

In Maritime Education and Training (MET), enhancing ship operators’ maneuver-
ing ability has been the primary purpose of training [1,2] because it is strongly related
to maritime accidents [3]. At present, on-scene training is obligatory for trainees [4,5],
although opportunities to maneuver a ship as a cadet in situations that require attention
are somewhat limited for rational reasons for safety [6]. Instead, simulation training (ST) is
performed for safety and repeatability [7–9]. As the Maritime Autonomous Surface Ship
(MASS) is in development [10,11], requiring remote operators’ intervention in levels of
autonomy 2 and 3 [12,13], the required navigation proficiency for the remote operators will
be considerable [14–16]. Before engaging in actual remote operation in the shore control
center, the training of remote operators is encouraged to be performed in a systemically
simulated training environment [9,17], the shore remote control simulator.

In the development of a systemic shore remote control simulator, the various evalua-
tion methods in other fields using ST were researched. Aviation training used a scoring
system for trainees’ actions, providing evaluation results in scenarios under different
designated difficulties to allow trainees to understand their weak points [18]. Likewise,
data-driven methods are used to consider the reaction time and delay in evaluating a
pilot’s flight abilities [19]. In medical training, patients in different levels of situations are
given in simulation, and actions taken by trainees are evaluated for each level [20], or the
simulated surgical suturing performance results of trainees are evaluated using data-driven
methods [21]. Even in safety management training, ST results are evaluated in different
situations using a checklist [22]. After the simulation, training is performed on different
levels of situations for the systemic evaluation of trainees.
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However, in the maritime field, simulation-related research has mainly focused on the fi-
delity of simulation [23–26], the implementation of ship motions, and real situations [27–31].
Fidelity and reality are essential factors in navigation training, but difficulty evaluation
is lacking in systemic ST. Regarding the difficulty in ST, the adjustment of navigation
elements’ complexity and the composition of navigation elements are under the control of
instructors [26,32] so that navigation scenarios can be either easy or difficult. This research
concentrated on establishing objectively differentiated difficulty degrees, particularly when
generating navigation scenarios considering repeatability and reproductivity. To differ-
entiate the difficulty of navigation scenarios objectively, research methods derived the
actual distribution of navigation elements, generated navigation scenarios, performed a
navigation experiment, and validated the results.

Therefore, the study proposed objective methods to differentiate navigation difficulties
for the development of a systemic training simulator for MASS remote operators.

2. Materials and Methods

The proposed methods comprise four steps separated into two sections. In the first
step, the extraction of navigation elements and distribution fittings is based on a previous
study [17]. Then, the difficulty degrees were set to generate navigation scenarios. Afterward,
a simulated navigation experiment was performed, features were engineered, and the
difficulty of the navigation scenarios was validated. Figure 1 shows the workflow of the
proposed methods.

Figure 1. Workflow of proposed methods.

The “Experiment Preparation” section includes the navigation scenario generation
for the simulated navigation experiment, and the “Data Analysis for Validation” section
includes the maneuvering feature engineering for difficulty clustering.

2.1. Navigation Scenario Generation
2.1.1. Data Collection and Preprocessing

The AIS trajectory data were collected for two months: January and August 2020.
The data collection conditions were described. First, gross tonnage conditions targeted
ships that are neither too small nor too large for an autonomous ship of the development
project in South Korea. Second, speed conditions excluded anchored and drifting ships.
Third, the covered area was limited to the Busan port entrance, where ships made dynamic
movements. The specific data collection conditions are summarized in Table 1.
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Table 1. Data collection condition.

Criteria Condition Range Unit

(1) Gross tonnage 80,000–120,000 -
(2) Speed 5–25 Knots
(3) Covered area (Latitude) 34.85–35.97 Degrees
(4) Covered area (Longitude) 128.85–129.00 Degrees

2.1.2. Difficulty Degrees of Navigation Elements

Considering our experiment, this research extracted only two navigation elements: the
“course-altering angle” and “straight proceeding distance”. When extracting navigation
elements, a 5-min window and five threshold degrees were used to determine whether a
ship changed course. After the extraction, the ranges of navigation elements were reduced
to a suitable size for our experiment scenarios: a maximum of 60◦ angle and one nautical
mile of distance. Figure 2 shows the navigation elements fitted in probability distribution
curves and difficulty degrees.

Figure 2. Distribution of navigation elements and difficulty degrees: (a) “Course-altering angle” with
a higher degree for a larger value and (b) “Straight proceeding distance” with a higher degree for a
smaller value.

Setting difficulty degrees requires the “minimum difficulty degree” and “difficulty
gap.” Starting from the mean value as Difficulty degree 1, the sigma value was added or
deducted to set Difficulty degrees 2 and 3. Table 2 shows the difficulty gaps and degrees.

Table 2. Difficulty degrees of navigation elements.

Navigation Elements Gap (Sigma Value) Degree 1 Degree 2 Degree 3

Course-altering angle (◦) 17 (σ) 5 22 (5 + σ) 39 (5 + 2σ)
Straight proceeding

distance (NM) 0.17 (σ) 0.72 (µ) 0.55 (µ − σ) 0.38 (µ − 2σ)

For the “course-altering angle,” the mean value was nearly zero due to the symmetry
shape of the distribution (portside and starboard side). Instead, this research used a 5◦ angle
as the minimum difficulty degree.

2.1.3. Navigation Scenarios in Differentiated Difficulties

Regarding the proposed concept of difficulty, the low-difficulty scenario has a more
minor course-altering angle and a longer straight proceeding distance to the next waypoint,
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giving trainees sufficient time and place for ship maneuvering along the navigation route.
Unlike the low-difficulty, the high-difficulty scenario has a larger course-altering angle
and shorter straight proceeding distance to the next waypoint, making the trainees feel
challenged to navigate. To determine such difficulty, this research borrowed the “difficulty
and importance matrix” concept. Figure 3 shows our proposed difficulty matrix, and
Figure 4 shows navigation scenarios in differentiated difficulties for our experiments.

Figure 3. Difficulty matrix for navigation scenario generation.

Figure 4. Navigation scenarios in differentiated difficulties: (a) low, (b) medium, and (c) high difficulties.

The above navigation scenarios depict our difficulty concept for two navigation
elements. A smaller course alteration and more prolonged straight proceeding have
less difficulty.

2.2. Navigation Experiment Execution
2.2.1. Experiment Configuration

This research performed simulated navigation experiments at Mokpo National Mar-
itime University. Then, data were collected using a full-mission-ship-handling simulator.
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All participants have experience in onboard training, thereby possessing the basic knowl-
edge of handling navigation equipment [33]. Specific characteristics of participants are
listed in Table 3.

Table 3. Participants’ characteristics.

Characteristics Description

(1) Number of participants 34
(2) Grade Senior grade student
(3) Onboard training period 11–12 months
(4) Type of ship in onboard training Merchant and training ships

2.2.2. Experiment Protocol

The simulated navigation was performed for 45 min for each participant, the ship
proceeded at 13-knot speed in an open sea environment without any obstacle, and the
navigation route was charted on an Electronic Chart Display Information System. Al-
though all participants completed a year-long onboard navigation training, the specific
use of navigation equipment, as well as the navigation scenarios in differentiated diffi-
culties, was demonstrated to each participant. Figure 5 shows participants performing
simulated navigation.

Figure 5. Images of participants in a simulated navigation environment.

2.3. Maneuvering Feature Extraction

The data was collected including “time”, “location”, and “rudder angle”, from the
simulator to extract maneuvering features (Table 4). In extracting features, navigation
experience and the experimental protocol were considered.

Table 4. Maneuvering features.

Domain Abbreviation Feature Specification Unit

Steering
ART Average rate of turn ◦/min
SRT Standard deviation of the rate of turn ◦/min
ARD Average rudder angle ◦

Spatial
ODD Overall distance difference %
AXD Average cross-track distance cable
SXD Standard deviation of cross-track distance cable

Temporal OTD Overall time difference %
ORM Overall time of rudder angle at “0” %

2.4. Difficulty Validation

Among maneuvering features derived in the previous subsection, ineffective features
were eliminated using a stepwise regression method. After eliminating features whose
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p-value is more significant than 0.05 based on the sum of square error (SSE) criterion, this
study performed t-distributed stochastic neighbor embedding (t-SNE) clustering to validate
if the proposed differentiated difficulties are adequately divided into clusters.

3. Results

After our simulation experiments using navigation scenarios in differentiated dif-
ficulties of our proposed methods, the experimental results were analyzed to validate
differentiated difficulties. In this section, the research focused on feature engineering and
validation, as navigation scenario generation was described in the previous section.

3.1. Simulation Experimental Results

Because this research presupposed that the goal of the experiment is perfect ship
maneuvering, participants struggled to maintain the ship’s course and distance on the
charted route. Some participants exhibited superb maneuvering, whereas others struggled.
Figure 6 shows the ship’s trajectory for three difficulties of navigation scenarios.

Figure 6. Ship’s trajectory data collected from experiments: (a) low, (b) medium, and (c) high difficulties.

In the experiments, engine controlling was not allowed to set the experiment con-
dition equally and to prevent unexpected maneuvering from disturbing the navigation
goal—perfect maneuvering along the charted route.

3.2. Feature Extraction

Maneuvering features (Table 4) are in divided performance domains where different
navigation factors were considered. The steering domain includes features related to
“rudder” and “ship’s turning rate”, which decide whether the ship’s movement is rough or
consistent. Similarly, the spatial domain has features regarding over proceeded distance,
and the temporal domain has exceeded or elapsed time as features. To compare features
objectively, z-score normalization was applied. Figure 7 depicts the maneuvering features
in the divided performance domains.
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Figure 7. Maneuvering features and domains.

3.3. Scenario Difficulty Validation
3.3.1. Feature Selection

Considering the relevance of domains in actual navigation performance, an exami-
nation was conducted on each participant’s variance of navigation along the navigation
scenarios at differentiated difficulties. From the perspective of altering course and maintain-
ing course, the rudder use gets rougher as difficulty increases. Figure 8 shows the rudder
use and trajectory data of the first participant (Participant 1) as a sample.

Figure 8. Participant 1’s rudder and ship trajectory results: (a) low, (b) medium, and (c) high difficulties.

Among the aforementioned maneuvering features, we selected five using the stepwise
regression method based on the SSE minimum: ARD, ODD, SXD, OTD, and ORM. Con-
sidering that features in the steering domain are similar, the stepwise regression method
derived reasonable results. Therefore, these features were selected and applied to the t-SNE
clustering algorithm.

3.3.2. Difficulty Validation

To validate how the differentiated difficulty affected navigation performance, this
research first combined selected features into X and Y using the t-SNE clustering algorithm
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and then compared labeled combined features with k-means clusters. In addition, the lines
are connected; subject 1 was described with dots, arrows, and gray colored circles as a
representative sample, and additional data was shown to track each participant’s results
along the differentiated difficulties in Figure 9.

Figure 9. Separated clusters along differentiated difficulties.

4. Discussion

This research proposed a navigation scenario generation model considering the differ-
entiated difficulties. Our findings are discussed below.

4.1. Simulation Experiment

When controlling MASS remotely, the navigation situation given to the operator may
not allow course changing, or them to request immediate course changing. In preparing
for those situations, trainees should be used to the ship’s movement. The ship’s trajectory
results in Figure 6 depict participants’ decisions according to the differentiated difficulties.
On the one hand, the trajectories of the low difficulty have a relatively narrow width,
indicating trajectories concentrated in the center with only a few trajectories off the route.
On the other hand, in the medium and high difficulties, the width of trajectories got larger
and weirder, losing their shapes. Clearly, the participants felt that handling the ship became
more challenging with a smaller room to steer and a tighter time to make decisions. In the
given one cable of preparation section, the width of trajectories began to differ between
participants who chose to alter course earlier due to the ship’s late movement feedback and
those who could not consider this. This is because handling a ship requires understanding
the ship’s movement according to its speed, size, and other information. However, the data
and equipment used in the experiments were from conventional ships, so when the MASS
remote operator training simulator is developed, it is necessary to consider the difference
between the features of conventional ships and MASS.

4.2. Features in Domains

Even though the controlling of MASS could use other types of steering, still the ship
maneuvering requires operators to understand how to steer in consideration of the ship’s
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present location and expected arrival time to the following location. Table 4 and Figure 7
have eight features in three domains, and each domain has a different aspect of ship
maneuvering. The steering domain has three features, which indicate only how proficiently
the test participants steered in the charted route. Therefore, Features could be helpful when
it is necessary to assess the course-maintaining skill, even if the test participants did not
strive to follow the charted route. Meanwhile, the spatial domain features exhibit how close
the trajectory to the charted route was. No matter what rudder angle a test participant used
or how rapidly the ship altered, these features only tell the distance difference. Likewise,
the temporal domain features indicate the time difference or accumulated time of action
solely. Accordingly, features were selected evenly from each domain to evaluate the full
maneuvering results of our experiments.

4.3. Scenario Difficulty Validation
4.3.1. Feature Selection with Interpretation

Considering features are based on the conventional ship simulation experiment, not
the MASS simulation yet, it was preferred to use most of the maneuvering domains evenly
as possible. In the sample test results in Figure 8, Participant 1 steered relatively little and
kept the gap with the charted route small in the low-difficulty scenario. The steering was
not conspicuously rougher in the medium-difficulty scenario, but the gap with the charted
route was significantly greater than that in the low-difficulty scenario. Contrariwise, in
the high-difficulty scenario, the steering was conspicuously rougher than in the medium-
difficulty scenario when the gap with the charted route was not outstanding. In addition,
features in the maneuvering domains worked differently when distinguishing difficulties.
Fortunately, the stepwise regression model results were under our expectations. Five
features: ARD, ODD, SXD, OTD, and ORM, were selected. Those features may differ
when test experiments are conducted in the MASS remote operator training simulators,
but presently, it was the appropriate result. The features are selected evenly from domains
leaving the matter of controller types flexible in future research.

4.3.2. Difficulty Validation with Interpretation

Combined features in clusters are displayed using the t-SNE clustering and k-means al-
gorithms in Figure 9. As reasons for using these algorithms, the t-SNE clustering algorithm
is well-suited for visualizing high-dimensional features and keeping their effect the same,
and the k-means algorithm is appropriate for measuring centroids for distance calculation
among clusters. In Figure 9, Participant 1 as a sample shows differentiated results from
low to high difficulties; other participants show similar results. Most participants were
close to the centroid of clusters, but some were outside the cluster boundaries. The partic-
ipants out of boundaries were found to conduct the previous navigation scenario badly
and concentrated more on the following navigation scenario to compensate for mistakes.
This can happen in the actual navigation, but a second chance will not be given. In terms
of distances among centroids, the low and medium difficulties were derived more than
1.5 times longer than the medium and high difficulties. Consequently, the results showed
well-separated differentiated difficulties, but the adjustment of the difficulty criterion was
found to be necessary.

5. Conclusions

This study proposed difficulty differentiation methods for simulated navigation sce-
narios that can be used in the training of MASS remote operators. Research methods
include the actual navigation element distribution extraction, navigation scenario difficulty
division, simulation experiment, and difficulty evaluation using a clustering algorithm.
Those were not involved in other related research since they adjusted complexity navigation
elements only to differ the navigation difficulties. Our findings indicate that the steps of
navigation difficulty can differ objectively. In the future, the study expects remote operators
to take charge of MASSs’ safe navigation, which requires genuine navigation proficiency
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and situations recognizing senses from repeated training. In this regard, using proposed
methods to generate massive navigation scenarios under systemically evaluated navigation
difficulty can support the development of a training simulator for MASS remote operators.
The authors would develop an advanced model with more navigation elements for the
implementation of the MASS remote operator training simulator without the limitations
found in this research.
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