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Abstract: As the Framework Act on Sustainable Infrastructure Management has recently been enacted
in Korea, it has become mandatory to establish a medium-and long-term plan for managing social
infrastructure and evaluating the feasibility of maintenance projects. However, road agencies are
experiencing problems due to a lack of deterioration models which are essential to conducting a life
cycle cost analysis. Thus, this study developed deterioration models for bridge pavements as the first
step to secure the power of execution of the Infrastructure Management Act. The deterioration model
subdivided pavement materials into asphalt, conventional concrete, and latex-modified concrete.
This study analyzed the data on diagnosis for the last 12 years in Korea by applying the Bayesian
Markov Hazard Model. The average life expectancy by pavement type was analyzed as follows:
12.8 years for asphalt pavement; 23.4 years for concrete pavement; and 9.8 years for latex-modified
concrete pavement. For the probabilistic life cycle cost analysis and risk management, probability
distributions of life expectancy, effective range by confidence level, and Markov transition probability
were presented. This study lays a foundation for deterministic and probabilistic life cycle cost
analysis of bridge pavement. Future studies need to develop deterioration models standardized for
all components of bridges and all types of social infrastructure.

Keywords: asset management; bridge; pavement; life cycle cost analysis; life expectancy; deterioration
model; Markov chain; pavement material

1. Introduction

As social infrastructure that had been built in Korea (Republic of Korea; ROK) since
the 1970s became superannuated [1] and failures (i.e., events) occurred therefrom, Korea
enacted the Framework Act on Sustainable Infrastructure Management (hereinafter, the
Infrastructure Management Act) in 2020. This Act focuses on reorganizing a system that
manages the social infrastructure and requires the following: to re-establish criteria for
maintenance; to set up a long- and short-term management plan; and to evaluate the
feasibility of maintenance projects. This Act specifies, as one of its fundamental principles,
to “minimize the life cycle cost incurred by deterioration” [2] and prescribes to apply a Life
Cycle Cost Analysis (LCCA) as an evaluation of the economic feasibility of performance
improvement projects [3].

The LCCA derives future budgetary demands necessary to anticipate a change in a
state of assets retained by an organization and secure a targeted service level. To conduct
the LCCA, a deterioration model with an asset register is essential for anticipating a future
condition of the assets. Based on the “Special Act on the Safety Control and Maintenance of
Establishments (hereinafter, the Infrastructure Safety Act)” enacted in 1990s [4], Korea has
endeavored to develop data on the status, condition, and history of social infrastructure for
the last 30 years. As a result, Korea has developed detailed data on major social infrastruc-
ture in a systematic way [5]. However, no deterioration model and LCCA techniques have
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been established so far for each type/member of social infrastructure, which are officially
applicable. That is, even if it is forced to conduct an LCCA by enacting new legislation, it is
not prepared to respond thereto in the real world.

Thus, this study aimed to develop a bridge pavement deterioration model for the
LCCA as the first step to secure a power of execution of the Infrastructure Management Act.
This study subdivided deterioration models by pavement materials (asphalt, concrete, and
Latex-Modified Concrete (LMC)) to develop a direction for the development of deterioration
models presented by ISO 55001 and International Infrastructure Management Manual
(IIMM) which could respond to deterministic/probabilistic LCCA. To sufficiently secure
empirical bases, data on inspection and diagnosis conducted for the last 12 years in Korea
were applied. As analytical tools, the Bayesian Markov Hazard (BMH) model combining a
Markov chain, a multi-state exponential hazard model, and a Markov Chain Monte-Carlo
(MCMC) technique were introduced. As its findings, life expectancy by condition grade,
deterioration curve, probability density and distribution of the life expectancy, confidence
intervals of life expectancy at the 3-sigma rule, and Markov Transition Probability (MTP)
as Probability of Failure (POF) were suggested.

This paper presents not only life expectancy for LCCA but also the factors necessary
for asset management in a comprehensive manner. It is expected that the methodologies
and procedures for deterioration modeling presented herein will become useful precedents
that can be referred by other studies on infrastructure.

2. Literature Reviews

ISO 55001, an international standard for managing assets, states that it is essential
to predict events likely to occur in the future [6]. It is a basis for sustainable organization
management to define in advance the types of events and characteristics of risk which will
obstruct an organization from achieving its objectives and establish strategies in preparation.
The IIMM developed by applying ISO 55000 series and classifying types of deterioration
models into deterministic models and probabilistic models [7]. Furthermore, ISO 55001
(Clause 10.2) requires the identification of a potential failure of assets and uses the same for
preventive measures [1]. This means the application of Risk Centered Maintenance (RCM).
It is required to investigate in advance the POF to realize the RCM, which would be able
to be developed only through a probabilistic model. Thus, this study intended to develop
a deterioration model which could support both functions to apply the requirements of
ISO 55001.

Internationally, many studies are being conducted on social infrastructure deteriora-
tion modelling with a focus on pavement and bridges with various statistical techniques
are applied thereto [8–41]. Do et al. [8] classified deterioration modelling techniques into six
types and presented their advantages, disadvantages, and selection methods, respectively.
Here, they are classified into the citation of useful life in accounting standards, simple
calculation of elapse time between maintenances, multiple regression analysis, reliability
analysis, traditional Markov chain, and advanced Markov chain application theory. It is
presented that the appropriate methodology (or model) shall be selected based on the type,
scale, and characteristics of obtained data and the information to be obtained through the
deterioration model. Han and Lee [9] presented the conditions of deterioration model for
asset management, as follows: (1) description of the transition of the deterioration speed,
(2) derivation of information of uncertainty in the deterioration process, (3) derivation of
influence of explanatory variables, (4) direct application of the Level of Service (LOS), and
(5) resolution of lack of samples and presumption of model parameters. As a result, the
BMH model was presented as a model optimized to meet these conditions.

The BMH model was proposed by Kaito and Kobayashi [10] and it overcomes the
limitations of a model proposed by Tsuda [11] by applying the MCMC which is a non-
parametric method. Thereafter, Bayesian Markov Mixed Hazard Model (hereinafter, the
BMMH) that represents the heterogeneity of samples with a benchmark curve and hetero-
geneity factor was presented [12,13]. This study compared and examined the BMH Model
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and the BMMH Model to select the most appropriate deterioration modelling technique
for this study. The BMMH Model satisfies the ideal conditions for the deterioration model
proposed by Han and Lee [9], and is able to develop and compare deterioration models
for various sample groups all at once [14,15]. However, the BMMH Model assumes that
deterioration models have the similar shape of deterioration curve (i.e., a process in which
a deterioration rate changes) due to their nature to utilize a benchmark approach. Such
an assumption may not be significant in studies that simply compare the performance of
design/material alternatives based on life expectancy. However, such an assumption may
become fatal in studies on the LCCA where a process in which deterioration rate change
acts as an optimization variable. Thus, this study determined that it would be appropriate
to apply the BMH Model considering the possibility that a deterioration curve may vary
depending on pavement materials.

Studies on pavement management conducted since the mid-1960s are being conducted
more actively in the 21st century [16,17]. Significant results were derived even in Korea in
relation to pavement deterioration characteristics from information accumulated through
the operation of the Pavement Management System (PMS) [9,14,15,18–21]. However, it
is impractical to apply the findings on general road pavement to the LCCA of bridge
pavement. This is because it is difficult to assume that their deterioration characteristics
are similar due to their different pavement design, materials, and understructure. Further-
more, a condition of pavement is internationally represented with cracking, rutting, and
International Roughness Index (IRI). However, Korea regards bridge pavement as a bridge
component and thus its condition is evaluated based on its grade in accordance with the
Infrastructure Safety Act [22]. Naturally, the road pavement deterioration models cannot
be applied to the LCCA of bridge pavement in Korea and it would be reasonable to derive
models by historical performance data of bridge pavement.

A bridge is a complicated structure composed of many components. The American
Society for Testing and Materials (ASTM) defines 48 detailed components (at Level 3:
individual elements) [23]. Previous studies on bridges have focused on the structural
defects in abutment, pier, deck, etc., or the safety of components having a direct effect
on collapse [24–31]. Of course, as there are a variety of studies on the deterioration
characteristics of bridge pavement [11,32–36], it is impractical to apply the findings of
studies conducted in other countries to the LCCA in Korea without change. This is because
the LCCA shall reflect thoroughly the deterioration characteristics of its own assets.

Next, the subdivision of the deterioration model is also of interest. It would be
convenient to develop a network-based model which represents the whole bridge pavement.
However, such a model would not be able to reflect a difference in life expectancy resulting
from deviation of technology or materials of pavement. Even the IIMM stated that it would
be able to secure the accuracy of prediction only considering the deviation of these assets
in terms of technology and environment [7]. In general, asphalt and concrete are used as
materials for bridge pavement. However, it takes too long to cure the concrete pavement
(28 days or more) [42] and civil complaints are frequently raised due to work zones. To
mitigate the problem, the LMC is used as the main material in Korea, which reduces the
curing period significantly. The LMC pavement has physical characteristics different from
those of conventional concrete and asphalt pavement and has high installation costs [32–34].
Thus, it is necessary to confirm its difference from conventional concrete pavement in terms
of life expectancy.

The implications obtained through the literature review and plan for application
thereof in this study are summarized as follows:

(1) The deterministic and probabilistic approaches shall be applicable simultaneously to
comply with international standards for asset management;

(2) The BMH model is appropriate as a deterioration modeling technique to support a
variety of asset management information;

(3) The deterioration model for bridge pavement cannot cite a deterioration model for
road pavement and shall be built with data native to Korea;
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(4) The deterioration model for bridge pavement shall be subdivided to correspond to
reality in Korea. It is appropriate to divided it into asphalt, concrete, and LMC.

3. Methodology
3.1. Description of the BMH Model
3.1.1. A Basic Structure of the BMH Model

In this section, the study introduces the process, based on Kaito [10] and Tsuda [11],
to disassemble the MTP using the multi-state exponential hazard functions which are the
basic structure of the BMH model.

The Markov chain represents a condition with discrete grade i (i = 1, . . . , J). Here, a
probability of condition change among grades can be represented with probability variable
πij (see Equation (1)) and the MTP can be organized by collecting these probability elements

(see Equation (2)). Naturally, under the axiom of probability, πij ≥ 0 and ∑J
j=1 πij = 1.

Since deterioration models do not include maintenance effects, the following shall be
additional conditions: πji = 0 (i > j); and ∑J

j=1 πij = 1.

Prob[h(τB) = j|h(τA) = i ] = πij (1)

Π =

π11 · · · π1J
...

. . .
...

0 · · · πJ J

 (2)

In Equation (1), τA and τB mean the time when a condition is investigated and Z
means the elapsed time between them. These data could be obtained in a field by a road
manager. However, what shall be assumed by the deterioration model is not how much
the condition changes between τA and τB but the time ζi (yc) between τi and τi−1 when the
condition grade i (i = 1, . . . , J − 1) changes (i.e., life expectancy of grade i). It is impossible
to figure out in an investigation system with a specific cycle. The BMH model regards it as
a probability variable and seeks a solution to disassemble MTP based on the multi-state
hazard model [11].

A multi-state hazard model could represent the condition of an object as plural discrete
grades with a possibility of change and formulate routes changeable among these grades
as a conditional probability. First, the life expectancy (ζi) of condition grade i of pavement
becomes a probability variable of the probability density function f (ζi) and the probability
distribution function Fi (ζi). The Fi (ζi) is a deterioration function and a survival function
F̃i (ζi), which is equivalent thereto as follows:

Prob[ζi ≥ yi] = F̃i (ζi) = 1− Fi (yi) (3)

Fi(yi) =
∫ yi

0
fi(ζi)dζi (4)

The probability in which the condition i changes to the condition i + 1 during time
interval [yi, yi + ∆y] is as follows:

λi(yi) =
fi (yi)

F̃i (yi)
= −

dF̃i (yi)
dyi

F̃i (yi)
=

d
dyi

(
− log F̃i(yi)

)
= θi (5)

Here, θi is a hazard function. The hazard function fi (ζi) for life expectancy at condition
i is as follows:

F̃i(yi) = exp
[
−
∫ yi

0
λi(u)du

]
= exp (−θiyi) (6)

fi (ζi) = θiexp (−θiζi) (7)
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Defining a probability of change among condition grades, the routes of deterioration
possible within unit time are summarized as (1) πii, (2) πii+1, (3) πij, (4) πi J and may be
induced to the multi-state exponential hazard model as follows [11]:

πii = exp (−θiZ) (8)

πii+1 =
θi

θi − θi+1
{− exp(−θiZ) + exp(−θi+1Z)} (9)

πij =
j

∑
k=i

k−1

∏
m=i

θm

θm − θk

j−1

∏
m=k

θm

θm+1 − θk
exp (−θkZ) (10)

where 
k−1
∏

m=i

θm
θm−θk

= 1, at (k ≤ i + 1)

j−1
∏

m=k

θm
θm+1−θk

= 1, at (k ≥ j)
(11)

πi J = 1−
J−1

∑
j=1

πij (12)

As shown in Equation (8) through (12), the Markov transition matrix becomes, after all,
a function of θi (i = 1, . . . , J − 1). However, an influence from explanatory variables that
interfere with deterioration process cannot be included in their forms. Thus, an estimation
equation can be formulated as follows by adding to an estimation of θi unknown parameter
vector βi,m (i = 1, . . . , J − 1; m = 1, . . . , M + 1) corresponding to independent variable xm:

θi = f
(
ξ; βi

)
= exp(βi + β1,1x1, . . . , βi,mxm)

(i = 1, . . . , J − 1; m = 1, . . . , M + 1)
(13)

Here, the life expectancy of each condition grade i is defined as a survival function of
the exponential hazard function (see Equation (14)). The life expectancy up to condition J is
derived by accumulating the life expectancy of each condition grade Rk

i (i = 1, . . . , J − 1)

Rk
i =

∫ ∞

0
F̃i

(
yk

i

)
dyk

i =
∫ ∞

0
exp

(
−θk

i yk
i

)
dyk

i =
1
θk

i
(14)

That is, the essence of the BMH model can be summarized as the process of βi,m to
estimate θi and, to this end, the Metropolis-Hastings (M-H) technique is used, which is one
of the most popular techniques among the MCMC.

3.1.2. Parameter Estimation by MCMC

Compared to conventional statistical techniques, such as the Maximum Likelihood
Estimation (MLE), etc., the Bayesian statistical technique has the advantage of a lack of
samples, an overflow caused by an increase in the dimensions in the matrix, the setting of
an initial value of a parameter, and a local maximum [43]. These advantages are particularly
effective in the deterioration modeling of social infrastructure, which requires substantial
time and effort to secure samples sufficiently and has a variety of variables in elucidating
the process of deterioration.

The basis of Bayesian statistics is to figure out or update the relation between prior
distribution (or prior knowledge) and posterior distribution. The posterior distribution
starts from the fact that it is proportional to the multiplication of prior distribution with a
likelihood function [20] (see Equations (15) and (16)).

π(β|ξ) ∝ L(β|ξ)π (β) (15)
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β is a probability variable corresponding to prior distribution π (β). π(β|ξ), which
is the posterior distribution of β, is defined, in accordance with the Bayesian theorem,
as follows:

π(β|ξ) = L(β|ξ)π (β)∫
L(β|ξ)π (β)dθ

(16)

In summary, the Bayesian computation can be defined as follows: (1) definition of prior
distribution π (β) (also referred to as the initial value); (2) definition of likelihood function
L(β|ξ) utilizing ξ newly obtained; (3) adjustment of prior distribution π (β) and update
of posterior distribution π(β|ξ). However, it is still difficult or impossible to compute
L(ξ) =

∫
L(β|ξ)π (β)dθ referred to as the “normalized constant” (see Equation (16)),

i.e., the marginal probability of ξ. This problem is resolved by the MCMC. To realize the
MCMC, it is necessary to provide substantial explanation and formulas in relation to the
following: definition of likelihood function satisfying Equation (8) through (12); realization
of MCMC with M-H techniques; derivation of posterior distribution; examination of
maximization using Geweke statistics, etc. This paper will explain in brief the definition of
the likelihood function required to predict a model coefficient and the M-H technique.

First, ξ =
(

δ
k
ij, zk, xk

)
represents data that can be collected in the field. Here, δ

k
ij is a

dummy variable to become 0 or 1 depending on a change of condition and zk is an interval
between investigation times. In accordance with the Bayesian update rules, a likelihood
function L

(
β
∣∣ξ) is defined, with πij (z), as follows:

L
(

β
∣∣ξ) = J−1

∏
i=1

J

∏
j=i

K

∏
k=1

{
j

∑
h=i

h−1

∏
l=i

θk
l

θk
l − θk

h

j−1

∏
l=h

θk
l

θk
l+1 − θk

h
exp

(
−θk

hzk
)}δ

k
ij

(17)

As presented in Equation (13), βi is defined as a function of explanatory variable
xk

m. The prior distribution is normalized as follows so that it is similar to the posterior
distribution by assuming normal distribution βi ∼ NM (µi, Σi) with an M + 1 dimension.

π
(

β
∣∣ξ) ∝ L

(
β
∣∣ξ) J−1

∏
i=1

g(βi|µi, Σi)

∝
J−1
∏
i=1

J
∏
j=i

K
∏

k=1

{
j−1
∏
l=1

θk
l

j
∑

h=i

h−1
∏
l=i

1
θk

l −θk
h

·
j−1
∏

l=h

1
θk

l+1−θk
h

exp
(
−θk

hzk
)}δ

k
ij

·
J−1
∏
i=1

exp
{
− 1

2 (βi − µi)Σi
−1(βi − µi)

′
}

(18)

µi and Σi are average and covariance matrices of prior distribution, respectively. The
MCMC is applied to compute L

(
ξ
)
=
∫

L
(

β
∣∣ξ)∏J−1

i=1 g(βi|µi, Σi)dβ, which is a normalized
constant necessary to obtain posterior distribution.

This sampling technique is named “Markov” because an extracted sample is influ-
enced only by the immediately preceding (current) condition and a sample is extracted
under the Monte-Carlo sampling based on a probability distribution [43]. In brief, the
M-H technique closes the distance with a target distribution (invariant distribution) by
repeating the process to update prior distribution into posterior distribution with sam-
pled jumping distribution [44]. Samples derived from the MCMC are classified into the
following two groups: a burn-in sample group necessary to reach a convergence region;
and an effective sample group used to organize distribution and assume parameters. Many
statistical techniques have been developed to check whether the effective sample group con-
verges. However, Geweke statistics are widely used [9,10,12–15,20,21,40,41]. For detailed
information of the Geweke test, please refer to the references [44–46].
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Lastly, in relation to the application of the BMH model, some important presumptions
are enumerated, which shall be perceived by readers:

(1) The state of infrastructure which changes in a continuous manner is represented as a
discrete grade;

(2) According to the basic nature of Markov chains, it is presumed that a change in object
state is influenced only by its immediately previous state;

(3) Deterioration characteristics (deterioration speed, uncertainty, influence of explana-
tory variables, etc.) vary depending on the grade and are mutually independent;

(4) The life expectancy of each grade is presumed to be a stochastic variable depending
on survival function (i.e., distribution function) and hazard function (i.e., probability
density function);

(5) It is presumed that the hazard function follows an exponential function which re-
flects the nature of event occurrence time depending on a degree of risk and the
“memoryless” characteristic of Markov chains;

(6) It is presumed that the conditions applied as an explanatory variable are maintained
without change during the life expectancy;

(7) It is presumed that the result of model parameters derived through MCMC is always
the same.

3.2. Data Collection and Processing

Bridges on the national highway managed by the Ministry of Land, Infrastructure and
Transport (MOLIT) were used to develop a deterioration model. The total length of the
national highway in Korea is about 14,098 km. The national highway is widely distributed
throughout the nation and has a total of 8850 bridges [47,48].

These bridges are managed in accordance with the Infrastructure Safety Act. The
methods and cycles for diagnosis are applied as differentiated depending on the scale and
condition grade of a bridge. The diagnosis is conducted in a unit of component and the
findings thereof are collected and managed through the Bridge Management System (BMS).
This study derived a deterioration model from data on inspection and diagnosis of all
bridges collected for 12 years (2009~2020). A proportion by pavement material used in
each bridge showed that asphalt, concrete, LMC, and other types were 88.3%, 5.5%, 5.9%,
and 0.3%, respectively. In other words, it is possible to conduct the LCCA of all bridges
(99.7%) except for some special cases (0.3%) based on the three pavement types.

Since the BMH model uses condition grades as a unit of assumption, the criteria
and meaning of determination on each condition grade are very significant. The criteria
for determining the condition of bridge pavement under the Infrastructure Safety Act
do not classify asphalt and concrete and determines four grades based on defect rate,
effect on vehicle driving, and drainage condition. Here, since the defect rate is calculated
as ‘damaged area/total area of bridge pavement’, it is possible to evaluate the grade
objectively. However, the driving performance, drainage condition, and the final state
grade are based on three indicators that are difficult to represent with numeric values
determined depending on the inspector’s intuition [22]. For criteria in detail, please refer
to Table 1 [22].

The Annual Average Daily Traffic (AADT) was applied as an external explanatory
variable having an effect on deterioration. Truck volume may be more significant in
developing a deterioration model. However, there was no alternative, because the AADT
represented the only data on all bridges in the BMS database. For reference, a correlation
coefficient ‘R-value’ between AADTs and the truck volumes was derived to be 0.84, which
may be determined as being regarded as a variable with which the AADT can replace the
traffic volume of trucks. Due to limitations on purpose and secured data of this study,
effects of the following shall be left for future studies: scale and form of bridges (rigid-frame
bridge, PSCI bridge, cable bridge, etc.); climatic requirements (temperature, moisture, salt
stress, etc.); and design deviation (thickness of pavement layer, etc.)
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Table 1. Definition of condition grades of bridge pavement in Korea [22].

Grade
Bridge Pavement Condition

Defect Rate 1 Driving Performance 1 Drainage Condition 1

A Micro-cracks - -

B Pavement defect rate of
less than 2%

Minor damage to pavement
and thus no effect on driving

Partial ponding caused by
fault in drainage grade

and facility

C Pavement defect rate of
2~10%

Effect on driving due to
damage to pavement

Decline of driving due to
ponding caused by fault in
drainage grade and facility

D Pavement defect rate of
10% or more

Overall re-pavement
required

Decline of safety of passing
vehicles due to ponding

caused by faulty drainage
1 Labels were added to the original reference [22].

A time series data set is required to apply the BMH model. As presented in Equations
(1) and (12), a data set is composed of the following: a condition grade h(τA) at time A; a
condition grade h(τB) at time B; a time interval Z between two inspection times; and an
explanatory variable m (i.e., AADT) that an analyst intends to apply. A total of 8935 data
sets were developed as processing data on bridge pavement. Among them, the following
were removed: (1) data with simple input errors (5 data sets); (2) data whose condition
grade is upgraded with repair and reinforcement (330 data sets); and (3) data improper for
developing a model due to short time periods that elapsed with an inspection interval of
less than one year (2706 data sets). As a result, a total of 5894 data sets were classified as
effective. By reorganizing the data sets by pavement materials, the following were secured:
5257 (89.2%) data sets with asphalt pavement; 288 (4.9%) data sets with concrete pavement;
and 349 (5.9%) data sets with LMC pavement. It was determined that, even if the number
of samples was relatively small in relation to concrete and LMC pavement, it would not be
so impractical to develop a deterioration model empirically.

4. Results
4.1. Estimation of Hazard Functions, Life Expectancies, and Deterioration Curves

In this section, this study compares and analyzes the following: model parame-
ters by bridge pavement type; hazard function; life expectancy; and results of deriva-
tion of deterioration curve. The MCMC was applied to a total of six model parameters
βi,m (i = 1, . . . , 3; m = 1 + 1) (see Equation (13)). The number of times being sampled for
each parameter was 35,000. The initial 5000 times were regarded as burn-in samples to
enter a convergence region and 30,000 samples thereafter were used to assume parameters.
The final model parameter values in Table 2 were easily obtained as expectation values of
the distribution of the effective samples (i.e., Sample ID 5001~35,000), that is, the average
of the effective samples. A stride of random walk was set to 0.001 to guarantee the stable
movement of MCMC. Table 2 and Figure 1 present the process and result of assuming
parameters with MCMC.

It is shown that the Geweke’s Z-score, based on which it was determined whether
βi,m converged normally, was close to 0.00, which is an optimal value (tolerance interval
[–2,2]). From the path of MCMC illustrated in Figure 1, it can be known that the sampling
was conducted in a very stable manner. In particular, it can be verified that it entered into
an effective region from about 1000 times of sampling and then repeated similar patterns
thereafter. Table 3 shows the results of deriving hazard function and life expectancy by
pavement type derived from the results in Table 2. For a deterioration curve derived by
linking life expectancy by condition grade, please refer to Figure 2.
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Table 2. Parameters of the BMH model by the condition ratings.

Condition Grade

Betas (βi,m)
(Geweke’s Z-Score)

Explanatory Variable
AADT (x1) 1

Asphalt Concrete LMC
Asphalt Concrete LMC

βi,0 βi,1 βi,0 βi,1 βi,0 βi,1

A to B −0.804
(0.008) - 2 −1.101

(0.017) - −0.735
(0.016) -

0.214 0.375 0.273B to C −1.676
(−0.011)

0.055
(0.018)

−2.461
(0.059)

1.758
(−0.067)

−1.622
(0.089)

0.394
(−0.113)

C to D −1.659
(−0.005) - −5.184

(0.527)
6.754

(−0.556)
−1.301
(0.005)

0.605
(−0.005)

1 Normalized by (0,1]. 2 The mark ‘-‘ indicates insignificant variables due to an inverted relationship.
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Table 3. Hazard functions and life expectancy by condition grade.

Condition Grade
Hazard Functions

θi = exp (β0 + β1x1)
Life Expectancy (Year)

Ri = 1/θi

Asphalt Concrete LMC Asphalt Concrete LMC

A to B 0.448 0.332 0.480 2.24 3.06 2.11

B to C 0.189 0.165 0.220 5.29 6.13 4.57

C to D 0.190 0.070 0.321 5.26 15.18 3.16

Total life expectancy (year) 12.78 24.36 9.84

Average life expectancy by pavement material type was analyzed as 12.8 years,
24.4 years and 9.8 years for asphalt, concrete and LMC, respectively. The presented contents
were a deterministic deterioration model and can be used as a condition update function
when applying the LCCA. The life of concrete was almost twice that of asphalt. On the
contrary, the LMC pavement belonging to concrete showed a life shorter than asphalt
pavement. In terms of the shape of the deterioration curve, the deterioration curve of
asphalt and LMC was close to linear, and the deterioration curve of concrete was close to
logarithmic, wherein the deterioration rate gradually became slow. In particular, all three
types of pavement showed similar deterioration characteristics up to C grade. However,
the life expectancy was relatively long in C→ D grade in concrete pavement.
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Figure 2. Comparison of deterioration curves by bridge pavement materials.

It is necessary to examine whether the results of this study are consistent with the
physical properties of pavement materials. The Structural Number of Pavement (SNP) is an
index that can compare the structural strength of pavements equally. American Association
of State Highway Officials (AASHO) road test, the fourth Highway Development and
Management (HDM-4) model of the World Bank, and the conversion factor of the surface
layer proposed/applied by the American Concrete Pavement Association (ACPA), the
value of 0.30 to 0.44 for asphalt and 0.50 for concrete are specified [49–51]. That is, concrete
has a high contribution of up to 1.7 times. The difference in life expectancy between concrete
and asphalt presented in this study was about 1.9 times, confirming a similar trend.

In light of the preceding research on the presumption of life expectancy by pavement
material, the life expectancy of asphalt, concrete, and LMC is presumed to be about
10~15 years, 25~30 years, and 15 years, respectively [32–35]. They also presented the
difference in pavement strength and durability as a cause for such deviation. It seems
that the life expectancy of asphalt and concrete is similar to the findings of this research.
However, the life expectancy of LMC was substantially different from that in the preceding
research. It is presumed that the “Rapid Setting-LMC (RS-LMC)” which is widely used in
Korea is disadvantageous to securing strength, compared to traditional LMC [52,53].

4.2. Uncertainty of Life Expectancy and Confidence Intervals by 3-Sigma Rule

The life expectancies presented in Figure 2 were represented as single values in terms
of average. However, since they include uncertainty, they could be significantly different
from average life expectancy depending on the conditions of each bridge. Thus, this
study presented the probability distribution of life expectancy using parameter samples
derived through the MCMC process (see Figure 3) and derived a confidence interval of life
expectancy by applying 3-sigma rules [54] (see Table 4). Statistical ranges of life expectancy
based on a confidence level of 95% (2-sigma) are illustrated in Figure 4.

In Figure 3, asphalt and LMC had a relatively small dispersion of life expectancy.
Furthermore, the form of distribution is also clear. On the contrary, in the case of concrete,
the probability density was distributed in a wide area and its peak was not clear, either. If
additional data were secured, the form of distribution might change. However, in light of
the fact that the number of the data was about 350, it is not very likely that the peak position
of probability density would move significantly (i.e., probability that the value of life
expectancy would change significantly). However, in case of concrete C grade→ D grade
with the largest dispersion, it was necessary to verify the reliability of results by collecting
more data and updating the model in a continuous manner.
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Figure 3. Probability density of life expectancy by bridge pavement materials.

Table 4. Statistical confidence intervals of life expectancy at the 3-sigma rule.

Material
Confidence Interval at 3-Sigma Rule (Year)

−3σ −2σ −1σ µ +1σ +2σ +3σ

Asphalt 11.44 11.95 12.53 12.78 13.01 13.66 14.29

Concrete 11.56 14.66 20.14 24.36 26.99 37.94 51.72

LMC 6.84 7.79 9.10 9.84 10.35 12.42 14.75
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Figure 4. Deterioration curves at confidence interval 95% (2-sigma) (a) Asphalt pavement;
(b) Concrete pavement; (c) LMC pavement.

The probability distribution of life expectancy illustrated in Figure 3 can be used as
a probability density of Monte Carlo sampling. That is, the probability distribution of
future budgetary demand can be prepared through a repetitive LCCA simulation. The
scope of required budget can be derived based on the confidence level. This means that the
probabilistic LCCA would become feasible.

4.3. Calculation of POF Presneted by Markov Transition Probability Matrix

The estimation of POF is essential to manage organizational risks, to apply the RCM.
Here, if a failure is defined as a transition between condition grades, the POF can be
organized in an MTP format and used as a probabilistic condition update function. One of
the biggest advantages of the BMH model is that the MTP standardized in a unit time can
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be combined through multi-state hazard functions (see Equations (8)–(12)). Table 5 shows
the results of MTP calculation by pavement material type.

Table 5. Average Markov transition probability matrix by pavement material.

Materials Condition Grade 1 2 3 4 Avg. Hazard Function

Asphalt

1 0.639 0.327 0.032 0.002 0.448

2 - 0.828 0.156 0.016 0.189

3 - - 0.827 0.173 0.190

4 - - - 1.000 -

Concrete

1 0.717 0.259 0.023 0.001 0.332

2 - 0.848 0.147 0.005 0.165

3 - - 0.932 0.068 0.070

4 - - - 1.000 -

LMC

1 0.619 0.339 0.038 0.004 0.480

2 - 0.803 0.168 0.030 0.220

3 - - 0.725 0.275 0.321

4 - - - 1.000 N/A

The MTP in Table 5 is an average condition change probability by pavement ma-
terial. If the AADT of bridge is applied as an explanatory variable of hazard function
(see Equation (13)), the probabilistic LCCA becomes feasible at every individual bridge.
This is because the MTP and hazard function unique to each bridge are secured. Mean-
while, the life expectancy of concrete pavement with C grade was relatively long (see
Figure 2). Compared to 3→4 grade transition probability, concrete pavement (0.068) was
lower than asphalt pavement (0.173) by more than 2.5 times and LMC (0.275) by more than
4 times, respectively.

It is presumed that these findings resulted from the physical characteristics of the
material itself and behavioral characteristics with bridge deck. In general, concrete has a
relatively high strength and loses almost no durability even with long-term use. Further-
more, since the same material as the bridge deck is used, it can be well-attached to the
bridge deck and is structurally stable in terms of shrinkage, expansion, and vibration. In
addition to this, it is presumed that the RS-LMC is disadvantageous to secure structural
stability and strength, because latex is included therein.

5. Conclusions

As the first step to secure an execution power of the Infrastructure Management
Act, this study developed a deterioration model for bridge pavement in Korea. This
study subdivided deterioration models by pavement material by accepting a direction of
developing deterioration models as presented in ISO 55001 and IIMM and developed a
deterioration model which could respond to deterministic/probabilistic LCCA altogether.
In sum, the findings of this study are as follows:

1. The average life expectancy by pavement material was analyzed to be 12.8 years,
23.4 years and 9.8 years for asphalt, conventional concrete, and LMC, respectively.
Thus, a basis of the deterministic LCCA was established;

2. This study presented the probabilistic distribution of life expectancy and the POF
(i.e., MTP matrix) by pavement material by applying the BMH model. Thus, a basis
of the probabilistic LCCA was established;
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3. The effective range of life expectancy at a confidence level of 95% was 12.0~13.7 years,
14.7~37.9 years, and 7.8~12.4 years for asphalt, concrete, and LMC, respectively. This
result may be referred even to define the service life and effective range necessary to
evaluate asset values;

4. The life expectancy of the LMC pavement most expensive in terms of price was shorter
than that of conventional asphalt. It is necessary to figure out causes therefore and
review in terms of technology and economic feasibility whether to continue to apply
LMC pavement.

The limitation of this study and future research tasks may be classified into the
following three groups: First, as the purpose of the study was restricted to the development
of a deterioration model for LCCA, we did not approach in depth the influence on various
internal/external explanatory variables. It is necessary for future research to sophisticate
deterioration models considering bridge understructure, deviation in pavement design,
environmental factors, etc. Second, it is necessary to verify how much the research findings
correspond to reality. Even if this study asked experts of BMS and PMS about the accuracy
of life expectancy of three types of pavement, even experts with broad experiences could
not give a definite answer. As the best alternative solution, it is necessary to apply various
deterioration modeling techniques and compare the results thereof in a relative manner.
Lastly, bridge pavement is only one of numerous components. The securement of execution
power of the Infrastructure Management Act presented as the fundamental purpose of
this study is achievable only after enabling the LCCA for all components of bridges and
all social infrastructure. Future research shall develop deterioration models standardized
for various types of social infrastructure by applying a method to develop a deterioration
model as presented in this study.
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